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Abstract: Detecting candidate genetic variants in genomic studies often encoun-

ters confounding problems, particularly when the data are ultrahigh dimensional.

Confounding covariates, such as age and gender, not only can reduce the statis-

tical power, but also introduce spurious genetic association. How to control for

the confounders in ultrahigh dimensional data analysis is a critical and challeng-

ing issue. In this paper, we propose a novel sure independence screening method

based on conditional distance correlation under the ultrahigh dimensional model

setting. Our proposal accomplishes the adjustment by conditioning on the con-

founding variables. With the model-free feature of conditional distance correlation,

our method does not need any parametric modeling assumptions and is thus quite

flexible. In addition, it is applicable to data with multivariate response. We show

that under some mild technical conditions, the proposed method enjoys the sure

screening property even when the dimensionality is an exponential order of the sam-

ple size. The simulation studies and a data analysis demonstrate that the proposed

procedure has competitive performance.

Key words and phrases: Confounding, feature screening, model free, multivariate

response, ultrahigh dimension.

1. Introduction

Identifying variants associated with common complex disease in ultrahigh

dimensional data is a central goal of genome-wise association studies (GWAS).

The genetic disease effects are potentially confounded by such covariates as age,

gender, or education levels, which not only could reduce the statistical power, but

also cause spurious genetic associations (Glorioso and Sibille (2011); Wang et al.

(2012)). As a motivating example, consider a study of the association between

copy number changes and gene expression levels in breast cancer. In this study,

there were a total of 88 subjects with 19,672 genes and 2,149 measurements

of copy number changes after preprocessing. Age at diagnosis as well as other

covariates have been found to be confounders of the cancer effect with significant
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interaction terms in some biomarkers (Stephens et al. (2012)). Genetic variants

identification without proper adjustment for confounders could yield spurious

associated genetic detections. In addition, the response variable is multivariate

and thus traditional feature selection techniques cannot be directly utilized.

In the last two decades, variable selection has been playing an prominent role

in high-dimensional statistical modeling, especially for genetic variants detection,

see Fan and Li (2006) and Fan and Lv (2010) for a comprehensive overview. Yet

this is challenged with ultrahigh dimensional data by computational cost and

estimation accuracy.

Fan and Lv (2008) introduced the concept of sure screening and proposed

the Sure Independent Screening (SIS) method to select important variables in

ultrahigh dimensional linear models. They showed that this correlation-ranking

procedure enjoys a sure screening property in linear models with Gaussian er-

ror: with probability close to 1, the SIS procedure retains all of the important

variables. Later, the SIS method has been extended by relaxing the model as-

sumptions or the error distribution assumption, see Fan and Song (2010), Hall

and Miller (2009), Fan, Feng and Song (2011), and Zhu et al. (2011). In par-

ticular, Li, Zhong and Zhu (2012) proposed a model-free screening procedure

called DC-SIS by ranking the marginal utility measure based on distance corre-

lation, which is an efficient measure of dependence. The distance correlation of

two random vectors is zero if and only if they are independent (Székely, Rizzo

and Bakirov (2007); Székely and Rizzo (2009)), a property that is not shared by

other correlations. Furthermore, due to the nature of distance correlation, DC-

SIS can be directly applied in cases with multivariate responses. However, these

approaches ignored effects from confounding covariates, which calls for research

on SIS procedures to take them into account.

In this paper, we propose a novel model-free feature screening procedure by

ranking the conditional distance correlation of the response and each predictor

on confounding covariates. The conditional distance correlation was proposed by

Wang et al. (2015) and possesses an appealing property analogous to the distance

correlation, the conditional distance correlation of two random vectors given a

random vector is zero if and only if they are conditionally independence. Com-

pared with DC-SIS, our proposal incorporates confounding covariates into the

feature screening process and hence can increase the statistical power. Further-

more, it does not require one to specify the distribution or the regression model,

making the procedure particularly flexible in feature screening. Our method is

also applicable to multivariate response by the virtues of conditional distance
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correlation.

Theoretically, we establish the sure screening property for the proposed pro-

cedure under the ultrahigh dimensional model setting. The sure screening prop-

erty guarantees that our screening procedure includes the true model with prob-

ability tending to 1 at an exponential rate of the sample size n. This property is

valid provided that the dimensionality of the predictors p grows slightly slower

than exp(an) for any fixed a > 0. This rate is comparable to those achieved by

DC-SIS and SIS. In simulation studies, we demonstrate that our method pos-

sesses the sure screening property, and has superior performance than DC-SIS

and SIS under a variety of settings.

The rest of this paper is organized as follows. In Section 2, we develop our

feature screening approach corrected for confounding covariates. The sure screen-

ing property of this procedure is established in Section 3. Section 4 illustrates its

finite performance by Monte Carlo simulations and an analysis of breast cancer

data. A brief discussion is provided in Section 5. Proofs can be found in the

online Supplementary Materials.

2. Independence Screening using Conditional Distance Correlation

Let Y be a qy-dimensional response variable, which can be either univari-

ate or multivariate. Let (X1, . . . , Xp) be predictor vectors, and Z be the qz-

dimensional confounding covariates of such as age and education. The predictor

Xr, r = 1, . . . , p, is pr-dimensional to allow categorical or grouped variables. We

allow p to grow with n and denote it by pn whenever necessary. There is the

notation of active predictors and inactive predictors conditioning on Z. Without

specifying a regression model, we define the index sets of active and inactive

predictors given Z by

A = {r : Some Y depends on Xr given Z},
I = {r : Any Y does not depend on Xr given Z}.

The intersection of A and I is empty. Our primary interest is to identify all ac-

tive predictors given the confounding covariates. When there are no confounding

effects, the sure independence screening procedure based on distance correla-

tion (DC-SIS, Li, Zhong and Zhu (2012)) is desirable for its model-free property

and flexible application to grouped predictor variables and multivariate response

variables. Distance correlation works by measuring a weighted Lq(0 < q ≤ 2)

distance between the joint characteristic function and the product of the two

marginal characteristic functions. A suitable weight is selected to make the dis-
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tance correlation a proper and scale invariant correlation measurement. This

type of weight function leads to a simple product-average form of the covariance

analogous to Pearson covariance (Székely, Rizzo and Bakirov (2007); Székely

and Rizzo (2009)). This motivates us to extend the DC-SIS feature screening

procedure to take the confounding effects into account.

Tests of conditional dependence are a widely used statistical method for con-

trolling confounding effects. A series of conditional dependence measures have

been developed using a generalization of empirical distribution function (Linton

and Gozalo (1996)), smoothing empirical likelihood (Su and White (2003)), a nor-

malized conditional cross-covariance operator in reproducing kernel Hilbert space

(Gretton et al. (2005)), conditional characteristic function (Su and White (2007)),

weighted Hellinger distance (Su and White (2008)) and the Hibert-Schmidt norm

with Copula transformation (J Reddi and Póczos (2013)). Inspired by the success

of distance correlation (Székely, Rizzo and Bakirov (2007)), several conditional

measurements have been proposed based on the distance correlation. Póczos

and Schneider (2012) replaced the characteristic function with the conditional

characteristic function and derived the estimation based on the k-nearest neigh-

bour method. Fan, Feng and Xia (2015) proposed a conditional independence

measure based on the distance covariance between the residuals after adjusting

for the covariates. Wang et al. (2015) proposed a novel conditional dependence

measure called conditional distance correlation (CDC), which was shown to sat-

isfy the property, the conditional distance correlation of two random vectors

given a random vector is zero if and only if they are conditionally independent.

This guarantees that the conditional distance correlation can describe exactly

the relationship between two variables given a third variable. They derived a

corresponding statistic for a test of conditional dependence.

Given the confounding covariate Z, the conditional distance correlation be-

tween the response variable Y and each predictor variable Xr, r = 1, . . . , p, is

defined by

ρr(Z) = CDCor2(Xr, Y | Z) =
CDCov2(Xr, Y | Z)√

CDCov2(Xr, Xr | Z)CDCov2(Y, Y | Z)
,

if CDCov2(Xr, Xr | Z)CDCov2(Y, Y | Z) > 0, and 0 otherwise. The conditional

distance covariance between Xr and Y given Z is defined as

CDCov2(Xr, Y | Z) = ‖φXr,Y |Z(t, s)− φXr|Z(t)φY |Z(s)‖2

=
1

cprcqy

∫
Rpr+qy

|φXr,Y |z(t, s)− φXr|Z(t)φY |z(s)|2

|t|1+prpr |s|1+qyqy

dtds,
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where cpr = π(1+pr)/2/Γ((1 + pr)/2) and cqy = π(1+qy)/2/Γ((1 + qy)/2) are con-

stants related to pr and qy. Here φXr,Y |Z(t, s) is the joint conditional character-

istic function of Xr and Y given Z, and φXr|Z(t) and φY |Z(s) are the marginal

conditional characteristic functions for Xr | Z and Y | Z, respectively. The terms

CDCov2(Xr, Xr | Z) and CDCov2(Y, Y | Z) are defined similarly.

From the definition, ρr(Z) is a function of Z and therefore not yet ready for

ranking, so we define a marginal utility to screen features as

ρ∗r = E(ρr(Z)) = E{CDCor2(Xr, Y | Z)}.

To estimate ρ∗r , let us first proceed with the estimation of CDCov2(Xr, Y |
Z). It essentially requires the estimation of φXr,Y |Z(t, s), φXr|Z(t) and φY |Z(s),

which can be estimated from their empirical versions, respectively. In particular,

we use the Gaussian kernel smoothing method to estimate them.

Suppose W = (X1, . . . ,Xp,Y,Z) = {(Xk1, . . . , Xkp, Yk, Zk) : k = 1, . . . , n}
is a random sample from the joint distribution of random vectors X, Y , and Z.

For the rth predictor, let dXij,r = d(Xir, Xjr) be the Euclidean distance of Xir and

Xjr, i, j = 1, . . . , n. Similarly, let dYij = d(Yi, Yj) denote the Euclidean distance

of Yi and Yj , i, j = 1, . . . , n. Define the distance function as

dsijkl,r =
(dijkl,r + dijlk,r + dilkj,r)

3
,

where dijkl,r = (dXij,r + dXkl,r − dXik,r − dXjl,r)(dYij + dYkl − dYik − dYjl).
Given Z, the sample conditional distance covariance CDCov2(Xr, Y | Z) is

ĈDCov
2
(Xr,Y,Z | Z) = n−4

∑
i,j,k,l

ψn(Wi,Wj ,Wk,Wl;Z),

with the symmetric random kernel of degree 4,

ψn(Wi,Wj ,Wk,Wl;Z) =
n4ωi(Z)ωj(Z)ωk(Z)ωl(Z)

4ω4(Z)
dsijkl,r,

where ωi(Z) is an estimate for the density function in Zi and ω(Z) is n−1
∑
ωi(Z).

Wang et al. (2015) showed that ĈDCov
2
(Xr,Y,Z | Z) is a V process that has

a well-established asymptotic framework (Lee (1990)). The sample conditional

distance variances ĈDCov
2
(Xr,Xr,Z | Z) and ĈDCov

2
(Y,Y,Z | Z) can be de-

fined similarly. Thus the sample conditional distance correlation ρ̂r(Z) is defined

as

ρ̂r(Z) = ĈDCor
2
(Xr,Y,Z | Z)



298 CANHONG WEN, WENLIANG PAN, MIAN HUANG AND XUEQIN WANG

=
ĈDCov

2
(Xr,Y,Z | Z)√

ĈDCov
2
(Xr,Xr,Z | Z)ĈDCov

2
(Y,Y,Z | Z)

.

A plug-in estimate of ρ∗r is

ρ̂∗r = n−1
n∑
k=1

ρ̂r(Zk).

Using ρ̂∗r as a marginal utility, we propose a screening procedure for ultrahigh

dimensional data with the control of confounding as:

M̂dn = {r : ρ̂∗r is among the first dn largest of all, r = 1, . . . , p},

where the submodel size dn is predefined to be smaller than the sample size n.

This reduces the full model of size p� n to a submodel with size dn. This proce-

dure is referred as conditional distance correlation sure independence screening

(CDC-SIS for short).

3. Theoretical Properties

In this section, we establish the asymptotic properties of the CDC-SIS pro-

cedure. To derive the sure screening property for CDC-SIS, we impose some

regularity conditions on X, Y , and Z as follows.

(C1): The kernel function K(·) is bounded uniformly such that K(u) ≥ 0,∫
K(u)du = 1,

∫
uK(u)du = 0, and

∫
‖u‖2K(u)du <∞.

(C2): There exists a positive constant s0 such that for all 0 < s ≤ s0,

sup
p

max
1≤r≤p

E(exp(s‖Xr‖2p)) <∞, E(exp(s‖Y ‖2qy)) <∞,

where p and qy are the dimensions of the predictor Xr and the response

variable Y , respectively.

(C3): If Z1, Z2, Z3, Z4 are independent copies of Z, then for 1 ≤ r ≤ p, there

exists a positive constant L, such that

sup
r
|E(d1234,r|Z1, Z2, Z3, Z4)− E(d1234,r|Z ′1, Z2, Z3, Z4)| ≤ L|Z1 − Z ′1|.

(C4): There exist some constants c > 0 and 0 ≤ κ < 1/2 such that

min
r∈A

ρ∗r ≥ 2cn−κ.

Condition (C1) is a mild condition on the density function f(z) and kernel

function K(·). Condition (C2) puts an exponential bound on the tails of X
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and Y ; similar condition is used in Fan and Lv (2008) and Li, Zhong and

Zhu (2012). Condition (C3) is satisfied if the first order partial derivative of

E(d1234,r | Z1, Z2, Z3, Z4) is bounded. Condition (C4) requires the true condi-

tional distance correlation between the active predictors and the response is large

enough.

The proof of the following is in the Supplementary Materials.

Theorem 1. If Conditions (C1)-(C3) hold and the bandwidth for kernel estima-

tion of Z satisfies h = O(n−κ/(2qz)), then for any 0 < γ < 1/2 − κ, there exists

positive constants c1 > 0 and c2 > 0 such that

pr( max
1≤r≤p

|ρ̂∗r − ρ∗r | ≥ cn−κ) ≤ p[exp(−c1n1−2(γ+κ)) + n4 exp(−c2nγ)] + o(1).

If Condition (C4) also holds, we have

pr(A ⊆ M̂dn) ≥ 1− n|A|[exp(−c1n1−2(κ+γ)) + n4 exp(−c2nγ)]

− |A| exp(−c3n1−2κ) + o(1),

where |A| is the size of the set A and c3 is a positive constant.

Theorem 1 requires that the bandwidth of kernel estimation of Z satisfies

h = O(n−κ/(2qz)), where qz is the dimension of Z, and 0 < κ < 1/2. Similar

conditions can be found in Liu, Li and Wu (2014). This rate is enough to ensure

the density estimate to be consistent. Here this rate could be faster or slower

than the theoretical optimal rate of kernel density estimation, depending on the

choice of κ and γ. One can see that when γ is fixed, the right side of pr(A ⊆
M̂dn) increases as κ decreases, indicating that oversmoothing could benefit the

screening performance in terms of the probability of true active predictors.

The convergence rate of the sure property depends only on |A| rather than

the dimensionality p. The size of A is smaller than the sample size n, and much

smaller than p. Thus, CDC-SIS is an effective and general alternative as a sure

screening procedure adjusted for confounding covariates.

4. Numerical Studies

4.1. General setting

We conducted three simulation studies and a genetic data analysis to evaluate

the finite sample performance of CDC-SIS, and compared its performance with

those of SIS (Fan and Lv (2008)) and DC-SIS (Li, Zhong and Zhu (2012)).

The bandwidth parameter of ρ̂∗r in the CDC-SIS method was determined by

optimizing the conditional distance correlation. If the bandwidth was too close
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to zero, we selected the bandwidth with the plug-in method.

To assess the feature screening performance, we considered two criteria

adopted from Li, Zhong and Zhu (2012): the minimum model size S to in-

clude all active predictors for a specific method; the proportion Pd that all active

predictors are selected by a screening procedure for a given model size d in 100

replications. We report the median of S and draw a boxplot of logS out of 100

replications.

Here S is used to measure the model complexity of the resulting model for an

underlying screening procedure. The closer to the size of active predictors that

S is, the better the screening procedure performs. The sure screening property

ensures that Pd is close to one when the estimated model size d is sufficiently

large. Li, Zhong and Zhu (2012) suggested setting d = γdn/ log(n)e, where

dae refers to the integer part of a and γ is an integer. To examine the overall

performance of the choice of d, we consider a plot of Pd with d = γdn/ log(n)e
as the y coordinate versus γ as the x coordinate.

For all simulations, we generated U = {Z,X} = (Z,X1, . . . , Xp)
T from the

normal distribution with zero mean and covariance matrix Σ = (σij)(p+1)×(p+1),

characterized by ρ. The ρ was set at 0, 0.5 and 0.8 to examine the impact of

correlation to the screening performance. The sample size n was fixed to be

100 and the dimensionality p varied from 1,000 to 5,000. All simulations were

replicated for 100 times.

4.2. Simulation studies

Example 1. In this example, we considered four models:

(1.a): Y = 2.5Z + 3X1 + 1.5X2 + 2X5 + ε;

(1.b): Y = 2.5Z + 3X1 + 1.5X2 + 2X2
5 + ε;

(1.c): Y = 2.5Z + 3X1 + 1.5X2 + 2 sin (0.5πX5) + ε;

(1.d): Y = 3X1 + 1.5X2 + 4ZX5 + ε,

with the ε’s i.i.d. standard normal. For X5, the regression function is linear in

model (1.a), but nonlinear in all others. The regression function of X5 is non-

monotone in model (1.b), and periodic in model (1.c). In model (1.d), there is an

interaction term involving the confounding covariate Z, ZX5. Two covariance

matrices Σ were considered: compound symmetric (CS); first-order autoregres-

sive (AR). The CS covariance matrix Σ has entries σii = 1, i = 1, . . . , p + 1,
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Table 1. Example 1: Median of the minimum model size S for the SIS, DC-SIS, and
CDC-SIS methods for different values of p and ρ based on 100 replications under different
models with a compound symmetric (CS) covariance matrix.

Model p ρ SIS DC-SIS CDC-SIS
(1.a) 1,000 0 6 8 5

0.5 18 48 6
0.8 40 67 16

5,000 0 16 28 9
0.5 114 208 18
0.8 189 292 40

(1.b) 1,000 0 273 16 13
0.5 598 404 82
0.8 454 384 70

5,000 0 1,261 58 30
0.5 2,630 1,655 344
0.8 2,604 2,040 370

(1.c) 1,000 0 83 40 25
0.5 94 43 12
0.8 132 62 18

5,000 0 234 60 82
0.5 558 324 72
0.8 804 472 76

(1.d) 1,000 0 312 128 5
0.5 498 218 17
0.8 661 283 33

5,000 0 1,818 694 27
0.5 2,915 1,331 66
0.8 2,654 1,225 139

and σij = ρ, i 6= j. The AR matrix covariance Σ has entries σij = ρ|i−j|, i, j =

1, . . . , p+ 1.

To save space, we report only the summary results with compound symmetric

covariance matrix of X and p = 1,000 in Table 1 and Figures 1-2. The other

summary results are in Table S1 and Figures S1-S6 of the online Supplementary

Material.

Obviously, DC-SIS and CDC-SIS outperform SIS in all models except (1.a)

where a linear regression model is assumed; This was also found by Li, Zhong

and Zhu (2012). The performance of CDC-SIS is slightly better than that of SIS

and much better than those of DC-SIS in model (1.a), indicating that CDC-SIS

has a robust performance if the working models is linear.
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ρ ρ ρ
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Figure 1. Example 1: Boxplots of log(S) for the SIS, DC-SIS, and CDC-SIS methods
for different values of ρ based on 100 replications under different models with p = 1,000
and a compound symmetric (CS) covariance matrix.

Compared with DC-SIS, CDC-SIS shrinks the full model to a much smaller

scale by taking account of the confounding covariate Z in models (1.b)-(1.d). In

particular, in model (1.d) with the CS covariance matrix, while the other two

screening procedures fail to identify the active predictor even with the threshold

d being n (= 100), CDC-SIS ranks all the active predictors at the top positions
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Figure 2. Examples 1: Summary results of the proportion of Pγd for the SIS (dotted line),
DC-SIS (dashed line), and CDC-SIS (solid line) methods for different values of ρ based
on 100 replications under different models with p = 1,000 and a compound symmetric
(CS) covariance matrix.

for p = 1,000 and ρ = 0.5. In addition, the proportions Pd of our proposed

method are close to one, which supports the assertion that it possesses the sure

screening property. Compared to other screening methods, CDC-SIS has signif-

icant better performance with the curves of Pγd being the one at the upper left,

especially in models (1.b)-(1.d). The effect is more pronounced for higher values
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of ρ and higher dimensionality. It suggests that adjusting for the confounding

covariate(s) helps reduce false selection and might subsequently improve the pre-

diction accuracy subsequently.

Furthermore, CDC-SIS is less sensitive to the change in the correlation ρ

than SIS. While the median S of SIS at least doubles with ρ increasing from 0.5

to 0.8, those of CDC-SIS remain almost the same. This phenomenon is exempli-

fied in Fan and Lv (2008) for the SIS with the Pearson correlation. When the

confounding covariates are highly correlated with the predictors, the dimension-

ality and thus the correlation increases. Since the conditional distance correlation

can remove the confounding effect, it can be less influenced by the correlation

between the confounding covariates and the predictors variables.

We include comparison results for ISIS, an iterative version of SIS for variable

selection. The threshold was set at d = dn/ log(n)e for all methods. For ISIS,

the SCAD variable selection method with regularization parameter tuning by

Bayesian information criterion was used after the SIS screening step and we kept

collecting variables until we obtained dn/ log(n)e of them. Table 2 and Table

S2 in the online Supplementary Material report the percentages of SIS, ISIS,

DC-SIS, and the prosed CDC-SIS that include the true model {X1, X2, X5}, an

index also used in Fan and Lv (2008). From Table 2 and Table S2, ISIS always

improves the performance of SIS, especially for larger value of ρ, which confirms

the findings in Fan and Lv (2008). Yet compared with SIS and ISIS, CDC-SIS

always has the best performance except for Model (1.a), where a linear model

holds.

Example 2. As suggested by one of the reviewers, we examined the effect of

confounding covariate on the performance of CDC-SIS. Three models were con-

sidered: (2.a) the univariate covariate Z is not directly related to the response;

(2.b) the confounding covariate Z = (Z1, Z2) is two-dimensional and only Z1

is related to the response; (2.c) the confounding covariate Z = (Z1, Z2) is two-

dimensional and both of Z1 and Z2 are related to the response. The response

was generated, respectively, by

(2.a): Y = 3X1 + 1.5X2 + 2X2
5 + ε,

(2.b): Y = 2.5Z1 + 3X1 + 1.5X2 + 2X2
5 + ε,

(2.c): Y = 2.5Z1 + 2.5Z2 + 3X1 + 1.5X2 + 2X2
5 + ε,

where the ε’s were i.i.d. standard normal. For Model (2.a), the covariance matrix

of U = {Z,X} is a block diagonal matrix with the first block having σii = 1, i =
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Table 2. Example 1: Accuracy of SIS, ISIS, DC-SIS, and CDC-SIS in including the true
model {X1, X2, X5} for different values of ρ and p with a compound symmetric (CS)
covariance matrix.

Model p ρ SIS ISIS DC-SIS CDC-SIS
(1.a) 1,000 0 0.73 0.97 0.67 0.75

0.5 0.55 0.91 0.37 0.76
0.8 0.39 0.88 0.30 0.58

5,000 0 0.53 0.78 0.45 0.61
0.5 0.23 0.67 0.17 0.52
0.8 0.16 0.54 0.08 0.43

(1.b) 1,000 0 0.07 0.12 0.54 0.63
0.5 0.04 0.04 0.04 0.19
0.8 0.01 0 0.03 0.24

5,000 0 0.03 0.03 0.33 0.45
0.5 0.01 0.01 0.01 0.14
0.8 0 0 0 0.08

(1.c) 1,000 0 0.3 0.49 0.37 0.49
0.5 0.22 0.44 0.31 0.65
0.8 0.11 0.19 0.23 0.54

5,000 0 0.15 0.21 0.27 0.31
0.5 0.01 0.09 0.08 0.31
0.8 0.03 0.05 0.08 0.16

(1.d) 1,000 0 0.11 0.09 0.13 0.74
0.5 0.01 0.03 0.05 0.57
0.8 0 0 0.01 0.42

5,000 0 0.01 0 0.01 0.46
0.5 0.01 0 0.03 0.34
0.8 0 0 0 0.20

1, . . . , 3, and σij = ρ, i 6= j and the second block with σii = 1, i = 4, . . . , p + 1,

and σij = ρ, i 6= j. The confounding covariate Z is strongly correlated with

X1 and X2. However, X5 belongs to a group of strongly correlated variables

{X3, · · · , Xp} that are independent of Z, X1 and X2. For Models (2.b) and

(2.c), the covariance matrix of U = {Z,X} has entries σii = 1 and σij = ρ, i 6= j.

The results for p = 1,000 are summarized in Table 3 and Figures 3-4. The

results for p = 5,000 are summarized in Table S3 and Figures S7-S8 of the online

Supplementary Material.

It is no surprise that the DC-SIS and CDC-SIS methods significantly outper-

form SIS since the model is non-linear in X5, which again support the findings

in Li, Zhong and Zhu (2012). The results in Table 3 present interesting patterns.
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Table 3. Example 2: Median of the minimum model size S for the SIS, DC-SIS, and
CDC-SIS methods for different values of p and ρ, based on 100 replications under different
models.

Model p ρ SIS DC-SIS CDC-SIS
(2.a) 1,000 0 166 3 3

0.5 437 4 3
0.8 413 6 3

5,000 0 1,843 5 6
0.5 1,536 5 4
0.8 1,570 14 3

(2.b) 1,000 0 327 20 13
0.5 459 288 60
0.8 568 392 70

5,000 0 2,147 130 75
0.5 2,582 1,340 474
0.8 2,570 1,882 330

(2.c) 1,000 0 294 29 15
0.5 522 496 127
0.8 587 478 80

5,000 0 2,154 184 84
0.5 2,292 1,870 510
0.8 3,010 2,774 884

For ρ = 0, the performance of the CDC-SIS is competitive with the DC-SIS in

terms of S. When ρ = 0.8, the medians S of the CDC-SIS are half of those of

the DC-SIS. As implied by results in Figure 4, the CDC-SIS has much better

performance in terms of Pγd . Overall, taking account for the confounding covari-

ates in the feature screening process may help reduce false selection even when

the confounding variable is not directly related to the response, or only partially

correlated with the response.

Next, we consider data with multivariate response. Since the SIS cannot

deal with this kind of data directly, we focus on the results from the DC-SIS and

CDC-SIS methods.

Example 3. We explore the performance of the proposal in dealing with data

with multivariate response. We first considered a two-dimensional response, then

a high-dimensional response. To make the simulation mimic the motivating data,

the dimension in the second scenario was the same as that in the motivating data.

Here, the covariance matrix Σ of U = {Z,X} had entries σii = 1, i = 1, . . . , p+1,

and σij = ρ, i 6= j.
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Figure 3. Example 2: Boxplots of log(S) for the SIS, DC-SIS, and CDC-SIS methods
for different values of ρ based on 100 replications under different models with p = 1,000.

(3.a): The two-dimensional response Y = (Y1, Y2)
> was generated by

Y = ZβZ +XβX + E,

where E was generated as normal with mean zero and covariance matrix

Σy|x = I2×2. We chose a pair of (βZ , βX) such that Y1 and Y2 shared the

same association with X1, βZ = (−1.6
√
ρ, 1.6, 0, . . . , 0)> and βX = (0,

1.6, −1.6
√
ρ, 0, . . . , 0)>.

(3.b): The 136-dimensional response Y was generated by

Y = ZβZ +X1β1 +X2β2 + E,
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ρ ρ ρ

γ γ γ

Figure 4. Examples 2: Summary results of the proportion of Pγd for the SIS (dotted
line), DC-SIS (dashed line), and CDC-SIS (solid line) methods for different values of ρ
based on 100 replications under different models with p = 1,000.

where E(2) was generated as normal with mean zero and covariance ma-

trix Σy|x = I136×136. Here the response Y is related to the first three

predictors {X1, X2} and confounding covariate Z. The nonzero regres-

sion coefficients, the first four column of B(2), were drawn as standard

normal, independently.

Results are summarized in Table 4 and Figures 5-6. There it can be seen that

the benefit of adjusting for the confounding effect is significant. Compared to
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Table 4. Example 3: Median of the minimum model size S for DC-SIS and CDC-SIS
methods for different values of p and ρ, based on 100 replications under different models.

p = 1,000 p = 5,000
Model ρ DC-SIS CDC-SIS DC-SIS CDC-SIS
(3.a) 0∗ 1 1 1 1

0.5 3 2 6 2
0.8 15 2 102 2

(3.b) 0 3 3 3 3
0.5 3 3 3 3
0.8 6 3 18 3

∗: When ρ = 0, only X1 is correlated with Y . So the true active
predictors set is {X1}.

DC-SIS, CDC-SIS needs a much smaller model to include all the true active pre-

dictors. CDC-SIS performs very well in terms of model complexity, while DC-SIS

does not especially when ρ = 0.8. In addition, CDC-SIS is robust to the correla-

tion between predictors, while the proportions for DC-SIS drop dramatically as

ρ increases.

4.3. Analysis of breast cancer data

We illustrate our proposed method using the public breast cancer data set

reported by Chin et al. (2006) and re-analyzed by Witten, Tibshirani and Hastie

(2009) and Ma and Sun (2014). The data set includes the gene expression, com-

parative genomic hybridization (CGH) measurements, and clinical characteris-

tics for a set of breast cancer patient samples. Here CGH measures genome copy

number variation along each chromosome in cancer samples; this can be helpful

in characterizing certain types of cancers and understanding how the genome

aberrations influence cancer pathophysiologies (Chin et al. (2006)). Our goal is

to identify a set of genes that are related to the copy number changes, with or

without adjustment, to potential confounding covariates. In the literature, age

at diagnosis (AGE for short) and other covariates have been found to be con-

founders of the disease effect with significant interaction term in some biomarkers

(Stephens et al. (2012)). Here we consider AGE as a potential confounding co-

variate.

We extracted both the gene expression and CGH measurements data from

the R package PMA (Witten, Tibshirani and Hastie (2009)) and downloaded

the clinical data from http://www.ebi.ac.uk/arrayexpress/experiments/E-TABM-158/.

After removing missing data in AGE, the data set consisted of n = 88 samples,

http://www.ebi.ac.uk/arrayexpress/experiments/E-TABM-158/
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Figure 5. Example 3: Boxplots of log(S) for the DC-SIS and CDC-SIS for different
values of p and ρ based on 100 replications under different models.

p = 19,672 gene expression measurements and 2,149 CGH measurements on 23

chromosomes. Following Witten, Tibshirani and Hastie (2009), we performed the

screening methods for chromosome 1 using CGH measurements on chromosome

1 and all the available gene expression data. Chromosome 1 included 136 CGH

measurements in total. To assess the stability of the screening results, we adopted

the idea of stability selection (Meinshausen and Bühlmann (2010)). For each fixed

threshold value d, we computed the selection probability of each gene over the

500 sub-samples of size dn/2e.
Table 5 lists the top d = dn/ log(n)e = 20 genes that were identified by the
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Figure 6. Examples 3: Summary results of the proportion of Pγd for the DC-SIS (dashed
line) and CDC-SIS (solid line) methods for different values of p and ρ based on 100
replications under different models.

DC-SIS and CDC-SIS procedures. It also includes the selection probability for

these genes. As can be seen from Table 5, 16 genes are identified by all of the

screening methods. It is interesting to see that the first ten ranking of CDC-SIS

is almost the same as that of DC-SIS, which shows the competitiveness of the

proposed method.

To gain further insight, we fit generalized additive models(GAM) using the

first sparse principle component (Witten, Tibshirani and Hastie (2009)) of Y
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Table 5. Breast cancer data: The top d (= dn/ log(n)e = 20) genes identified by DC-SIS
and CDC-SIS using the CGH spots on chromosome 1 and gene expression measurements
on all chromosomes. Ranks are shown in the second and third columns. Their corre-
sponding selection probability over the 500 sub-samples of size dn/2e with d = 20 are in
the fourth and fifth columns.

Selection Probability
Gene DC-SIS CDC-SIS DC-SIS CDC-SIS
TPR 13 0.382 0.144
GNPAT 3 3 0.894 0.784
NDUFS2 12 13 0.494 0.354
NUP133 19 0.248 0.240
GGPS1 14 8 0.408 0.552
RAB3-GAP150 16 20 0.346 0.198
PEX11B 8 10 0.574 0.322
PIGC 7 5 0.786 0.826
TBCE 6 6 0.674 0.636
RABIF 15 0.116 0.244
PPOX 17 18 0.318 0.294
SF3B4 4 4 0.790 0.688
DEGS 17 0.184 0.336
VPS45A 20 16 0.304 0.310
B4GALT3 15 0.408 0.220
FLJ12671 5 7 0.728 0.522
HSPC155 10 11 0.522 0.386
LGTN 14 0.136 0.254
MRPL24 2 2 0.830 0.784
HSPC003 1 1 0.966 0.868
FLJ10876 19 0.240 0.164
LOC51107 18 0.244 0.158
C1orf27 9 9 0.474 0.468
MY014 11 12 0.482 0.324

with or without AGE. Here we take gene “HSPC003” and “B4GALT3” for ex-

ample. Gene “HSPC003” is ranked the first by both two methods, while gene

“B4GALT3” is only identified by DC-SIS. The two models we considered were

V = Cont1 + f1(gene) and V = Cont2 + f2(gene) + g(gene, log(age)), where V

is the first principle component of Y , Conti, i = 1, 2 are the intercept terms, and

fi, i = 1, 2, g are unknown functions.

The fitted curve plots are displayed in Figure 7 and Figure 8. Leaving out

AGE, both “HSPC003” and “B4GALT3” are highly correlated with V , as can

be seen from the left panels of Figures 7-8. However, when including AGE as

an interaction effect with the gene, they have quite different performances. As
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Figure 7. Data Analysis: The left panel displays the scatterplot of Y versus the expres-
sion of gene “HSPC003” well as the GAM fitting V = Cont1 +f1(HSPC003). The right
panel displays the perspective view of the GAM model V = Cont2 + f2(HSPC003) +
g(HSPC003, log(age)).

for “HSPC003”, the interaction term is insignificant with p-value equal to 0.205

and the fitted curve looks like a cylindrical surface. The interaction term for

“B4GALT3” is significant with p-value equal to 0.0282 and the fitted curve is non-

smooth as shown in Figure 8. This means “B4GALT3” has different correlation

with V at different values of AGE.

5. Discussion

Some issues deserve further study. The threshold used in the proposed

method is adopted from those in Fan and Lv (2008) and Li, Zhong and Zhu

(2012). It is interest to develop a criterion to determine the threshold for finite

samples and we leave it as a topic for future research. In addition, more refined

model building and selection methods could be employed after feature screen-

ing, while the model-free nature of our screening method grants full flexibility in

subsequent modeling.

Similar to other existing feature screening methods, the CDC-SIS procedure

can fail to identify some important predictors that are marginally unrelated with

the response. Thus it is an interesting problem to develop an iterative version of
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Figure 8. Data Analysis: The left panel displays the scatterplot of Y versus the expres-
sion of gene “B4GALT3” as well as the GAM fitting V = Cont1 + f1(B4GALT3).
The right panel displays the perspective view of the GAM model V = Cont2 +
f2(B4GALT3) + g(B4GALT3, log(age)).

CDC-SIS to address such an issue. The essence of iterative procedure is to apply

iteratively a large-scale variable screening followed by a moderate-scale careful

variable selection. The proposed CDC-SIS procedure is model-free and thus a

model-free variable selection procedure is prefered after screening. Most of the

existing variable selection methods are based on a parametric regression model.

In the case of multivariate response, the variable selection method should be

able to handle multivariate responses. It is quite challenging to simultaneously

fix both problems in theory and computation. We have an ongoing research

project on this and some preliminary Monte Carlo simulations show that the

iterative CDC-SIS can improve performance over the CDC-SIS procedure under

univariate response setting. Similar ideas on the iterative version of DC-SIS

can be found in Zhong and Zhu (2014). But without the necessary, theoretical

analysis of the iterative DC-SIS and the iterative CDC-SIS deserve further study.

We leave it for future investigation.

A R package implementing the CDC-SIS method, called cdcsis, is publicly

available on CRAN.
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Supplementary Materials

This includes proofs of the theoretical results and additional simulation re-

sults.
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