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Abstract: We propose a pointwise inference algorithm for high-dimensional linear

models with time-varying coefficients. The method is based on a novel combination

of the nonparametric kernel smoothing technique and a Lasso bias-corrected ridge

regression estimator. Due to the non-stationarity feature of the model, dynamic

bias-variance decomposition of the estimator is obtained. With a bias-correction

procedure, the local null distribution of the estimator of the time-varying coefficient

vector is characterized for iid Gaussian and heavy-tailed errors. The limiting null

distribution is also established for Gaussian process errors, and we show that the

asymptotic properties differ between short-range and long-range dependent errors.

Here, p-values are adjusted by a Bonferroni-type correction procedure to control

the familywise error rate (FWER) in the asymptotic sense at each time point. The

finite sample size performance of the proposed inference algorithm is illustrated

with synthetic data and an application to learn brain connectivity by using the

resting-state fMRI data for Parkinson’s disease.
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1. Introduction

We consider the time-varying coefficient models (TVCM)

y(t) = x(t)>β(t) + e(t), (1.1)

where t ∈ [0, 1] is the time index, y(·) the response process, x(·) the p × 1

deterministic predictor process, β(·) the p × 1 time varying coefficient vector,

and e(·) the mean zero stationary error process. The response and predictors

are observed at ti = i/n, i = 1, ..., n, i.e. yi = y(ti),xi = x(ti), and ei = e(ti)

with a known covariance matrix Σe = Cov(e) where e = (e1, · · · , en)>. TVCM

is useful for capturing the dynamic associations in the regression models and

longitudinal data analysis Hoover et al. (1998), and it has broad applications in

biomedical engineering, environmental science, and econometrics. In this paper,

we focus on the pointwise inference for the time-varying coefficient vector β(t) in

the high-dimensional double asymptotic framework min(p, n)→∞.
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Nonparametric estimation and inference of the TVCM in fixed dimension

has been extensively studied, see e.g. Robinson (1989); Hoover et al. (1998);

Cleveland, Grosse and Shyu (1991); Fan and Zhang (1999); Zhang, Lee and

Song (2002); Orbe, Ferreira and Rodriguez-Poo (2005); Cai (2007); Zhang and

Wu (2012); Zhou and Wu (2010). In high dimensions, variable selection and

estimation of varying-coefficient models using basis expansions have been studied

in Wei, Huang and Li (2011); Xue and Qu (2012); Song, Yi and Zou (2014).

Our primary objective is not to estimate β(t), but rather to perform statistical

inference on the coefficients. In particular, for any t ∈ (0, 1), we wish to test the

local hypothesis, for j = 1, · · · , p,

H0,j,t : βj(t) = 0 VS H1,j,t : βj(t) 6= 0. (1.2)

By assigning p-values at each time point, we construct a sequence of estima-

tors of the coefficient vectors that allows us to assess the uncertainty of the

dynamic patterns in such as brain connectivity networks. Confidence intervals

and hypothesis testing problems of lower-dimensional functionals of the high-

dimensional constant coefficient vector β(t) ≡ β,∀t ∈ [0, 1], have been studied in

Bühlmann (2013); Zhang and Zhang (2013); Javanmard and Montanari (2014).

To the best of our knowledge, little has been done for inference of the high-

dimensional TVCM and our goal is to fill the inference gap between the classical

TVCM and the high-dimensional linear model.

While the existing literature on high-dimensional linear models is based on

iid errors, (Bühlmann (2013); Zhang and Zhang (2013); Javanmard and Monta-

nari (2014)), we provide an asymptotic theory for answering the question that

to which extent the statistical validity of inferences based on iid errors can hold

for dependent errors. Allowing temporal dependence is of the practical interest

as many datasets such as fMRI data are spatio-temporal and the errors are nat-

urally correlated in the time domain. Theoretical analysis has revealed that the

temporal dependence has delicate impact on the asymptotic rates for estimating

the covariance structures, Chen, Xu and Wu (2013, 2016). Therefore, it is useful

to build an inference procedure that is also robust in the time series context. The

error process ei is modelled as a stationary linear process

ei =

∞∑
m=0

amξi−m, (1.3)

where a0 = 1 and ξi are iid mean-zero random variables (a.k.a. innovations)

with variance σ2. When the ξi are normal, the linear processes of form (1.3) are

Gaussian processes that cover the autoregressive and moving-average (ARMA)
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models with iid Gaussian innovations as special cases. For the linear process,

we deal with both weak and strong temporal dependences. In particular, if

am = O((m+ 1)−%) and % > 1/2, then ei is well-defined and has (i) short-range

dependence (SRD) if % > 1, (ii) long-range dependence (LRD) if 1/2 < % < 1.

For the SRD processes, it is clear that
∑∞

m=0 |am| <∞ and therefore the long-run

variance is finite.

The paper is organized as follows. In Section 2, we describe our method in

details. Asymptotic theory is presented in Section 3. Section 4 presents some

simulation results and Section 5 demonstrates an application to an fMRI dataset.

The paper concludes in Section 6 with a discussion of some future work. Proofs

and some implementation issues are available in the Appendix.

2. Method

2.1. Notations and preliminary

Let K be a non-negative symmetric function with bounded support in [−1, 1],∫ 1
−1K(x)dx = 1, and let bn be a bandwidth parameter satisfying bn = o(1) and

n−1 = o(bn). For each time point t ∈ $ = [bn, 1 − bn], the Nadaraya-Waston

smoothing weight is defined as

w(i, t) =


Kbn(ti − t)∑n

m=1Kbn(tm − t)
if |ti − t| ≤ bn,

0 otherwise,

(2.1)

where Kb(·) = K(·/b). Let Nt = {i : |ti − t| ≤ bn} be the bn-neighborhood of

time t, |Nt| be the cardinality of the discrete set Nt, Wt = diag(w(i, t)i∈Nt
) be

the |Nt| × |Nt| diagonal matrix with w(i, t), i ∈ Nt on the diagonal, and let Rt =

span(xi : i ∈ Nt) be the subspace in Rp spanned by xi, the rows of design matrix

X in the Nt neighborhood. Let Xt = (w(i, t)1/2xi)
>
i∈Nt

, Yt = (w(i, t)1/2yi)
>
i∈Nt

,

and Et = (w(i, t)1/2ei)
>
i∈Nt

. Denote Ip as the p× p identity matrix. We write the

singular value decomposition (SVD) of Xt as

Xt = PDQ>, (2.2)

where P and Q are |Nt| × r, and p × r matrices such that P>P = Q>Q = Ir,

and D = diag(d1, · · · , dr) is a diagonal matrix containing the r nonzero singular

values of Xt. Now let PRt
be the projection matrix onto Rt,

PRt
= X>t (XtX>t )−Xt = QQ>, (2.3)

where (XtX>t )− = PD−2P> is the pseudo-inverse matrix of XtX>t . Let θ(t) =

PRt
β(t) be the projection of β(t) onto Rt such that B(t) = θ(t) − β(t) is the
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projection bias. Let

Ω(λ) = (X>t Xt + λIp)
−1X>t W

1/2
t Σe,tW

1/2
t Xt(X>t Xt + λIp)

−1 (2.4)

be the covariance matrix of the time-varying ridge estimator defined in (2.6),

where Σe,t = Cov((ei)i∈Nt
) and λ > 0 is the shrinkage parameter of the ridge

estimator. Let Ωmin(λ) = minj≤p Ωjj(λ) be the smallest diagonal entry of Ω(λ).

For a generic vector b ∈ Rp, we write |b|q = (
∑p

j=1 |bj |q)1/q if q > 0, and

|b|0 =
∑p

j=1 1(bj 6= 0) if q = 0. Let wt = infi∈Nt
w(i, t) and wt = supi∈Nt

w(i, t).

For an n× n square symmetric matrix M and an n×m rectangle matrix R, we

use ρi(M) and σi(R) to denote the i-th largest eigenvalues of M and singular

values of R, respectively. If k = rank(R), then σ1(R) ≥ σ2(R) ≥ · · · ≥ σk(R) >

0 = σk+1(R) = · · · = σmax(m,n)(R), zeros being padded to the last max(m,n)−k
singular values. We take ρmax(M), ρmin(M) and ρmin 6=0(M) as the maximum,

minimum and nonzero minimum eigenvalues of M , respectively, and |M |∞ =

max1≤j,k≤p |Mjk|. Let

ρmax(M, s) = max
|b|0≤s,b6=0

b>Mb

b>b
.

If M is nonnegative definite, then ρmax(M, s) is the restricted maximum eigen-

values of M at most s columns and rows.

The p-dimensional coefficient vector β(t) is decomposed into two parts via

projecting onto the |Nt|-dimensional linear subspace spanned by the rows of Xt
and its orthogonal complement; see Figure 1(a). A key advantage of this decom-

position is that the projected part can be conveniently estimated in closed-form,

for example, by the ridge estimator since it lies in the row space of Xt and thus is

amenable for the subsequent inferential analysis. In the high-dimensional situa-

tion, this projection introduces a non-negligible shrinkage bias in estimating β(t)

and therefore we may lose information because p� |Nt|. On the other hand, the

shrinkage bias can be corrected by a consistent estimator of β(t). As a particular

example, we use the Lasso estimator, though any sparsity-promoting estimator

attaining the same convergence rate as the Lasso should work. Because of the

time-varying nature of the nonzero functional β(t), the smoothness on the row

space of Xt along the time index t is necessary to apply nonparametric smooth-

ing technique; see Fig. 1(b). As a special case, when the nonzero components

β(t) ≡ β are constant functions and the error process is iid Gaussian, our al-

gorithm is the same as that of Bühlmann (2013). Here, we emphasize that (i)

coefficient vectors are time-varying (i.e. non-constant), (ii) errors are allowed to

have heavy-tails by assuming milder polynomial moment conditions and to have
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(a) Bias correction by projection to the row space
of Xt.

χ

(b) Smoothly time-varying row space of Xt.

Figure 1. Intuition of the proposed algorithm in Section 2.2.

temporal dependence, including both SRD and LRD processes. There are other

inferential methods for high-dimensional linear models such as Zhang and Zhang

(2013); Javanmard and Montanari (2014). We do not explore specific choices

here since our contribution is a general framework of combining nonparametric

smoothing and bias-correction methods to make inference for high-dimensional

TVCM. However, we expect that a non-stationary generalization would be fea-

sible for those methods as well. Some simulation comparisons are provided for

time-varying versions of the bias-correction methods in Section 4.

2.2. Inference algorithm

First, we estimate the projection bias B(t) by B̃(t) = (PRt
− Ip)β̃(t), where

β̃(t) is the time-varying Lasso (tv-Lasso) estimator

β̃(t) = arg min
b∈Rp

∑
i∈Nt

w(i, t)(yi − x>i b)2 + λ1|b|1 (2.5)

= arg min
b∈Rp

|Yt −Xtb|22 + λ1|b|1.

Next, we estimate θ(t) = PRt
β(t) using the time-varying ridge (tv-ridge) esti-

mator

θ̃(t) = arg min
b∈Rp

∑
i∈Nt

w(i, t)(yi − x>i b)2 + λ2|b|22

= (X>t Xt + λ2Ip)
−1X>t Yt. (2.6)

We defer the discussion of tuning parameters choice λ1 and λ2 to Section 3. Our

tv-Lasso bias-corrected tv-ridge regression estimator for β(t) is

β̂(t) = θ̃(t)− B̃(t). (2.7)

Based on β̂(t) = (β̂1(t), · · · , β̂p(t))>, we calculate the raw two-sided p-values for
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individual coefficients

P̃j = 2

[
1− Φ

(
|β̂j(t)| − λ1−ξ1 maxk 6=j |(PRt

)jk|
Ω
1/2
jj (λ2)

)]
, j = 1, · · · , p, (2.8)

where ξ ∈ [0, 1) is user pre-specified number that depends on the number of

nonzero β(t). In particular, if |supp(β(t))| is bounded, then we can choose ξ = 0.

Generally, following Bühlmann (2013), we use ξ = 0.05 in our numeric examples

to allow the number of nonzero components in β(t) to diverge at proper rates.

Let v(t) = (V1(t), · · · , Vp(t))> ∼ N(0,Ω(λ2)) and define the distribution function

F (z) = P
(

min
j≤p

2
[
1− Φ

(
Ω
−1/2
jj (λ2)|Vj(t)|

)]
≤ z
)
. (2.9)

We adjust the P̃j for multiplicity by Pj = F (P̃j+ζ), where ζ is another pre-defined

small number (Bühlmann (2013)) that accommodates asymptotic approximation

errors. Our decision rule is defined as: reject H0,j,t if Pj ≤ α for α ∈ (0, 1). For

iid errors, since Σe = σ2In and

Ω(λ2) = σ2(X>t Xt + λ2Ip)
−1X>t WtXt(X>t Xt + λ2Ip)

−1,

we see that F (·) is independent of σ. Therefore, F (·) can be easily estimated by

repeatedly sampling from the multivariate Gaussian distribution N(0,Ω(λ2)). A

similar observation has been made in Bühlmann (2013).

3. Asymptotic Results

In this section, we present the asymptotic theory of the inference algorithm

in Section 2.2. First, we state the main assumptions for iid Gaussian errors.

1. Error. The errors ei ∼ N(0, σ2) are independent and identically distributed

(iid).

2. Sparsity. β(·) is uniformly s-sparse, i.e. supt∈[0,1] |S∗t | ≤ s, where S∗t =

{j : βj(t) 6= 0} is the support set.

3. Smoothness.

(a) β(·) is twice differentiable with bounded and continuous first and sec-

ond derivatives in the coordinatewise sense, i.e. βj(·) ∈ C2([0, 1], C0) for

each j = 1, · · · , p and C0 is an upper bound for the partial derivatives.

(b) The bn-neighborhood covariance matrix Σ̂�t = |Nt|−1
∑

i∈Nt
xix
>
i :=

X �t >X �t satisfies

ρmax(Σ̂�t , s) ≤ ε−20 <∞. (3.1)
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4. Non-degeneracy.

lim inf
λ↓0

Ωmin(λ) > 0. (3.2)

5. Identifiability.

(a) The minimum nonzero eigenvalue condition

ρmin6=0(Σ̂
�
t ) ≥ ε20 > 0. (3.3)

(b) The restricted eigenvalue condition

φ0 = inf

{
φ > 0 : min

|S|=s
inf

|bSc |1≤3|bS |1

b>Σ̂tb

|bS |21
≥ φ2

s

holds for all t ∈ [0, 1]

}
> 0, (3.4)

where Σ̂t = X>t Xt is the kernel smoothed covariance matrix of the

predictors.

6. Kernel. The kernel function K(·) is nonnegative, symmetric around 0 with

bounded support in [−1, 1].

Here, we comment the assumptions and their implications. Assumption 1 and 6

are standard. The Gaussian distribution is non-essential and can be relaxed to

sub-Gaussian and heavier tailed distributions (Theorem 4). Assumption 2 is a

sparsity condition for the nonzero functional components and allows that s→∞
slower than min(p, n). It is a key condition for maintaining the low-dimensional

structure when the dimension p grows with the sample size n. By the argument of

Theorem 5 in Zhou, Lafferty and Wasserman (2010), it implies that the number

of the first and second non-vanishing derivatives of β(t) is bounded by s almost

surely on [0, 1]. Assumption 3 ensures the smoothness of the time-varying coeffi-

cient vectors and the design matrix so that nonparametric smoothing techniques

are applicable. Examples of Assumption 3(a) include the quadratic functions

β(t) = β + αt + ξt2/2 and the periodic functions β(t) = β + α sin(t) + ξ cos(t)

with |α|∞ + |ξ|∞ ≤ C0. Assamption 3(b) can be viewed as Lipschitz continuity

on the local design matrix that is smoothly evolving, Zhou and Wu (2010). It

is weaker than the condition that ρmax(Σ̂�t ) ≤ ε−20 because the latter may grow

to infinity much faster than the restricted form (3.1). Assumption 4 is required

for a non-degenerated stochastic component of the proposed estimator which is

used for the inference purpose. Assumption 5(a) and 5(b) together impose the

identifiability conditions for recovering the coefficient vectors. The analogous
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condition of the time-invariant version has been extensively used in literature

to derive theoretical properties of the Lasso model; see e.g. Bickel, Ritov and

Tsybakov (2009); van de Geer and Bühlmann (2009).

For the tv-lasso bias-corrected tv-ridge estimator (2.7), we have the following

representation theorem.

Theorem 1 (Representation). Fix t ∈ $ and let

Lt,` = max
j≤p

[∑
i∈Nt

w(i, t)`X2
ij

]1/2
, ` = 1, 2, · · · , λ0 = 4σLt,2

√
log p, (3.5)

and λ1 ≥ 2(λ0 + 2C0Lt,1bn(s|Nt|wt)1/2ε−10 ). If λ2 = o(1), Assumptions 1-6 hold,

and C ≤ |Nt|wt ≤ |Nt|wt ≤ C−1 for some C ∈ (0, 1), then β̂(t) admits the

decomposition

β̂(t) = β(t) + z(t) + γ(t), (3.6)

z(t) ∼ N(0,Ω(λ2)), (3.7)

|γj(t)| ≤
λ2|θ(t)|2 + 2C0s

1/2bn
Cε20

+
4λ1s

φ20
|PRt

− Ip|∞, j = 1, · · · , p, (3.8)

with probability tending to one. If βj(t) = 0, then we have

Ω
−1/2
jj (λ2)(β̂j(t)− γj(t)) ∼ N(0, 1), (3.9)

where

|γj(t)| ≤
λ2|θ(t)|2 + 2C0s

1/2bn
Cε20

+
4λ1s

φ20
max
k 6=j
|(PRt

)jk| (3.10)

with probability tending to one.

Remark 1. The decomposition (3.6) can be viewed as a local version of the

one proposed in Bühlmann (2013) (Proposition 2). However, due to the time-

varying nature of the nonzero coefficient vectors, both the stochastic component

z(t) in (3.7) and the bias component γ(t) in (3.8) differ from Bühlmann (2013).

First, our bound (3.8) for bias has three terms arising from: ridge shrinkage,

non-stationarity and Lasso correction, and each has localized features depend-

ing on the bandwidth bn of the sliding window and the smoothness parameter

C0. Second, the stochastic part (3.7) also has time-dependent features in the

covariance matrix (i.e. Ω(λ2) implicitly depends on t though Xt) and the scale

of normal random vector is different from Bühlmann (2013). Delicate balance

among them allows us to perform valid statistical inference such as hypothesis

testing and confidence interval construction for the coefficients and, more broadly,

their lower-dimensional linear functionals.
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Example 1. Consider the uniform kernel K(x) = 0.5I(|x| ≤ 1) as an important

special case, the kernel used for our numeric experiments in Section 4. In this

case, wt = (2nbn)−1 and |Nt|wt = |Nt|wt = 1. It is easily verified that under the

local null hypothesis H0,j,t, (3.10) can be simplified to

γj(t) = O

(
λ2|θ(t)|2 + s1/2bn + λ1smax

k 6=j
|(PRt

)jk|
)
.

From this, it is clear that the three terms correspond to bias of ridge-shrinkage,

non-stationarity and Lasso-correction. The first and last components have dy-

namic features and the non-stationary bias is controlled by the bandwidth and

sparsity parameters. The condition C ≤ |Nt|wt ≤ |Nt|wt ≤ C−1 in Theorem 1

rules out the case that the kernel does not use the boundary rows in the localized

window and therefore avoids any jump in the time-dependent row subspaces.

Remark 2. In Theorem 1, the penalty level for the tv-Lasso estimator λ1 can

be chosen as O(σLt,2
√

log p + Lt,1s
1/2bn). The second term in the penalty is

due to the non-stationarity of β(t) and the factor s1/2 arises from the weak

coordinatewise smoothness requirement on its derivatives (Assumption 3(a)). In

the Lasso case with β(t) ≡ β and w(i, t) ≡ n−1, an ideal order of the penalty level

λ1 is σn−1 maxj≤p(
∑n

i=1X
2
ij)

1/2(log p)1/2 see e.g. Bickel, Ritov and Tsybakov

(2009). In the standardized design case n−1
∑n

i=1X
2
ij = 1 so that Lt,1 = 1

and Lt,2 = n−1/2, the Lasso penalty is O(σ(n−1 log p)1/2), while the tv-Lasso

has an additional term s1/2bn that may cause a larger bias. In our case, we

estimate the time-varying coefficient vectors by smoothing the data points in the

localized window. Thus, it is unnatural to standardize the reweighted local design

matrix to have unit `2 length and the additional bias O(s1/2bn) is due to non-

stationarity. If theXij are iid Gaussian random variables without standardization

and we interpret the linear model as conditional on X, then, under the uniform

kernel, we have L2
t,2 = OP(log p/|Nt|) and, in the Lasso case, the penalty level is

O(σ|Nt|−1/2 log p). If s = O(log p) and bn = O((log p/n)1/3), then the choice in

Theorem 1 has the same order as the Lasso with constant coefficient vector.

Based on Theorem 1, we can prove that the inference algorithm in Section

2.2 asymptotically controls the familywise error rate (FWER). Let α ∈ (0, 1) and

FPα(t) be the number of false rejections of H0,j,t based on the adjusted p-values.

In the asymptotic statement, p := p(n) is a function of n such that p → ∞ as

n→∞.

Theorem 2 (Pointwise inference: multiple testing). If the conditions of Theorem
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1 hold and

λ2|θ(t)|2 + s1/2bn = o(Ωmin(λ2)
1/2), (3.11)

then we have for each fixed t ∈ $

lim sup
n→∞

P(FPα(t) > 0) ≤ α. (3.12)

The proof of Theorem 2 is standard by combining the argument of Theorem

2 in Bühlmann (2013) and Theorem 1. Therefore, we omit the proof. Condition

(3.11) essentially requires that the shrinkage and non-stationarity biases of the

tv-ridge estimator together are dominated by the variance; see also the repre-

sentation (3.6), (3.7), (3.8), and (3.9). This is mild condition for two reasons.

First, in view that variance of the tv-ridge estimator is lower bounded when λ2 is

small enough; c.f. (3.2), the first term is quite weak in the sense that the tv-ridge

estimator acts on a much smaller subspace with dimension |Nt| than the original

p-dimensional vector space. Second, for the choice of penalty parameter of λ1 in

Theorem 1, the term s1/2bn in (3.11) is at most λ1. Hence, the bias correction

(including the projection and non-stationary parts) in the inference algorithm

(2.8) has a dominating effect on the second term of (3.11). Consequently, pro-

vided λ2 is small enough, the bias correction step in computing the raw p-value

asymptotically approximates the stochastic component in the tv-ridge estimator.

Remark 3. The Bonferroni correction (2.9) for the raw p-values is often con-

servative and thus it may be sub-optimal in power. In our simulation studies, it

seems that detection power is reasonable while the FWER is controlled at 0.05;

c.f. Table 1 and 2. To improve the power, one can consider the control of the

false discovery proportion (FDP) by the principal factor approximation (PFA)

method proposed in Fan, Han and Gu (2012); Fan and Han (2016). By Theo-

rem 1, under the global null hypothesis H0,t : β1(t) = · · · = βp(t) = 0, we have

β̂(t)−γ(t) ∼ N(0,Ω(λ2)) with a known covariance matrix Ω(λ2). Therefore, our

test statistic is jointly normal and the PFA can be applied to control the FDP if

Ω(λ2) can be well approximated by the covariance matrix of a factor model plus

a weakly dependent component. Fan, Han and Gu (2012) provided a practical

procedure to estimate the FDP.

Next, we relax the iid assumption on the errors to allow temporal depen-

dence.

Theorem 3 (Gaussian process errors). Suppose that the error process ei is a

mean-zero stationary Gaussian process of form (1.3) such that |am| ≤ K(m+1)−%
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for some % ∈ (1/2, 1) ∪ (1,∞) and finite constant K > 0. Under Assumptions

2-6 and the notation of Theorem 1 with

λ0 =

{
4σLt,2|a|1

√
log p if % > 1,

C%,KσLt,2n
1−%√log p if 1 > % > 1/2,

(3.13)

where a = (a0, a1, · · · )>, we have the representation of β̂(t) in (3.6)–(3.10) with

probability tending to one.

From Theorem 3, the temporal dependence strength has a dichotomous effect

on the choice of λ0, and therefore on the asymptotic properties of β̂(t). For ei with

SRD, we have |a|1 < ∞ and λ0 � σLt,2
√

log p. Therefore, the bias-correction

part γ(t) of estimating β(t) has the same rate of convergence as the iid error

case. The temporal effect only plays a role in the long-run covariance matrix of

the stochastic part z(t). If ei has LRD, then the temporal dependence has impact

on both γ(t) and z(t). In addition, the choice of the bandwidth parameter bn is

different from the SRD and iid cases. In particular, the optimal bandwidth for

% ∈ (1/2, 1) is O((log p/n%)1/3) which is much larger than O((log p/n)1/3) in the

iid and SRD cases, assuming s is bounded. The boundary case % = 1 can also

be characterized; details are omitted.

We also relax the moment condition on the errors that, in the iid error case,

are assumed to be zero-mean Gaussian. First, it is easy to relax this assumption

to distributions with sub-Gaussian tails (see Definition S0.1 in the Supplementary

Material) and Theorem 1 and 2 continue to hold, in view that the large deviation

inequality and the Gaussian approximation for a weighted partial sum of the error

process only depend on the tail behavior and therefore on moments of ei. Second

and more importantly, the sub-Gaussian assumption may be knocked down to

allow iid noise processes with algebraic tails, or equivalently ei with moments

up to a finite order. The consequence of this relaxation is that a larger penalty

parameter for the tv-Lasso is needed for errors with polynomial moments. Let Ξ

be the square root matrix of Ω(λ2)/σ
2 (i.e. Ω(λ2) = σ2ΞΞ>) and ξj be the j-th

row of Ξ.

Theorem 4 (Heavy-tailed errors). Under the conditions of Theorem 1 with

E|ei|q <∞, q > 2, choose

λ0 = Cq max
{

(pµn,q)
1/q, σLt,2(log p)1/2

}
, for large enough Cq > 0, (3.14)

where µn,q =
∑

i∈Nt
|w(i, t)Xij |q. If |ξj |q = o(|ξj |2) for all j = 1, · · · , p, then

(3.6) holds with probability tending to one and Theorem 2 holds.
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The assumption |ξj |q = o(|ξj |2) is needed to ensure the asymptotic validity

of the Gaussian approximation of the ridge component (3.7) for non-Gaussian

data.

4. Simulation Studies

4.1. Simulation setup

In the simulation studies, we generated the n×p design matrix with iid rows

sampled from N(0,ΣX) for n = 300 and p = 300. We considered two covariance

structures on the design matrix: (i) ΣX = Ip; (ii) ΣX = T , where T = (tjk)
p
j,k=1

and tjk = 0.5|j−k|. The time-varying coefficient vectors β(t) had s = 3 non-

zero elements and p − 3 zeros for all t ∈ [0, 1]. The non-zero elements in β(t)

were generated by sampling nodes from a uniform distribution U(−2.5, 2.5) at

regular time points and smoothly interpolating on the interval [0, 1] using the

cubic splines. We simulated the following stationary error processes.

1. The ei are iid N(0, 1).

2. ei = ϕei−1 + ξi is an AR(1) process where ϕ ∈ {0.2, 0.5} and ξi are iid

N(0, 1).

3. The ei are iid Student’s t(3)/
√

3.

4. ei is a long-memory process ei =
∑∞

m=0(m+ 1)−%ξi−m, where % = 0.75 and

ξi are iid Gaussian with mean zero.

We compared the performance of the proposed method with the following.

1. (TV-Lasso) - The time-varying Lasso, the kernel smoothed time-varying

LASSO defined in (2.5), where λ1 is selected by the cross-validation (CV).

2. (FP-Lasso) - The false-positive Lasso, where λ1 is tuned to match the

FWER of the proposed method. This allowed us to compare the power

at similar levels of FWER.

3. (TV-LDPE) - An adaptation of the de-biased LASSO inference procedure

by Zhang and Zhang (2013) to the kernel smoothed, time-varying setting.

4. (TV-SDL) - An adaptation of the SDL test of Javanmard and Montanari

(2014) to the kernel smoothed, time-varying setting.

5. (Non-TV) - The original non-time-varying method of Bühlmann (2013) that

ignores the dynamic structures. The penalty parameter λ1 in the Lasso is

set to the scaled Lasso parameter
√

2 log(p)/n.
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In all time-varying models, we used the kernel bandwidth bn = 0.1. For the

proposed method, we used λ2 = 1/n and ζ = 0. We let Pj,t,m be the multiplicity-

adjusted p-value for testing the hypothesisH0,j,t : βj(t) = 0 for t ∈ $ = [bn, 1−bn]

in the m-th Monte Carlo simulation for m = 1, · · · ,M . For TV-LDPE, TV-

SDL, the proposed method and its non-tv version, we adopted the following

performance measures.

1. The (averaged) false positive rate (FPR) over the interval $,

1

n(1− 2bn)(p− s)M
∑
t∈$

∑
j∈Sc

M∑
m=1

1(Pj,t,m ≤ α).

2. The (averaged) false negative rate (FNR) over the interval $,

1

n(1− 2bn)sM

∑
t∈$

∑
j∈S

M∑
m=1

1(Pj,t,m > α).

3. The (averaged) FWER over the interval $,

FWER =
1

n(1− 2bn)M

∑
t∈$

M∑
m=1

1(min
j∈Sc

Pj,t,m ≤ α).

For the Lasso-based methods (TV-Lasso and FP-Lasso), the probabilities

are replaced by the corresponding indicators of whether or not the estimated

coefficients are zero.

4.2. Empirical results

For each simulation setup, we report the FPR, RNR, FWER, and the root

mean square errors (RMSE) of the estimates. The results are shown in Tables 1

and 2, from which we make several observations. First, TV-Lasso and the method

of Bühlmann (2013) do not control the FWER, while the proposed method can

control the FWER at the nominal level α = 0.05 in all setups. Second, the

proposed method has uniformly higher power than FP-Lasso, the TV-Lasso tuned

to match the FWER with our method. This is probably explained by the bias

of the `1 regularization in the TV-Lasso. Third, for the design matrix with iid

Gaussian entries, TV-LDPE and TV-SDL have comparable performance as our

proposed method in terms of the power, while all three methods have the FWER

controlled below 0.05. TV-LDPE and TV-SDL are more sensitive to the design

matrix than the proposed method; for the Toeplitz design matrix T , TV-LDPE

and TV-SDL seem to lose control on the FWER. Moreover, the FWER, FNR,

and RMSE are larger as the dependence level of the error process grows and as
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Table 1. Simulation results. n = 300, p = 300, s = 3.

xi
iid∼ N(0, Ip), e ∼ N(0, In) xi

iid∼ N(0, T ), e ∼ N(0, In)
Method FPR FNR FWER RMSE FPR FNR FWER RMSE
TV-Lasso 7.51× 10−2 0.0551 1 0.0537 1.55× 10−1 0.0684 1 0.0520
FP-Lasso 1.50× 10−4 0.2352 0.0344 0.1124 2.81× 10−5 0.5170 0.0063 0.1318
Proposed 1.50× 10−4 0.1889 0.0346 0.1838 2.81× 10−5 0.4072 0.0063 0.1984
TV-LDPE 1.29× 10−4 0.1981 0.0254 0.2652 3.77× 10−4 0.3615 0.0743 0.2727
TV-SDL 1.53× 10−4 0.1848 0.0357 0.1316 1.08× 10−3 0.3006 0.2119 0.1409
Non-TV 4.89× 10−1 0.5100 0.4600 0.5762 2.58× 10−1 0.7100 0.2400 0.6084

xi
iid∼ N(0, Ip), e ∼ AR(1) xi

iid∼ N(0, T ), e ∼ AR(1)
with ϕ = 0.2 with ϕ = 0.2

Method FPR FNR FWER RMSE FPR FNR FWER RMSE
TV-Lasso 8.93× 10−2 0.0563 1 0.0533 1.51× 10−1 0.0629 1 0.0519
FP-Lasso 1.78× 10−4 0.2363 0.0384 0.1099 7.21× 10−5 0.4709 0.0173 0.1302
Proposed 1.78× 10−4 0.1891 0.0376 0.1836 7.21× 10−5 0.3434 0.0173 0.1920
TV-LDPE 9.85× 10−5 0.1995 0.0215 0.2799 3.70× 10−4 0.3620 0.0843 0.2725
TV-SDL 1.97× 10−4 0.1883 0.0419 0.1374 1.07× 10−3 0.3032 0.2165 0.1404
Non-TV 4.29× 10−1 0.5633 0.4100 0.5557 2.58× 10−1 0.6933 0.2200 0.6088

xi
iid∼ N(0, Ip), e ∼ AR(1) xi

iid∼ N(0, T ), e ∼ AR(1)
with ϕ = 0.5 with ϕ = 0.5

Method FPR FNR FWER RMSE FPR FNR FWER RMSE
TV-Lasso 7.55× 10−2 0.0544 1 0.0537 1.51× 10−1 0.0611 1 0.0518
FP-Lasso 1.93× 10−4 0.2402 0.0431 0.1124 9.81× 10−5 0.4805 0.0222 0.1303
Proposed 1.93× 10−4 0.1809 0.0422 0.1836 9.81× 10−5 0.3347 0.0235 0.1918
TV-LDPE 9.82× 10−5 0.2028 0.0229 0.2756 3.71× 10−4 0.3618 0.0849 0.2659
TV-SDL 1.94× 10−4 0.1898 0.0425 0.1374 1.01× 10−3 0.2993 0.2555 0.1439
Non-TV 5.49× 10−1 0.4500 0.5200 0.5314 1.70× 10−1 0.8300 0.1500 0.6004

the tail of the error distribution becomes thicker. Finally, the proposed method

is computationally more economical than the competing methods TV-LDPE and

TV-SDL. Table 3 shows the runtimes on an Intel i5-4790K with the Intel MKL

linear algebra libraries (software and platform: R 3.2.2 for Windows).

5. Data Example: Learning Brain Connectivity

We illustrate our proposed method in an application to model the functional

brain connectivity in a Parkinson’s disease study. The problem is to construct

brain connectivity networks from the resting-state functional magnetic resonance

imaging (fMRI) data, where slowly time-varying graphs have implications in

modeling brain connectivity networks. Traditional correlation analysis of the

resting state blood-oxygen-level-dependent (BOLD) signals of the brain showed
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Table 2. Simulation results (continued). n = 300, p = 300, s = 3.

xi
iid∼ N(0, Ip), ei

iid∼ t(3)/
√

3 xi
iid∼ N(0, T ), ei

iid∼ t(3)/
√

3
Method FPR FNR FWER RMSE FPR FNR FWER RMSE
TV-Lasso 9.14× 10−2 0.0518 1 0.0539 1.57× 10−1 0.0605 1 0.0506
FP-Lasso 1.96× 10−4 0.2193 0.0398 0.1120 4.20× 10−5 0.4547 0.0124 0.1209
Proposed 1.96× 10−4 0.1708 0.0439 0.1834 4.20× 10−5 0.3129 0.0125 0.1885
TV-LDPE 1.26× 10−4 0.2041 0.0275 0.2659 3.62× 10−4 0.3043 0.0810 0.2719
TV-SDL 1.90× 10−4 0.1903 0.0403 0.1321 9.54× 10−4 0.2814 0.1960 0.1381
Non-TV 5.16× 10−1 0.4800 0.4800 0.5289 2.24× 10−1 0.7700 0.1500 0.5962

xi
iid∼ N(0, Ip), e ∼ LRD xi

iid∼ N(0, T ), e ∼ LRD
with % = 0.75 with % = 0.75

Method FP(%) FN(%) FWER RMSE FPR FNR FWER RMSE
TV-Lasso 7.25× 10−2 0.0652 1 0.0499 1.77× 10−1 0.0805 1 0.0556
FP-Lasso 1.60× 10−4 0.2496 0.0450 0.1091 1.37× 10−4 0.5138 0.0229 0.1381
Proposed 1.60× 10−4 0.1783 0.0433 0.1806 1.37× 10−4 0.3376 0.0243 0.1953
TV-LDPE 1.08× 10−4 0.2067 0.0238 0.2653 3.68× 10−4 0.3648 0.0859 0.2691
TV-SDL 2.10× 10−4 0.1924 0.0501 0.1386 9.29× 10−4 0.3014 0.0186 0.1448
Non-TV 5.19× 10−1 0.4800 0.4800 0.5304 5.49× 10−1 0.4500 0.4100 0.5280

Table 3. Runtime per 10 simulations.

Method Runtime (in minutes)
TV-Lasso 0.5
FP-Lasso 9.5
Proposed 13
TV-LDPE > 1,000
TV-SDL > 1,000
Non-TV < 0.5

considerable temporal variation on small time scales, Chang and Glover (2010);

Hutchison et al. (2013). In view of the high spatial resolution of fMRI data,

brain networks of subjects at rest are believed to be structurally homogeneous

with subtle fluctuations in some, but a small number of, connectivity edges,

Kiviniemi et al. (2005); Hutchison et al. (2010). A popular approach to learn

brain connectivity is the neighborhood selection procedure, Meinshausen and

Bühlmann (2006). Therefore, high-dimensional TVCM with a small number of

nonzero components is a natural approach to study the time-evolving sparse brain

connectivity networks, in which the time-varying coefficients reflect the dynamic

features of the corresponding edges in the networks. The neighborhood selection

approach is an approximation to the full multivariate distributions while ignoring

the correlation among the node-wise responses and this may cause certain power
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Figure 2. Connectivity networks in control subject around t = 0.25 based on the proposed
method.

loss in finite samples. Meinshausen and Bühlmann (2006) showed that in terms

of variable selection, these two approaches are asymptotically equivalent.

Our data example uses fMRI data collected from a study of patients with

Parkinson’s disease (PD) and their respective normal controls. PD is typically

characterized by deviations in functional connectivity between various regions

of the brain. Additionally, the resting state functional connectivity has been

shown as a candidate biomarker for PD progression and treatment, where more

advanced stages or manifestations of PD are associated with greater deviations

from normal connectivity. Each resting state data matrix in our example contains

240 time points and 52 brain regions of interest (ROI). The time points are evenly

sampled and the time indices are normalized to [0, 1].

The brain connectivity network was constructed using the neighborhood se-

lection procedure. In essence, it is a sequence of time-varying linear regressions

enumerating each ROI as the response variable and sparsely regressing on all the

other ROIs. Figure 2 and 3 show the estimated graphs of a normal subject and

a PD subject at three sequential time points around t = 0.25 based on the pro-

posed method. Red nodes are ROIs known to be associated with motor control

and blue nodes are ROIs either known to be unrelated to motor control or whose

functions in humans are not well understood. Different patterns of connectiv-

ity in the networks can be found by comparing normal and PD subjects. From

the graphs, there are slow changes in the networks over time: most edges are

preserved on a small time scale, but there are a few edges evolving over time.

For instance, in a PD subject, ROI 1 and ROI 40 are unconnected in the first

network but they are connected in the second network and remain connected in

the third network.

We also plot the connectivity graphs generated by the competing methods
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Figure 3. Connectivity networks in Parkinson’s Disease subject around t = 0.25 based
on the proposed method.

Figure 4. A connectivity network based on TV-LDPE.

Figure 5. A connectivity network based on TV-SDL.

TV-LDPE and TV-SDL; see Figure 4 and 5. These graphs are denser than with

the proposed method and are harder to interpret. Besides, as commented in the

simulation studies, TV-LDPE and TV-SDL are more computationally expensive.

The method of Bühlmann (2013) cannot be used to capture the dynamic features

of brain connectivity networks.

6. Discussions

This paper presents a pointwise inference algorithm for high-dimensional
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TVCM that can asymptotically control the FWER. Based on the current work, an

interesting improvement would be to study simultaneous inference. Construction

of the simultaneous confidence band (SCB) for the time-varying coefficients is

useful for testing their parametric forms in high dimensions. This is a more

challenging topic, which requires substantial additional work and probability

tools that are beyond the scope of this paper.

Our brain connectivity application is a subject-by-subject analysis. To per-

form the group analysis on the population level, a hierarchical linear model is

more appropriate. When p is fixed, the linear mixed-effects model is widely used

in performing the multi-level group analysis in fMRI, Beckman, Jenkinson and

Smith (2003); Lindquist (2008); Skup (2010). The reason is that the generalized

least squares (GLS) estimator of a two-level model is inferentially equivalent to

the GLS estimator of the corresponding single-level model, provided that the

second-level covariance is the sum of the group covariance and the covariance

of the first-level estimate, Beckman, Jenkinson and Smith (2003). Extension of

the testing problem on the population parameters based on the ridge and Lasso

estimates when p→∞ is another interesting future research topic.

7. Proof

Proof of Theorem 1. Observe that Xtβ(t) = Xtθ(t) since θ(t) = PRt
β(t). Using

the closed-form formulae for the tv-ridge estimator (2.6) and by (S0.4), we have

bias(θ̃(t)) = E(θ̃(t))− θ(t)

= (X>t Xt + λ2Ip)
−1X>t [Xtθ(t) +MtXtβ′(t) + Xtξ]− θ(t), (7.1)

where |ξ|∞ ≤ C0b
2
n/2 and |ξ|0 ≤ s almost surely, t ∈ $. First, we bound the

shrinkage bias of the tv-ridge estimator. By the argument in Section 3 of Shao

and Deng (2012), we can show that

(X>t Xt + λ2Ip)
−1X>t Xtθ(t)− θ(t) = −Q(λ−12 D2 + Ir)

−1Q>θ(t).

It follows from Lemma S0.2 that

|Q(λ−12 D2 + Ir)
−1Q>θ(t)|2 ≤

|θ(t)|2
ρmin(λ−12 D2 + Ir)

(7.2)

=

(
λ2

λ2 + minj≤r d2j

)
|θ(t)|2 ≤

λ2|θ(t)|2
ρmin 6=0(Σ̂t)

≤ λ2|θ(t)|2
|Nt|wtε20

,

where d2j = ρj(Σ̂t), j = 1, · · · , r. Next, we deal with the non-stationary bias of

the tv-ridge estimator (7.1) by a similar argument for (7.2). Indeed, let Q⊥ be
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the orthogonal complement of Q such that Q>⊥Q⊥ = Ip−r and Q>⊥Q = 0(p−r)×r.

Denote Γ = [Q;Q⊥]. Then, ΓΓ> = Γ>Γ = Ip. By the SVD of Xt, (2.2), we have

(X>t Xt + λ2Ip)
−1X>t MtXtβ′(t) = Γ

(
Γ>(QD2Q> + λ2Ip)Γ

)−1
Γ>X>t MtXtβ′(t)

= [Q;Q⊥]

([
Q>

Q>⊥

]
(QD2Q> + λ2Ip)[Q;Q⊥]

)−1 [
Q>

Q>⊥

]
QDP>MtXtβ′(t)

= [Q;Q⊥]

(
(D2 + λ2Ir)

−1 0

0 λ−12 Ip−r

)[
DP>MtXtβ′(t)

0

]
= Q(D + λ2D

−1)−1P>MtXtβ′(t).

Hence, by Lemma S0.2 we have

|(X>t Xt + λ2Ip)
−1X>t MtXtβ′(t)|2 ≤

bn|Xtβ′(t)|2
ρmin(D + λ2D−1)

≤ C0bn(s|Nt|wt)1/2ε−10

minj≤r(dj + λ2/dj)
,

where wt = supi∈Nt
w(i, t). Since λ2 = o(1) and dj ≥ (|Nt|wt)1/2ε0, the denomi-

nator of last expression is lower bounded by [(|Nt|wt)1/2ε0 + λ2/((|Nt|wt)1/2ε0)]
for large enough n. Therefore, we have

|(X>t Xt + λ2Ip)
−1X>t MtXtβ′(t)|2 ≤

C0bn(s|Nt|wt)1/2

(|Nt|wt)1/2ε20
≤ C0bns

1/2

Cε20
. (7.3)

Similarly, an upper bound for the remainder term of (7.1) can be established.

We have

|(X>t Xt + λ2Ip)
−1X>t MtXtξ|2 ≤

C0b
2
ns

1/2

2Cε20
, for almost surely t ∈ $. (7.4)

In addition, θ̃(t)− E[θ̃(t)] = (X>t Xt + λ2Ip)
−1X>t Et is the stochastic part of the

tv-ridge estimator. Since the ei ∼ N(0, σ2In) are iid, Et ∼ N(0, σ2Wt). Hence,

θ̃(t)− E[θ̃(t)] ∼ N(0,Ω(λ2)), where Ω(λ) is defined in (2.4), and thus

Var(θ̃j(t)) = Ωjj(λ2) ≥ Ωmin(λ2). (7.5)

Now, we consider the initial tv-lasso estimator. By Lemma S0.3,

|β̃(t)− β(t)|1 ≤ 4φ−20 λ1s. (7.6)

Then, (3.6), (3.7), and (3.8) follow by assembling (7.2), (7.3), (7.4), and (7.6)

into (2.7),

β̂(t) = β(t) + bias(θ̃(t)) + {θ̃(t)− E[θ̃(t)]} − {(PRt
− Ip)[β̃(t)− β(t)]}.

The marginal representation (3.9) and (3.10) follow from similar arguments by

noting that Bj(t) =
∑

k 6=j(PRt
)jkβk(t) under H0,j,t.

Proof of Theorem 3. The proof of Theorem 3 is similar to that of Theorem 1 so
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we only highlight the difference involving the error process. First, Cov(Et) =

W
1/2
t Σe,tW

1/2
t . Second, instead of using (S0.5) in proving Lemma S0.3, we use

Lemma S0.4 to get for all λ > 0

P

(
max
j≤p

∣∣∣∣∣∑
i∈Nt

w(i, t)Xijei

∣∣∣∣∣ ≥ λ
)
≤ 2p exp

(
− λ2

2L2
t,2|a|21σ2

)
if % > 1,

P

(
max
j≤p

∣∣∣∣∣∑
i∈Nt

w(i, t)Xijei

∣∣∣∣∣ ≥ λ
)
≤ 2p exp

(
− C%λ

2

L2
t,2n

2(1−%)σ2K2

)
if % ∈ (

1

2
, 1).

Proof of Theorem 4. The proof essentially follows the lines of that of Theorem 1,

but with differences in requiring a larger penalty parameter λ1 of the tv-Lasso.

First, by the Nagaev inequality (Nagaev (1979)), we have for any ε > 0,

P

(
max
j≤p

∣∣∣∣∣∑
i∈Nt

w(i, t)Xijei

∣∣∣∣∣ ≥ σLt,2ε
)
≤
(

1 +
2

q

)q
κq

pµn,q
(σLt,2ε)q

+ 2p exp
(
−cqε2

)
,

where cq = 2e−q(q+2)−2 and κq is the q-th absolute moment of e1. Then, choosing

ε = Cq max

{
(pµn,q)

1/q

σLt,2
, (log p)1/2

}
for large enough Cq > 0,

we have maxj≤p |
∑

i∈Nt
w(i, t)Xijei| = OP(λ0). Second, let Ξ = (X>t Xt +

λ2Ip)
−1X>t W

1/2
t and E�t = (ei)

>
i∈Nt

. Recall that θ̃(t) − E[θ̃(t)] = ΞE�t . By the

Gaussian approximation (Shao, 1995, Thm. B), there exist iid Gaussian random

variables gi ∼ N(0, σ2ξ2ji) defined on a possibly richer probability space such that

for every t > 0

P

(∣∣∣∣∣θ̃j(t)− E[θ̃j(t)]−
∑
i∈Nt

gi

∣∣∣∣∣ ≥ t
)
≤ (Cq)q

∑
i∈Nt

E|ξjiei|q

tq
.

Thus, it follows that θ̃j(t) − E[θ̃j(t)] = N(0,Ωjj(λ2)) + OP(|ξj |q). As Ωjj(λ2) =

σ2|ξj |22, the proof is complete for by assumption, |ξj |q = o(|ξj |2).

Supplementary Materials

The supplementary material contains additional technical lemmas and dis-

cusses some implementation issues.
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