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S1. Appendix A: Proofs of Lemmas 1–6

Proof. (Lemma 1) Since the second claim follows easily by applying Lemma 1 of Liu
and Wu (2010), we shall here omit the details and only provide the proof for the first
claim, namely ϕ ∈ (−1, 1). For this, it suffices to prove that ϕ cannot takes values in
{−1, 1}, as autocorrelations are always bounded between ±1. However, if ϕ = 1, then
due to the stationarity, one must have Xi = Xi−1 = · · · = X0, violating the short-range
dependence condition that Θ0,2 <∞. The case for ϕ = −1 can be similarly argued, and
thus ϕ 6∈ {−1, 1}.

Proof. (Lemma 2) Let Ũi = Xi − ϕ̃Xi−1, i = 2, . . . , n, and

γ̂Ũ,k =
1

n− 1

n−|k|∑
i=2

(Ũi − ¯̃Un−1)(Ũi+|k| − ¯̃Un−1), ¯̃Un−1 =
1

n− 1

n∑
i=2

Ũi.

then Ṽi = Ũi−(1−ϕ̃)X̄n and ¯̃Vn−1 = ¯̃Un−1−(1−ϕ̃)X̄n. Note that sample autocovariances
are shift-invariant, we have γ̂Ṽ ,k = γ̂Ũ,k, |k| < n−1, and thus it suffices to prove the same

result for (Ũi). For this, let D̃i = (Ũi− ¯̃Un−1)−(Ui−Ūn−1), i = 2, . . . , n, be the sequence
of centered differences, then by elementary calculation D̃i = −(ϕ̃ − ϕ)(Xi−1 − X̄n−1)
and

γ̂Ũ,k−γ̂U,k =
1

n− 1

n−|k|∑
i=2

{D̃i(Ui+|k|−Ūn−1)+D̃i+|k|(Ui−Ūn−1)+D̃iD̃i+|k|} := Ik+IIk+IIIk,
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where

Ik = −(ϕ̃− ϕ)
1

n− 1

n−|k|∑
i=2

(Xi+|k|−1 − X̄n−1)(Ui − Ūn−1);

IIk = −(ϕ̃− ϕ)
1

n− 1

n−|k|∑
i=2

(Xi−1 − X̄n−1)(Ui+|k| − Ūn−1);

IIIk = (ϕ̃− ϕ)2
1

n− 1

n−|k|∑
i=2

(Xi−1 − X̄n−1)(Xi+|k|−1 − X̄n−1).

We shall here provide uniform bounds for Ik, IIk and IIIk, |k| < n − 1, for which we
need the following preparation. Let Fi,j = (εi, . . . , εj), i ≤ j, with the convention that
Fi,j = ∅ if i > j, and define

ϑk,l = E(Uk | Fk−l,k)− E(Uk | Fk−l+1,k).

Then for any fixed l ∈ Z, ϑk,l, k = 2, . . . , n, form a sequence of martingale differences,
and

‖ϑk,l‖ = ‖E(Ul | F0,l)− E(Ul | F1,l)‖
≤ ‖E{G(Fl)−G(F?l ) | F0,l}‖+ |ϕ| · ‖E{G(Fl−1)−G(F?l−1) | F0,l}‖
≤ θl,2 + |ϕ|θl−1,2.

Note that E(Ui) = (1− ϕ)µ, by Doob’s inequality we obtain that∥∥∥∥∥ max
2≤k≤n

∣∣∣∣∣
k∑
i=2

{Ui − (1− ϕ)µ}

∣∣∣∣∣
∥∥∥∥∥ =

∥∥∥∥∥ max
2≤k≤n

∣∣∣∣∣
k∑
i=2

∞∑
l=0

ϑi,l

∣∣∣∣∣
∥∥∥∥∥

≤
∞∑
l=0

∥∥∥∥∥ max
2≤k≤n

∣∣∣∣∣
k∑
i=2

ϑi,l

∣∣∣∣∣
∥∥∥∥∥

≤ 2

∞∑
l=0

(
n∑
i=2

‖ϑi,l‖2
)1/2

≤ 2(n− 1)1/2(1 + |ϕ|)Θ0,2.

As a result, we have∥∥∥∥∥∥ max
|k|<n−1

∣∣∣∣∣∣ 1

n− 1

n−|k|∑
i=2

(Ui − Ūn−1)

∣∣∣∣∣∣
∥∥∥∥∥∥

≤

∥∥∥∥∥∥ max
|k|<n−1

∣∣∣∣∣∣ 1

n− 1

n−|k|∑
i=2

{Ui − (1− ϕµ)}

∣∣∣∣∣∣
∥∥∥∥∥∥+

∥∥∥∥∥ 1

n− 1

n∑
i=2

{Ui − (1− ϕµ)}

∥∥∥∥∥
≤ 4(1 + |ϕ|)Θ0,2

(n− 1)1/2
= O(n−1/2),
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and thus

max
|k|<n−1

∣∣∣∣∣∣Ik + (ϕ̃− ϕ)
1

n− 1

n−|k|∑
i=2

(Xi+|k|−1 − µ)(Ui − Ūn−1)

∣∣∣∣∣∣ = Op(n
−3/2).

By a similar argument, one can obtain that

E

 max
|k|<n−1

∣∣∣∣∣∣ 1

n− 1

n−|k|∑
i=2

(Xi+|k|−1 − µ)(Ui − Ūn−1)− Γn,k,1

∣∣∣∣∣∣
 ≤ 2Θ0,2

(n− 1)1/2
·2(1 + |ϕ|)Θ0,2

(n− 1)1/2
,

and thus
max
|k|<n−1

|Ik + (ϕ̃− ϕ)Γn,k,1| = Op(n
−3/2).

Following a similar martingale decomposition argument for IIk and IIIk, we have

max
|k|<n−1

|IIk + (ϕ̃− ϕ)Γn,k,2| = Op(n
−3/2)

and
max
|k|<n−1

∣∣IIIk − (ϕ̃− ϕ)2Γn,k,3
∣∣ = Op(n

−2),

Lemma 2 follows.

Proof. (Lemma 3) Let H(Fi) = G(Fi)− ϕG(Fi−1), then Ui = H(Fi) and its functional
dependence measure satisfies

θU,k,q = ‖H(Fk)−H(F?k )‖q ≤ θk,q + |ϕ|θk−1,q.

Since θk,q = O(k−δ) for some δ > 3/2 as assumed, we have θU,k,q = O(k−δ) and

ΘU,k,q =

∞∑
i=k

θU,i,q = O(k1−δ), ΨU,k,q =

( ∞∑
i=k

θ2U,i,q

)1/2

= O(k1/2−δ).

As a result,

∆U,k,q =

∞∑
i=0

min(ΨU,k,q, θU,i,q)

= O[k1/2−δk1−1/(2δ) + k{1−1/(2δ)}(1−δ)] = O[k{1−1/(2δ)}(1−δ)].

Since ‖U0‖4 ≤ (1 + |ϕ|)‖X0‖4, by Lemma 6 of Xiao and Wu (2012) we obtain that

lim
n→∞

pr

{
max
|k|<n−1

|γ̂U,k − E(γ̂U,k)| ≤ c?q
(

log n

n− 1

)1/2
}

= 1. (S1.1)

Without loss of generality, assume that µ = E(X0) = 0. Then

γ̂U,k =
1

n− 1

n−|k|∑
i=2

UiUi+|k|+

(
1− |k|

n− 1

)
Ū2
n−1−

1

n− 1

n−|k|∑
i=2

(Ui +Ui+|k|)Ūn−1, (S1.2)
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and by Lemma 1 of Liu and Wu (2010), there exists a constant c0 <∞ such that

max
|k|<n−1

∥∥∥∥∥∥γ̂U,k − 1

n− 1

n−|k|∑
i=1

UiUi+|k|

∥∥∥∥∥∥
1

≤ c0n−1.

Therefore, we have max|k|<n−1 |E(γ̂U,k)− {1− |k|/(n− 1)}γU,k| = O(n−1) and

lim
n→∞

pr

{
max
|k|<n−1

|E(γ̂U,k)| ·
∣∣∣∣ 1

γ̂U,0
− 1

γU,0

∣∣∣∣ ≤ c?q ( log log n

n− 1

)1/2
}

= 1. (S1.3)

Note that (log log n)1/2 = o{(log n)1/2} and (ξ + 1)/2 > 1, by (S1.1) and (S1.3),

lim
n→∞

pr

{
max
|k|<n−1

∣∣∣∣ρ̂U,k − (1− |k|
n− 1

)
ρU,k

∣∣∣∣ ≤ c?q(ξ + 1)

2γ̂U,0

(
log n

n− 1

)1/2
}

= 1.

Since γU,0 = (1 + ϕ2)γ0 − 2ϕγ1 and ξ > (ξ + 1)/2 > 1, Lemma 3 follows by (S1.3).

Proof. (Lemma 4) Let νn = cq{(log n)/n}1/2 and ρ◦U,k,n = {1 − |k|/(n − 1)}ρU,k, |k| <
n− 1. Note that λn − νn(ψ − 1)/2 = νn(ψ + 1)/2 > νn, by Lemma 3 we have

lim
n→∞

pr

{
max

ln<|k|<n−1
|ρ̂U,k − ρ◦U,k,n| ≤ (ψ + 1)νn/2

}
= 1,

and thus

lim
n→∞

pr

 ∑
ln<|k|<n−1

(ρ̂U,k − ρ◦U,k,n)1{|ρ̂U,k|≥λn, |ρ◦U,k,n|≤νn(ψ−1)/2} = 0

 = 1.

On the other hand, since |ρ◦U,k,n| ≤ |ρU,k| for all |k| < n− 1, we can obtain that∑
ln<|k|<n−1

(ρ̂U,k − ρ◦U,k,n)1{|ρ̂U,k|≥λn, |ρ◦U,k,n|>νn(ψ−1)/2}

≤ max
ln<|k|<n−1

|ρ̂U,k − ρ◦U,k,n|
∑

ln<|k|<n−1

2|ρ◦U,k,n|
νn(ψ − 1)

= Op

 ∑
ln<|k|<n−1

|ρ◦U,k,n|

 .

Therefore, by using the fact that∣∣∣∣∣∣
∑

ln<|k|<n−1

ρ◦U,k,n1{|ρ̂U,k|≥λn}

∣∣∣∣∣∣ ≤
∑

ln<|k|<n−1

|ρ◦U,k,n| = Op

 ∑
|k|>ln

|ρU,k|

 ,

we have

∑
|k|<n−1

ρ̂U,k1{|ρ̂U,k|≥λn} =
∑
|k|≤ln

ρ̂U,k1{|ρ̂U,k|≥λn} +Op

 ∑
|k|>ln

|ρU,k|

 . (S1.4)
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We shall now deal with the sum for |k| ≤ ln. For this, by Lemma 3, we have

lim
n→∞

pr

 ∑
|k|≤ln

ρ̂U,k1{|ρ̂U,k|≥λn} =
∑
|k|≤ln

ρ̂U,k1{|ρ̂U,k|≥λn, ρU,k 6=0}

 = 1,

and

lim
n→∞

pr

 ∑
|k|≤ln

ρ̂U,k1{|ρ̂U,k|<λn, ρU,k 6=0} =
∑
|k|≤ln

ρ̂U,k1{|ρ̂U,k|<λn, |ρ◦U,k,n|<2λn, ρU,k 6=0}

 = 1.

Therefore, by using the fact that∣∣∣∣∣∣
∑
|k|≤ln

ρ̂U,k1{|ρ̂U,k|<λn, |ρ◦U,k,n|<2λn, ρU,k 6=0}

∣∣∣∣∣∣ ≤ λn
∑
|k|≤ln

1{|ρ◦U,k,n|<2λn, ρU,k 6=0},

we have

∑
|k|≤ln

ρ̂U,k1{|ρ̂U,k|≥λn} =
∑
|k|≤ln

ρ̂U,k1{ρU,k 6=0} +Op

λn ∑
|k|≤ln

1{|ρ◦U,k,n|<2λn, ρU,k 6=0}

 .

Hence, in combination with (S1.4), we have

∑
|k|<n−1

ρ̂U,k1{|ρ̂U,k|≥λn} =
∑
|k|≤ln

ρ̂U,k1{ρU,k 6=0} +Op

 ∑
|k|>ln

|ρU,k|

+λn
∑
|k|≤ln

1{|ρ◦U,k,n|<2λn, ρU,k 6=0}

 , (S1.5)

and (i) follows by the fact that
∑
|k|≤ln 1{|ρ◦U,k,n|<2λn, ρU,k 6=0} ≤ 2ln + 1. We shall now

prove (ii), for which we need the following preparation. Let

Pj · = E(· | Fj)− E(· | Fj−1), j ∈ Z,

be the projection operator, and define ζk,j = PjUk. Then ‖ζk,j‖ ≤ θk−j,2 + |ϕ|θk−j−1,2,
and ζk,j and ζk,j′ are orthogonal in the sense that E(ζk,jζk,j′) = 0 if j 6= j′. Therefore,
we have

|cov(Ui, Ui+|k|)| =

∣∣∣∣∣∣E
∑
j∈Z

ζi,j
∑
j′∈Z

ζi+|k|,j′

∣∣∣∣∣∣
≤

∑
j∈Z
‖ζi,j‖ · ‖ζi+|k|,j‖

≤
∞∑
j=1

(θj,2 + |ϕ|θj−1,2)(θj+|k|,2 + |ϕ|θj+|k|−1,2),
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because θs,2 = 0 if s < 0. Hence, if the functional dependence measure have a sparse
structure, namely there exists a positive integer M < ∞ such that θs,2 = 0 for all
|s| > M , then by the above inequality cov(Ui, Ui+|k|) = 0 if |k| > M , and thus

lim
n→∞

pr

 ∑
|k|≤ln

1{|ρ◦U,k,n|<2λn, ρU,k 6=0} =
∑
|k|≤M

1{|ρ◦U,k,n|<2λn, ρU,k 6=0}

 = 1. (S1.6)

Note that for any fixed M <∞, the minimum absolute value of nonzero autocorrelations
with lag |k| ≤M satisfies

εM = min
|k|≤M

{|ρU,k| : ρU,k 6= 0} > 0,

and thus

ε◦M,n = min
|k|≤M

{|ρ◦U,k,n| : ρU,k 6= 0}

≥ {1−M/(n− 1)}εM > εM/2

for all large n. Since λn → 0 as n→∞, we have ε◦M,n ≥ 2λn for all large n, and thus

lim
n→∞

pr

 ∑
|k|≤M

1{|ρ◦U,k,n|<2λn, ρU,k 6=0} = 0

 = 1. (S1.7)

Then (ii) follows by (S1.5), (S1.6) and (S1.7).

Proof. (Lemma 5) Recall that

Γn,k,3 =
1

n− 1

n−|k|∑
i=2

(Xi−1 − µ)(Xi+|k|−1 − µ) =
1

n− 1

(n−1)−|k|∑
i=1

(Xi − µ)(Xi+|k| − µ),

then by the proof of (S1.1), we have

max
|k|<n−1

|Γn,k,3 − E(Γn,k,3)| = Op{n−1/2(log n)1/2}. (S1.8)

Similarly, we can obtain that

max
|k|<n−1

|(Γn,k,1 + Γn,k,2)− E(Γn,k,1 + Γn,k,2)| = Op{n−1/2(log n)1/2},

and thus by Lemma 2,

max
|k|<n−1

|γ̂Ṽ ,k − γ̂U,k| = Op(n
−1/2).

Recall the definition of νn and ρ◦U,k,n from the proof of Lemma 4, then by Lemma 3 and
the assumption that γ0 > 0, we have

lim
n→∞

pr

{
max
|k|<n−1

|ρ̂Ṽ ,k − ρ
◦
U,k,n| ≤ (ψ + 1)νn/2

}
= 1. (S1.9)
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Hence, by the proof of Lemma 4, we can obtain that∑
|k|<n−1

ρ̂Ṽ ,k1{|ρ̂Ṽ ,k|≥λn} =
∑
|k|≤ln

ρ̂Ṽ ,k1{ρU,k 6=0}

+Op

 ∑
|k|>ln

|ρU,k|+ λn
∑
|k|≤ln

1{|ρ◦U,k,n|<2λn, ρU,k 6=0}

 ,

and thus∑
|k|<n−1

γ̂Ṽ ,k1{|ρ̂Ṽ ,k|≥λn} =
∑
|k|≤ln

γ̂Ṽ ,k1{γU,k 6=0}

+Op

 ∑
|k|>ln

|γU,k|+ λn
∑
|k|≤ln

1{|ρ◦U,k,n|<2λn, ρU,k 6=0}

 .

Since n1/2λn →∞ as n→∞, it suffices to prove that∑
|k|≤ln

γ̂Ṽ ,k1{γU,k 6=0} −
∑
|k|≤ln

γ̂U,k1{γU,k 6=0} = Op(n
−1/2 + ln/n).

For this, by Lemma 2 and (S1.8), we have∑
|k|≤ln

γ̂Ṽ ,k1{γU,k 6=0} −
∑
|k|≤ln

γ̂U,k1{γU,k 6=0} = −(ϕ̃− ϕ)
∑
|k|≤ln

(Γn,k,1 + Γn,k,2) +Op(ln/n).

Note that

∑
|k|≤ln

Γn,k,1 =
1

n− 1

∑
|k|≤ln

n−|k|∑
i=2

(Xi−1 − µ){Ui+|k| − (1− ϕ)µ}

=
1

n− 1

n−1∑
i=1

n−1∑
j=1

(Xi − µ){Uj+1 − (1− ϕ)µ}1{|i−j|≤ln},

then by the m-dependence approximation as in the proof of Lemma A.2 of Zhang and
Wu (2012) we obtain that∑

|k|≤ln

{Γn,k,1 − E(Γn,k,1)} = Op{(ln/n)1/2}.

A similar argument can be made on the sum of Γn,k,2, and as a result,

(ϕ̃− ϕ)
∑
|k|≤ln

(Γn,k,1 + Γn,k,2) = Op(n
−1/2 + n−1l1/2n ) = Op(n

−1/2 + ln/n),

Lemma 5 follows.
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Proof. (Lemma 6) Let s(∞) =
∑∞
k=0 1{θk,2 6=0} be the number of nonzero functional

dependence measures, then s(∞) = ∞ and s(∞) < ∞ correspond to cases (i) and (ii)
respectively. If ϕ̃ ≥ τn, then V̂i = Ṽi and thus by Lemma 5,∑
|k|<n−1

γ̂V̂ ,k1{|ρ̂V̂ ,k|≥λn} =
∑
|k|≤ln

γ̂U,k1{γU,k 6=0}

+Op

n−1/2 + ln/n+
∑
|k|>ln

|γU,k|+ λnln1{s(∞)=∞}

 .
On the other hand, if ϕ̃ < τn, then V̂i = Xi−X̄n = Ui−X̄n. Since sample autocovariances
are shift-invariant, we have by Lemma 4,

∑
|k|<n−1

γ̂V̂ ,k1{|ρ̂V̂ ,k|≥λn} =
∑
|k|≤ln

γ̂U,k1{γU,k 6=0} +Op

 ∑
|k|>ln

|γU,k|+ λnln1{s(∞)=∞}

 .
We shall here derive a stochastic error bound for the term

∑
|k|≤ln γ̂U,k1{γU,k 6=0}. For

this, without loss of generality, assume that the mean µ = E(X0) = 0. Then by (S1.2)
and the proof of Lemma 5, we have

∑
|k|≤ln

γ̂U,k1{γU,k 6=0} =
1

n− 1

∑
|k|≤ln

n−|k|∑
i=2

UiUi+|k|1{γU,k 6=0} +Op(ln/n)

=
1

n− 1

∑
|k|≤ln

n−|k|∑
i=2

γU,k1{γU,k 6=0} +Op{(ln/n)1/2 + ln/n}

=
∑
|k|≤ln

(
1− |k|

n− 1

)
γU,k +Op{(ln/n)1/2},

and (i) follows. On the other hand, if there exists an M < ∞ such that θk,2 = 0 for all
k > M as in case (ii), then by the proof of Lemma 4 we have

lim
n→∞

pr

 ∑
|k|≤ln

γ̂U,k1{γU,k 6=0} =
∑
|k|≤M

γ̂U,k1{γU,k 6=0}

 = 1.

Note that ∑
|k|≤M

γ̂U,k1{γU,k 6=0} =
∑
|k|≤M

(
1− |k|

n− 1

)
γU,k +Op{n−1/2},

(ii) follows.

S2. Appendix B: Additional Details on Simulation

In our Monte Carlo simulations, we consider the linear process

Model I : Xi =

∞∑
k=1

akεi−k+1 = a1εi + a2εi−1 + a3εi−2 + · · · ;
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and its nonlinear generalization

Model II : Xi = a1εi|εi|+
∞∑
k=2

akεi−k+1 = a1εi|εi|+ a2εi−1 + a3εi−2 + · · · ,

whose long-run variances are given by

gX =

( ∞∑
k=1

ak

)2

var(ε0)

and

gX =

( ∞∑
k=2

ak

)2

var(ε0) + 2a1

( ∞∑
k=2

ak

)
cov(ε0, ε0|ε0|) + a21var(ε0|ε0|)

for Models I and II respectively. When generating the above processes and computing
their long-run variances, we use the approximation that

∑∞
k=2 akεi−k+1 ≈

∑n
k=2 akεi−k+1

and
∑∞
k=2 ak ≈

∑n
k=2 ak. For the P01 and PP12H estimates, we use the trapezoidal lag-

window, and the associated bandwidth is selected by the empirical rule described in
Appendix A of Paparoditis and Politis (2012). Note that the PP12T and PP12H esti-
mates require the selection of a threshold, and Paparoditis and Politis (2012) in their
Section 3.2 suggested a choice of 2ψγ̂X,0{(log10 n)/n}1/2 where ψ > 1 corresponds to
effective thresholding; see for example conditions in their Theorem 1. For the PP12T
estimate, we follow the rule-of-thumb choice of Paparoditis and Politis (2012) and use
ψ = 1.5. For the PP12H estimate, we use ψ = 1 due to its superior performance for
sparse linear processes as observed by Paparoditis and Politis (2012).
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