# A THRESHOLDING-BASED PREWHITENED LONG-RUN VARIANCE ESTIMATOR AND ITS DEPENDENCE-ORACLE PROPERTY 

Ting Zhang<br>Boston University

## Supplementary Material

## S1. Appendix A: Proofs of Lemmas 1-6

Proof. (Lemma 1) Since the second claim follows easily by applying Lemma 1 of Liu and Wu (2010), we shall here omit the details and only provide the proof for the first claim, namely $\varphi \in(-1,1)$. For this, it suffices to prove that $\varphi$ cannot takes values in $\{-1,1\}$, as autocorrelations are always bounded between $\pm 1$. However, if $\varphi=1$, then due to the stationarity, one must have $X_{i}=X_{i-1}=\cdots=X_{0}$, violating the short-range dependence condition that $\Theta_{0,2}<\infty$. The case for $\varphi=-1$ can be similarly argued, and thus $\varphi \notin\{-1,1\}$.

Proof. (Lemma 2) Let $\tilde{U}_{i}=X_{i}-\tilde{\varphi} X_{i-1}, i=2, \ldots, n$, and

$$
\hat{\gamma}_{\tilde{U}, k}=\frac{1}{n-1} \sum_{i=2}^{n-|k|}\left(\tilde{U}_{i}-\overline{\tilde{U}}_{n-1}\right)\left(\tilde{U}_{i+|k|}-\overline{\tilde{U}}_{n-1}\right), \quad \overline{\tilde{U}}_{n-1}=\frac{1}{n-1} \sum_{i=2}^{n} \tilde{U}_{i}
$$

then $\tilde{V}_{i}=\tilde{U}_{i}-(1-\tilde{\varphi}) \bar{X}_{n}$ and $\overline{\tilde{V}}_{n-1}=\overline{\tilde{U}}_{n-1}-(1-\tilde{\varphi}) \bar{X}_{n}$. Note that sample autocovariances are shift-invariant, we have $\hat{\gamma}_{\tilde{V}, k}=\hat{\gamma}_{\tilde{U}, k},|k|<n-1$, and thus it suffices to prove the same result for $\left(\tilde{U}_{i}\right)$. For this, let $\tilde{D}_{i}=\left(\tilde{U}_{i}-\overline{\tilde{U}}_{n-1}\right)-\left(U_{i}-\bar{U}_{n-1}\right), i=2, \ldots, n$, be the sequence of centered differences, then by elementary calculation $D_{i}=-(\tilde{\varphi}-\varphi)\left(X_{i-1}-\bar{X}_{n-1}\right)$ and

$$
\hat{\gamma}_{\tilde{U}, k}-\hat{\gamma}_{U, k}=\frac{1}{n-1} \sum_{i=2}^{n-|k|}\left\{\tilde{D}_{i}\left(U_{i+|k|}-\bar{U}_{n-1}\right)+\tilde{D}_{i+|k|}\left(U_{i}-\bar{U}_{n-1}\right)+\tilde{D}_{i} \tilde{D}_{i+|k|}\right\}:=\mathrm{I}_{k}+\mathbb{\Pi}_{k}+\mathbb{\Pi}_{k},
$$

where

$$
\begin{aligned}
& \mathrm{I}_{k}=-(\tilde{\varphi}-\varphi) \frac{1}{n-1} \sum_{i=2}^{n-|k|}\left(X_{i+|k|-1}-\bar{X}_{n-1}\right)\left(U_{i}-\bar{U}_{n-1}\right) \\
& \mathbb{I}_{k}=-(\tilde{\varphi}-\varphi) \frac{1}{n-1} \sum_{i=2}^{n-|k|}\left(X_{i-1}-\bar{X}_{n-1}\right)\left(U_{i+|k|}-\bar{U}_{n-1}\right) \\
& \text { III }_{k}=(\tilde{\varphi}-\varphi)^{2} \frac{1}{n-1} \sum_{i=2}^{n-|k|}\left(X_{i-1}-\bar{X}_{n-1}\right)\left(X_{i+|k|-1}-\bar{X}_{n-1}\right) .
\end{aligned}
$$

We shall here provide uniform bounds for $\mathrm{I}_{k}, \mathbb{\Pi}_{k}$ and $\mathbb{\Pi}_{k},|k|<n-1$, for which we need the following preparation. Let $\mathcal{F}_{i, j}=\left(\epsilon_{i}, \ldots, \epsilon_{j}\right), i \leq j$, with the convention that $\mathcal{F}_{i, j}=\emptyset$ if $i>j$, and define

$$
\vartheta_{k, l}=E\left(U_{k} \mid \mathcal{F}_{k-l, k}\right)-E\left(U_{k} \mid \mathcal{F}_{k-l+1, k}\right)
$$

Then for any fixed $l \in \mathbb{Z}, \vartheta_{k, l}, k=2, \ldots, n$, form a sequence of martingale differences, and

$$
\begin{aligned}
\left\|\vartheta_{k, l}\right\| & =\left\|E\left(U_{l} \mid \mathcal{F}_{0, l}\right)-E\left(U_{l} \mid \mathcal{F}_{1, l}\right)\right\| \\
& \leq\left\|E\left\{G\left(\mathcal{F}_{l}\right)-G\left(\mathcal{F}_{l}^{\star}\right) \mid \mathcal{F}_{0, l}\right\}\right\|+|\varphi| \cdot\left\|E\left\{G\left(\mathcal{F}_{l-1}\right)-G\left(\mathcal{F}_{l-1}^{\star}\right) \mid \mathcal{F}_{0, l}\right\}\right\| \\
& \leq \theta_{l, 2}+|\varphi| \theta_{l-1,2}
\end{aligned}
$$

Note that $E\left(U_{i}\right)=(1-\varphi) \mu$, by Doob's inequality we obtain that

$$
\begin{aligned}
\left\|\max _{2 \leq k \leq n}\left|\sum_{i=2}^{k}\left\{U_{i}-(1-\varphi) \mu\right\}\right|\right\| & =\left\|\max _{2 \leq k \leq n}\left|\sum_{i=2}^{k} \sum_{l=0}^{\infty} \vartheta_{i, l}\right|\right\| \\
& \leq \sum_{l=0}^{\infty}\left\|\max _{2 \leq k \leq n}\left|\sum_{i=2}^{k} \vartheta_{i, l}\right|\right\| \\
& \leq 2 \sum_{l=0}^{\infty}\left(\sum_{i=2}^{n}\left\|\vartheta_{i, l}\right\|^{2}\right)^{1 / 2} \leq 2(n-1)^{1 / 2}(1+|\varphi|) \Theta_{0,2}
\end{aligned}
$$

As a result, we have

$$
\begin{aligned}
& \left\|\max _{|k|<n-1}\left|\frac{1}{n-1} \sum_{i=2}^{n-|k|}\left(U_{i}-\bar{U}_{n-1}\right)\right|\right\| \\
\leq & \left\|\max _{|k|<n-1}\left|\frac{1}{n-1} \sum_{i=2}^{n-|k|}\left\{U_{i}-(1-\varphi \mu)\right\}\right|\right\|+\left\|\frac{1}{n-1} \sum_{i=2}^{n}\left\{U_{i}-(1-\varphi \mu)\right\}\right\| \\
\leq & \frac{4(1+|\varphi|) \Theta_{0,2}}{(n-1)^{1 / 2}}=O\left(n^{-1 / 2}\right),
\end{aligned}
$$

and thus

$$
\max _{|k|<n-1}\left|I_{k}+(\tilde{\varphi}-\varphi) \frac{1}{n-1} \sum_{i=2}^{n-|k|}\left(X_{i+|k|-1}-\mu\right)\left(U_{i}-\bar{U}_{n-1}\right)\right|=O_{p}\left(n^{-3 / 2}\right) .
$$

By a similar argument, one can obtain that

$$
E\left\{\max _{|k|<n-1}\left|\frac{1}{n-1} \sum_{i=2}^{n-|k|}\left(X_{i+|k|-1}-\mu\right)\left(U_{i}-\bar{U}_{n-1}\right)-\Gamma_{n, k, 1}\right|\right\} \leq \frac{2 \Theta_{0,2}}{(n-1)^{1 / 2}} \cdot \frac{2(1+|\varphi|) \Theta_{0,2}}{(n-1)^{1 / 2}},
$$

and thus

$$
\max _{|k|<n-1}\left|\mathrm{I}_{k}+(\tilde{\varphi}-\varphi) \Gamma_{n, k, 1}\right|=O_{p}\left(n^{-3 / 2}\right) .
$$

Following a similar martingale decomposition argument for $\mathbb{I}_{k}$ and $\mathbb{I}_{k}$, we have

$$
\max _{|k|<n-1}\left|\mathbb{I}_{k}+(\tilde{\varphi}-\varphi) \Gamma_{n, k, 2}\right|=O_{p}\left(n^{-3 / 2}\right)
$$

and

$$
\max _{|k|<n-1}\left|\mathbb{I}_{k}-(\tilde{\varphi}-\varphi)^{2} \Gamma_{n, k, 3}\right|=O_{p}\left(n^{-2}\right),
$$

Lemma 2 follows.

Proof. (Lemma 3) Let $H\left(\mathcal{F}_{i}\right)=G\left(\mathcal{F}_{i}\right)-\varphi G\left(\mathcal{F}_{i-1}\right)$, then $U_{i}=H\left(\mathcal{F}_{i}\right)$ and its functional dependence measure satisfies

$$
\theta_{U, k, q}=\left\|H\left(\mathcal{F}_{k}\right)-H\left(\mathcal{F}_{k}^{\star}\right)\right\|_{q} \leq \theta_{k, q}+|\varphi| \theta_{k-1, q} .
$$

Since $\theta_{k, q}=O\left(k^{-\delta}\right)$ for some $\delta>3 / 2$ as assumed, we have $\theta_{U, k, q}=O\left(k^{-\delta}\right)$ and

$$
\Theta_{U, k, q}=\sum_{i=k}^{\infty} \theta_{U, i, q}=O\left(k^{1-\delta}\right), \quad \Psi_{U, k, q}=\left(\sum_{i=k}^{\infty} \theta_{U, i, q}^{2}\right)^{1 / 2}=O\left(k^{1 / 2-\delta}\right) .
$$

As a result,

$$
\begin{aligned}
\Delta_{U, k, q} & =\sum_{i=0}^{\infty} \min \left(\Psi_{U, k, q}, \theta_{U, i, q}\right) \\
& =O\left[k^{1 / 2-\delta} k^{1-1 /(2 \delta)}+k^{\{1-1 /(2 \delta)\}(1-\delta)}\right]=O\left[k^{\{1-1 /(2 \delta)\}(1-\delta)}\right] .
\end{aligned}
$$

Since $\left\|U_{0}\right\|_{4} \leq(1+|\varphi|)\left\|X_{0}\right\|_{4}$, by Lemma 6 of Xiao and Wu (2012) we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{pr}\left\{\max _{|k|<n-1}\left|\hat{\gamma}_{U, k}-E\left(\hat{\gamma}_{U, k}\right)\right| \leq c_{q}^{\star}\left(\frac{\log n}{n-1}\right)^{1 / 2}\right\}=1 . \tag{S1.1}
\end{equation*}
$$

Without loss of generality, assume that $\mu=E\left(X_{0}\right)=0$. Then

$$
\begin{equation*}
\hat{\gamma}_{U, k}=\frac{1}{n-1} \sum_{i=2}^{n-|k|} U_{i} U_{i+|k|}+\left(1-\frac{|k|}{n-1}\right) \bar{U}_{n-1}^{2}-\frac{1}{n-1} \sum_{i=2}^{n-|k|}\left(U_{i}+U_{i+|k|}\right) \bar{U}_{n-1}, \tag{S1.2}
\end{equation*}
$$

and by Lemma 1 of Liu and $\mathrm{Wu}(2010)$, there exists a constant $c_{0}<\infty$ such that

$$
\max _{|k|<n-1}\left\|\hat{\gamma}_{U, k}-\frac{1}{n-1} \sum_{i=1}^{n-|k|} U_{i} U_{i+|k|}\right\|_{1} \leq c_{0} n^{-1}
$$

Therefore, we have $\max _{|k|<n-1}\left|E\left(\hat{\gamma}_{U, k}\right)-\{1-|k| /(n-1)\} \gamma_{U, k}\right|=O\left(n^{-1}\right)$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{pr}\left\{\max _{|k|<n-1}\left|E\left(\hat{\gamma}_{U, k}\right)\right| \cdot\left|\frac{1}{\hat{\gamma}_{U, 0}}-\frac{1}{\gamma_{U, 0}}\right| \leq c_{q}^{\star}\left(\frac{\log \log n}{n-1}\right)^{1 / 2}\right\}=1 \tag{S1.3}
\end{equation*}
$$

Note that $(\log \log n)^{1 / 2}=o\left\{(\log n)^{1 / 2}\right\}$ and $(\xi+1) / 2>1$, by (S1.1) and (S1.3),

$$
\lim _{n \rightarrow \infty} \operatorname{pr}\left\{\max _{|k|<n-1}\left|\hat{\rho}_{U, k}-\left(1-\frac{|k|}{n-1}\right) \rho_{U, k}\right| \leq \frac{c_{q}^{\star}(\xi+1)}{2 \hat{\gamma}_{U, 0}}\left(\frac{\log n}{n-1}\right)^{1 / 2}\right\}=1
$$

Since $\gamma_{U, 0}=\left(1+\varphi^{2}\right) \gamma_{0}-2 \varphi \gamma_{1}$ and $\xi>(\xi+1) / 2>1$, Lemma 3 follows by (S1.3).

Proof. (Lemma 4) Let $\nu_{n}=c_{q}\{(\log n) / n\}^{1 / 2}$ and $\rho_{U, k, n}^{\circ}=\{1-|k| /(n-1)\} \rho_{U, k},|k|<$ $n-1$. Note that $\lambda_{n}-\nu_{n}(\psi-1) / 2=\nu_{n}(\psi+1) / 2>\nu_{n}$, by Lemma 3 we have

$$
\lim _{n \rightarrow \infty} \operatorname{pr}\left\{\max _{l_{n}<|k|<n-1}\left|\hat{\rho}_{U, k}-\rho_{U, k, n}^{\circ}\right| \leq(\psi+1) \nu_{n} / 2\right\}=1
$$

and thus

$$
\lim _{n \rightarrow \infty} \operatorname{pr}\left\{\sum_{l_{n}<|k|<n-1}\left(\hat{\rho}_{U, k}-\rho_{U, k, n}^{\circ}\right) \mathbb{1}_{\left\{\left|\hat{\rho}_{U, k}\right| \geq \lambda_{n},\left|\rho_{U, k, n}^{\circ}\right| \leq \nu_{n}(\psi-1) / 2\right\}}=0\right\}=1 .
$$

On the other hand, since $\left|\rho_{U, k, n}^{\circ}\right| \leq\left|\rho_{U, k}\right|$ for all $|k|<n-1$, we can obtain that

$$
\begin{aligned}
& \sum_{l_{n}<|k|<n-1}\left(\hat{\rho}_{U, k}-\rho_{U, k, n}^{\circ}\right) \mathbb{1}_{\left\{\left|\hat{\rho}_{U, k}\right| \geq \lambda_{n},\left|\rho_{U, k, n}^{\circ}\right|>\nu_{n}(\psi-1) / 2\right\}} \\
\leq & \max _{l_{n}<|k|<n-1}\left|\hat{\rho}_{U, k}-\rho_{U, k, n}^{\circ}\right| \sum_{l_{n}<|k|<n-1} \frac{2\left|\rho_{U, k, n}^{\circ}\right|}{\nu_{n}(\psi-1)}=O_{p}\left(\sum_{l_{n}<|k|<n-1}\left|\rho_{U, k, n}^{\circ}\right|\right) .
\end{aligned}
$$

Therefore, by using the fact that

$$
\left|\sum_{l_{n}<|k|<n-1} \rho_{U, k, n}^{\circ} \mathbb{1}_{\left\{\left|\hat{\rho}_{U, k}\right| \geq \lambda_{n}\right\}}\right| \leq \sum_{l_{n}<|k|<n-1}\left|\rho_{U, k, n}^{\circ}\right|=O_{p}\left(\sum_{|k|>l_{n}}\left|\rho_{U, k}\right|\right)
$$

we have

$$
\begin{equation*}
\sum_{|k|<n-1} \hat{\rho}_{U, k} \mathbb{1}_{\left\{\left|\hat{\rho}_{U, k}\right| \geq \lambda_{n}\right\}}=\sum_{|k| \leq l_{n}} \hat{\rho}_{U, k} \mathbb{1}_{\left\{\left|\hat{\rho}_{U, k}\right| \geq \lambda_{n}\right\}}+O_{p}\left(\sum_{|k|>l_{n}}\left|\rho_{U, k}\right|\right) . \tag{S1.4}
\end{equation*}
$$

We shall now deal with the sum for $|k| \leq l_{n}$. For this, by Lemma 3, we have

$$
\lim _{n \rightarrow \infty} \operatorname{pr}\left(\sum_{|k| \leq l_{n}} \hat{\rho}_{U, k} \mathbb{1}_{\left\{\left|\hat{\rho}_{U, k}\right| \geq \lambda_{n}\right\}}=\sum_{|k| \leq l_{n}} \hat{\rho}_{U, k} \mathbb{1}_{\left\{\left|\hat{\rho}_{U, k}\right| \geq \lambda_{n}, \rho_{U, k} \neq 0\right\}}\right)=1,
$$

and

$$
\lim _{n \rightarrow \infty} \operatorname{pr}\left(\sum_{|k| \leq l_{n}} \hat{\rho}_{U, k} \mathbb{1}_{\left\{\left|\hat{\rho}_{U, k}\right|<\lambda_{n}, \rho_{U, k} \neq 0\right\}}=\sum_{|k| \leq l_{n}} \hat{\rho}_{U, k} \mathbb{1}_{\left\{\left|\hat{\rho}_{U, k}\right|<\lambda_{n},\left|\rho_{U, k, n}^{\circ}\right|<2 \lambda_{n}, \rho_{U, k} \neq 0\right\}}\right)=1 .
$$

Therefore, by using the fact that

$$
\left|\sum_{|k| \leq l_{n}} \hat{\rho}_{U, k} \mathbb{1}_{\left\{\left|\hat{\rho}_{U, k}\right|<\lambda_{n},\left|\rho_{U, k, n}^{\circ}\right|<2 \lambda_{n}, \rho_{U, k} \neq 0\right\}}\right| \leq \lambda_{n} \sum_{|k| \leq l_{n}} \mathbb{1}_{\left\{\left|\rho_{U, k, n}^{\circ}\right|<2 \lambda_{n}, \rho_{U, k} \neq 0\right\}}
$$

we have

$$
\sum_{|k| \leq l_{n}} \hat{\rho}_{U, k} \mathbb{1}_{\left\{\left|\hat{\rho}_{U, k}\right| \geq \lambda_{n}\right\}}=\sum_{|k| \leq l_{n}} \hat{\rho}_{U, k} \mathbb{1}_{\left\{\rho_{U, k} \neq 0\right\}}+O_{p}\left(\lambda_{n} \sum_{|k| \leq l_{n}} \mathbb{1}_{\left\{\left|\rho_{U, k, n}^{\circ}\right|<2 \lambda_{n}, \rho_{U, k} \neq 0\right\}}\right)
$$

Hence, in combination with (S1.4), we have

$$
\begin{align*}
\sum_{|k|<n-1} \hat{\rho}_{U, k} \mathbb{1}_{\left\{\left|\hat{\rho}_{U, k}\right| \geq \lambda_{n}\right\}}= & \sum_{|k| \leq l_{n}} \hat{\rho}_{U, k} \mathbb{1}_{\left\{\rho_{U, k} \neq 0\right\}}+O_{p}\left(\sum_{|k|>l_{n}}\left|\rho_{U, k}\right|\right. \\
& \left.+\lambda_{n} \sum_{|k| \leq l_{n}} \mathbb{1}_{\left\{\left|\rho_{U, k, n}^{\circ}\right|<2 \lambda_{n}, \rho_{U, k} \neq 0\right\}}\right), \tag{S1.5}
\end{align*}
$$

and (i) follows by the fact that $\sum_{|k| \leq l_{n}} \mathbb{1}_{\left\{\left|\rho_{U, k, n}^{\circ}\right|<2 \lambda_{n}, \rho_{U, k} \neq 0\right\}} \leq 2 l_{n}+1$. We shall now prove (ii), for which we need the following preparation. Let

$$
\mathcal{P}_{j} \cdot=E\left(\cdot \mid \mathcal{F}_{j}\right)-E\left(\cdot \mid \mathcal{F}_{j-1}\right), \quad j \in \mathbb{Z}
$$

be the projection operator, and define $\zeta_{k, j}=\mathcal{P}_{j} U_{k}$. Then $\left\|\zeta_{k, j}\right\| \leq \theta_{k-j, 2}+|\varphi| \theta_{k-j-1,2}$, and $\zeta_{k, j}$ and $\zeta_{k, j^{\prime}}$ are orthogonal in the sense that $E\left(\zeta_{k, j} \zeta_{k, j^{\prime}}\right)=0$ if $j \neq j^{\prime}$. Therefore, we have

$$
\begin{aligned}
\left|\operatorname{cov}\left(U_{i}, U_{i+|k|}\right)\right| & =\left|E\left(\sum_{j \in \mathbb{Z}} \zeta_{i, j} \sum_{j^{\prime} \in \mathbb{Z}} \zeta_{i+|k|, j^{\prime}}\right)\right| \\
& \leq \sum_{j \in \mathbb{Z}}\left\|\zeta_{i, j}\right\| \cdot\left\|\zeta_{i+|k|, j}\right\| \\
& \leq \sum_{j=1}^{\infty}\left(\theta_{j, 2}+|\varphi| \theta_{j-1,2}\right)\left(\theta_{j+|k|, 2}+|\varphi| \theta_{j+|k|-1,2}\right)
\end{aligned}
$$

because $\theta_{s, 2}=0$ if $s<0$. Hence, if the functional dependence measure have a sparse structure, namely there exists a positive integer $M<\infty$ such that $\theta_{s, 2}=0$ for all $|s|>M$, then by the above inequality $\operatorname{cov}\left(U_{i}, U_{i+|k|}\right)=0$ if $|k|>M$, and thus

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{pr}\left(\sum_{|k| \leq l_{n}} \mathbb{1}_{\left\{\left|\rho_{U, k, n}^{\circ}\right|<2 \lambda_{n}, \rho_{U, k} \neq 0\right\}}=\sum_{|k| \leq M} \mathbb{1}_{\left\{\left|\rho_{U, k, n}^{\circ}\right|<2 \lambda_{n}, \rho_{U, k} \neq 0\right\}}\right)=1 . \tag{S1.6}
\end{equation*}
$$

Note that for any fixed $M<\infty$, the minimum absolute value of nonzero autocorrelations with lag $|k| \leq M$ satisfies

$$
\varepsilon_{M}=\min _{|k| \leq M}\left\{\left|\rho_{U, k}\right|: \rho_{U, k} \neq 0\right\}>0
$$

and thus

$$
\begin{aligned}
\varepsilon_{M, n}^{\circ} & =\min _{|k| \leq M}\left\{\left|\rho_{U, k, n}^{\circ}\right|: \rho_{U, k} \neq 0\right\} \\
& \geq\{1-M /(n-1)\} \varepsilon_{M}>\varepsilon_{M} / 2
\end{aligned}
$$

for all large $n$. Since $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$, we have $\varepsilon_{M, n}^{\circ} \geq 2 \lambda_{n}$ for all large $n$, and thus

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{pr}\left(\sum_{|k| \leq M} \mathbb{1}_{\left\{\left|\rho_{U, k, n}^{\circ}\right|<2 \lambda_{n}, \rho_{U, k} \neq 0\right\}}=0\right)=1 \tag{S1.7}
\end{equation*}
$$

Then (ii) follows by (S1.5), (S1.6) and (S1.7).

Proof. (Lemma 5) Recall that

$$
\Gamma_{n, k, 3}=\frac{1}{n-1} \sum_{i=2}^{n-|k|}\left(X_{i-1}-\mu\right)\left(X_{i+|k|-1}-\mu\right)=\frac{1}{n-1} \sum_{i=1}^{(n-1)-|k|}\left(X_{i}-\mu\right)\left(X_{i+|k|}-\mu\right)
$$

then by the proof of (S1.1), we have

$$
\begin{equation*}
\max _{|k|<n-1}\left|\Gamma_{n, k, 3}-E\left(\Gamma_{n, k, 3}\right)\right|=O_{p}\left\{n^{-1 / 2}(\log n)^{1 / 2}\right\} \tag{S1.8}
\end{equation*}
$$

Similarly, we can obtain that

$$
\max _{|k|<n-1}\left|\left(\Gamma_{n, k, 1}+\Gamma_{n, k, 2}\right)-E\left(\Gamma_{n, k, 1}+\Gamma_{n, k, 2}\right)\right|=O_{p}\left\{n^{-1 / 2}(\log n)^{1 / 2}\right\}
$$

and thus by Lemma 2 ,

$$
\max _{|k|<n-1}\left|\hat{\gamma}_{\tilde{V}, k}-\hat{\gamma}_{U, k}\right|=O_{p}\left(n^{-1 / 2}\right) .
$$

Recall the definition of $\nu_{n}$ and $\rho_{U, k, n}^{\circ}$ from the proof of Lemma 4, then by Lemma 3 and the assumption that $\gamma_{0}>0$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{pr}\left\{\max _{|k|<n-1}\left|\hat{\rho}_{\tilde{V}, k}-\rho_{U, k, n}^{\circ}\right| \leq(\psi+1) \nu_{n} / 2\right\}=1 \tag{S1.9}
\end{equation*}
$$

Hence, by the proof of Lemma 4, we can obtain that

$$
\begin{aligned}
\sum_{|k|<n-1} \hat{\rho}_{\tilde{V}, k} \mathbb{1}_{\left\{\left|\hat{\rho}_{\tilde{V}, k}\right| \geq \lambda_{n}\right\}}= & \sum_{|k| \leq l_{n}} \hat{\rho}_{\tilde{V}, k} \mathbb{1}_{\left\{\rho_{U, k} \neq 0\right\}} \\
& +O_{p}\left(\sum_{|k|>l_{n}}\left|\rho_{U, k}\right|+\lambda_{n} \sum_{|k| \leq l_{n}} \mathbb{1}_{\left\{\left|\rho_{U, k, n}^{\circ}\right|<2 \lambda_{n}, \rho_{U, k} \neq 0\right\}}\right)
\end{aligned}
$$

and thus

$$
\begin{aligned}
\sum_{|k|<n-1} \hat{\gamma}_{\tilde{V}, k} \mathbb{1}_{\left\{\left|\hat{\rho}_{\tilde{V}, k}\right| \geq \lambda_{n}\right\}}= & \sum_{|k| \leq l_{n}} \hat{\gamma}_{\tilde{V}, k} \mathbb{1}_{\left\{\gamma_{U, k} \neq 0\right\}} \\
& +O_{p}\left(\sum_{|k|>l_{n}}\left|\gamma_{U, k}\right|+\lambda_{n} \sum_{|k| \leq l_{n}} \mathbb{1}_{\left\{\left|\rho_{U, k, n}^{\circ}\right|<2 \lambda_{n}, \rho_{U, k} \neq 0\right\}}\right)
\end{aligned}
$$

Since $n^{1 / 2} \lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$, it suffices to prove that

$$
\sum_{|k| \leq l_{n}} \hat{\gamma}_{\tilde{V}, k} \mathbb{1}_{\left\{\gamma_{U, k} \neq 0\right\}}-\sum_{|k| \leq l_{n}} \hat{\gamma}_{U, k} \mathbb{1}_{\left\{\gamma_{U, k} \neq 0\right\}}=O_{p}\left(n^{-1 / 2}+l_{n} / n\right)
$$

For this, by Lemma 2 and (S1.8), we have

$$
\sum_{|k| \leq l_{n}} \hat{\gamma}_{\tilde{V}, k} \mathbb{1}_{\left\{\gamma_{U, k} \neq 0\right\}}-\sum_{|k| \leq l_{n}} \hat{\gamma}_{U, k} \mathbb{1}_{\left\{\gamma_{U, k} \neq 0\right\}}=-(\tilde{\varphi}-\varphi) \sum_{|k| \leq l_{n}}\left(\Gamma_{n, k, 1}+\Gamma_{n, k, 2}\right)+O_{p}\left(l_{n} / n\right)
$$

Note that

$$
\begin{aligned}
\sum_{|k| \leq l_{n}} \Gamma_{n, k, 1} & =\frac{1}{n-1} \sum_{|k| \leq l_{n}} \sum_{i=2}^{n-|k|}\left(X_{i-1}-\mu\right)\left\{U_{i+|k|}-(1-\varphi) \mu\right\} \\
& =\frac{1}{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1}\left(X_{i}-\mu\right)\left\{U_{j+1}-(1-\varphi) \mu\right\} \mathbb{1}_{\left\{|i-j| \leq l_{n}\right\}}
\end{aligned}
$$

then by the $m$-dependence approximation as in the proof of Lemma A. 2 of Zhang and Wu (2012) we obtain that

$$
\sum_{|k| \leq l_{n}}\left\{\Gamma_{n, k, 1}-E\left(\Gamma_{n, k, 1}\right)\right\}=O_{p}\left\{\left(l_{n} / n\right)^{1 / 2}\right\}
$$

A similar argument can be made on the sum of $\Gamma_{n, k, 2}$, and as a result,

$$
(\tilde{\varphi}-\varphi) \sum_{|k| \leq l_{n}}\left(\Gamma_{n, k, 1}+\Gamma_{n, k, 2}\right)=O_{p}\left(n^{-1 / 2}+n^{-1} l_{n}^{1 / 2}\right)=O_{p}\left(n^{-1 / 2}+l_{n} / n\right)
$$

Lemma 5 follows.

Proof. (Lemma 6) Let $s(\infty)=\sum_{k=0}^{\infty} \mathbb{1}_{\left\{\theta_{k, 2} \neq 0\right\}}$ be the number of nonzero functional dependence measures, then $s(\infty)=\infty$ and $s(\infty)<\infty$ correspond to cases (i) and (ii) respectively. If $\tilde{\varphi} \geq \tau_{n}$, then $\hat{V}_{i}=\tilde{V}_{i}$ and thus by Lemma 5 ,

$$
\begin{aligned}
\sum_{|k|<n-1} \hat{\gamma}_{\hat{V}, k} \mathbb{1}_{\left\{\left|\hat{\rho}_{\hat{V}, k}\right| \geq \lambda_{n}\right\}}= & \sum_{|k| \leq l_{n}} \hat{\gamma}_{U, k} \mathbb{1}_{\left\{\gamma_{U, k} \neq 0\right\}} \\
& +O_{p}\left[n^{-1 / 2}+l_{n} / n+\sum_{|k|>l_{n}}\left|\gamma_{U, k}\right|+\lambda_{n} l_{n} \mathbb{1}_{\{s(\infty)=\infty\}}\right]
\end{aligned}
$$

On the other hand, if $\tilde{\varphi}<\tau_{n}$, then $\hat{V}_{i}=X_{i}-\bar{X}_{n}=U_{i}-\bar{X}_{n}$. Since sample autocovariances are shift-invariant, we have by Lemma 4 ,

$$
\sum_{|k|<n-1} \hat{\gamma}_{\hat{V}, k} \mathbb{1}_{\left\{\left|\hat{\rho}_{\hat{V}, k}\right| \geq \lambda_{n}\right\}}=\sum_{|k| \leq l_{n}} \hat{\gamma}_{U, k} \mathbb{1}_{\left\{\gamma_{U, k} \neq 0\right\}}+O_{p}\left[\sum_{|k|>l_{n}}\left|\gamma_{U, k}\right|+\lambda_{n} l_{n} \mathbb{1}_{\{s(\infty)=\infty\}}\right]
$$

We shall here derive a stochastic error bound for the term $\sum_{|k| \leq l_{n}} \hat{\gamma}_{U, k} \mathbb{1}_{\left\{\gamma_{U, k} \neq 0\right\}}$. For this, without loss of generality, assume that the mean $\mu=E\left(X_{0}\right)=0$. Then by (S1.2) and the proof of Lemma 5, we have

$$
\begin{aligned}
\sum_{|k| \leq l_{n}} \hat{\gamma}_{U, k} \mathbb{1}_{\left\{\gamma_{U, k} \neq 0\right\}} & =\frac{1}{n-1} \sum_{|k| \leq l_{n}} \sum_{i=2}^{n-|k|} U_{i} U_{i+|k|} \mathbb{1}_{\left\{\gamma_{U, k} \neq 0\right\}}+O_{p}\left(l_{n} / n\right) \\
& =\frac{1}{n-1} \sum_{|k| \leq l_{n}} \sum_{i=2}^{n-|k|} \gamma_{U, k} \mathbb{1}_{\left\{\gamma_{U, k} \neq 0\right\}}+O_{p}\left\{\left(l_{n} / n\right)^{1 / 2}+l_{n} / n\right\} \\
& =\sum_{|k| \leq l_{n}}\left(1-\frac{|k|}{n-1}\right) \gamma_{U, k}+O_{p}\left\{\left(l_{n} / n\right)^{1 / 2}\right\}
\end{aligned}
$$

and (i) follows. On the other hand, if there exists an $M<\infty$ such that $\theta_{k, 2}=0$ for all $k>M$ as in case (ii), then by the proof of Lemma 4 we have

$$
\lim _{n \rightarrow \infty} \operatorname{pr}\left(\sum_{|k| \leq l_{n}} \hat{\gamma}_{U, k} \mathbb{1}_{\left\{\gamma_{U, k} \neq 0\right\}}=\sum_{|k| \leq M} \hat{\gamma}_{U, k} \mathbb{1}_{\left\{\gamma_{U, k} \neq 0\right\}}\right)=1 .
$$

Note that

$$
\sum_{|k| \leq M} \hat{\gamma}_{U, k} \mathbb{1}_{\left\{\gamma_{U, k} \neq 0\right\}}=\sum_{|k| \leq M}\left(1-\frac{|k|}{n-1}\right) \gamma_{U, k}+O_{p}\left\{n^{-1 / 2}\right\}
$$

(ii) follows.

## S2. Appendix B: Additional Details on Simulation

In our Monte Carlo simulations, we consider the linear process

$$
\text { Model I : } X_{i}=\sum_{k=1}^{\infty} a_{k} \epsilon_{i-k+1}=a_{1} \epsilon_{i}+a_{2} \epsilon_{i-1}+a_{3} \epsilon_{i-2}+\cdots ;
$$

and its nonlinear generalization

$$
\text { Model II : } X_{i}=a_{1} \epsilon_{i}\left|\epsilon_{i}\right|+\sum_{k=2}^{\infty} a_{k} \epsilon_{i-k+1}=a_{1} \epsilon_{i}\left|\epsilon_{i}\right|+a_{2} \epsilon_{i-1}+a_{3} \epsilon_{i-2}+\cdots,
$$

whose long-run variances are given by

$$
g_{X}=\left(\sum_{k=1}^{\infty} a_{k}\right)^{2} \operatorname{var}\left(\epsilon_{0}\right)
$$

and

$$
g_{X}=\left(\sum_{k=2}^{\infty} a_{k}\right)^{2} \operatorname{var}\left(\epsilon_{0}\right)+2 a_{1}\left(\sum_{k=2}^{\infty} a_{k}\right) \operatorname{cov}\left(\epsilon_{0}, \epsilon_{0}\left|\epsilon_{0}\right|\right)+a_{1}^{2} \operatorname{var}\left(\epsilon_{0}\left|\epsilon_{0}\right|\right)
$$

for Models I and II respectively. When generating the above processes and computing their long-run variances, we use the approximation that $\sum_{k=2}^{\infty} a_{k} \epsilon_{i-k+1} \approx \sum_{k=2}^{n} a_{k} \epsilon_{i-k+1}$ and $\sum_{k=2}^{\infty} a_{k} \approx \sum_{k=2}^{n} a_{k}$. For the P01 and PP12H estimates, we use the trapezoidal lagwindow, and the associated bandwidth is selected by the empirical rule described in Appendix A of Paparoditis and Politis (2012). Note that the PP12T and PP12H estimates require the selection of a threshold, and Paparoditis and Politis (2012) in their Section 3.2 suggested a choice of $2 \psi \hat{\gamma}_{X, 0}\left\{\left(\log _{10} n\right) / n\right\}^{1 / 2}$ where $\psi>1$ corresponds to effective thresholding; see for example conditions in their Theorem 1. For the PP12T estimate, we follow the rule-of-thumb choice of Paparoditis and Politis (2012) and use $\psi=1.5$. For the PP12H estimate, we use $\psi=1$ due to its superior performance for sparse linear processes as observed by Paparoditis and Politis (2012).

## References

Liu, W. and Wu, W. B. (2010). Asymptotics of spectral density estimates. Econometric Theory 26, 1218-1245.
Paparoditis, E. and Politis, D. N. (2012). Nonlinear spectral density estimation: thresholding the correlogram. Journal of Time Series Analysis 33, 386-397.
Xiao, H. and Wu, W. B. (2012). Covariance matrix estimation for stationary time series. The Annals of Statistics 40, 466-493.
Zhang, T. and Wu, W. B. (2012). Inference of time-varying regression models. The Annals of Statistics 40, 1376-1402.

