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Stéphanie van der Pas and Peter Grünwald

Leiden University and CWI, Amsterdam

Supplementary Material

We start by listing some well-known properties of exponential families which we will repeatedly

use in the proofs. Then, in Section S4, we provide a sequence of technical lemmata that lead

up to the proof of our main result, Theorem 1. Finally, in Section S5, we compare the switch

distribution and criterion as defined here to the original switch distribution and criterion of Van

Erven et al. (2012).

Additional Notation Our results will often involve displays involving several con-

stants. The following abbreviation proves useful: when we write ‘for positive constants ~c, we

have ...’, we mean that there exist some (c1, . . . , cN ) ∈ RN , with c1, . . . , cN > 0, such that ...

holds; here N is left unspecified but it will always be clear from the application what N is.

Further, for positive constants ~b = (b1, b2, b3), we define small~b(n) as

small~b(n) =


1 if n < b1

b2e
−b3n if n ≥ b1,

and we frequently use the following fact. Suppose that E1, E2, . . . is a sequence of events such

that P(En) ≤ small~b(n). Then we also have, for any event A, and for all n,

P(A, Ecn) ≥ P(A)− small~b(n), (1)

as is immediate from P(A, Ecn) = P(A)− P(A, En) ≥ P(A)− P(En).
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The components of a vector µ ∈ Rn are given by (µ1, µ2, . . . , µn). If the vector already

has an index, we add a comma, for example µ1 = (µ1,1, µ1,2, . . . , µ1,n). A sequence of vectors

is denoted by µ(1), µ(2), . . ..

S1 Definitions Concerning and Properties of

Exponential Families

The following definitions and properties can all be found in the standard reference (Barndorff-

Nielsen, 1978) and, less formally, in (Grünwald, 2007, Chapters 18 and 19).

A k-dimensional exponential family is a set of distributions on X , which we invariably

represent by the corresponding set of densities {pθ | θ ∈ Θ}, where Θ ⊂ Rk, such that any

member pθ can be written as

pθ(x) =
1

z(θ)
eθ
T φ(x)r(x) = eθ

T φ(x)−ψ(θ)r(x), (S1.1)

where φ(x) = (φ1(x), . . . , φk(x)) is a sufficient statistic, r is a non-negative function called the

carrier, z the partition function and ψ(θ) = log z(θ). We assume the representation (S1) to be

minimal, meaning that the components of φ(x) are linearly independent.

The parameterization in (S1.1) is referred to as the canonical or natural parameterization;

we only consider families for which the set Θ is open and connected. Every exponential family

can alternatively be parameterized in terms of its mean-value parameterization, where the family

is parameterized by the mean µ = Eθ[φ(X)], with µ taking values in M ⊂ R, where µ as a

function of θ is smooth and strictly increasing; as a consequence, the set M of mean-value

parameters corresponding to an open and connected set Θ is itself also open and connected.

Whenever for data x1, . . . , xn, we have 1
n

∑n
i=1 φ(xi) ∈ M , then the maximum likelihood is
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uniquely achieved by the µ that is itself equal to this value,

µ̂(xn) =
1

n

n∑
i=1

φ(xi). (S1.2)

We thus define the maximum likelihood estimator (MLE) to be equal to (S1.2) whenever

1

n

n∑
i=1

φ(Xi) ∈M. (S1.3)

Since the result below which directly involves the MLE (Lemma 3) does not depend on its value

for xn with 1
n

∑n
i=1 φ(xi) 6∈ M , we can leave µ̂(xn) undefined for such values. However, if we

want to use the MLE as a ‘sufficiently efficient’ estimator as used in the statement of Theorem 1,

we need to define µ̂(xn) for such values in such a way that the ‘sufficiently efficient property’

(4.1) is satisfied. The following examples show various ways of constructing such sufficiently

efficient estimators.

Example 1. [Sufficient Efficiency for MLE’s for squared (standardized) error and

Hellinger] For many full families such as the full (multivariate) Gaussians, Gamma and many

others, (S1.3) holds µ-almost surely for each n, for all µ ∈ M . If we compare two families

M0 and M1 given in their mean-value parameterization with M0 ⊂M1 where M1 is any such

family, then the MLE is almost surely well-defined for M1 and thus we need not worry about the

issue indicated above. We can then take µ̆1 := µ̂1 to be the MLE for M1. To get a sufficiently

efficient estimator for M0, we take µ̆0 to be the projection of µ̂1 on the first m0 coordinates

(usually (S1.3) will still hold forM0 and then this µ̆0 will also be the MLE forM0). This pair

of estimators will be sufficiently efficient for (standardized) squared error and squared Hellinger

distance, i.e. (4.1) holds for these three losses. To show this, note that from Proposition 1,

Eq. (S1.7), we see that it is sufficient to show that (4.1) holds for the squared error loss. Since

the j-th component of µ̂1 is equal to n−1∑n
i=1 φj(Xi) and Eµ1 [n−1∑n

i=1 φj(Xi)] = µ1,j and
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varµ1

[
n−1∑n

i=1 φj(Xi)
]

= n−1varµ1 [φj(X1)] , it suffices to show that

sup
µ1∈M′1

sup
j=1,...,m1

varµ1 [φj(X1)] = O (1) ,

which is indeed the case since M ′1 is a CINECSI set, so that the variance of all φj ’s is uniformly

bounded on M ′1 (Barndorff-Nielsen, 1978).

Example 2. [Other sufficiently efficient estimators for squared (standardized) error

and Hellinger] For models such as the Bernoulli or multinomial, (S1.3) may fail to hold with

positive probability: the full Bernoulli exponential family does not contain the distributions

with P (X1 = 1) = 1 and P (X1 = 0) = 1, so if after n examples, only zeros or only ones have

been observed, the MLE is undefined. We can then go either of three ways. The first way, which

we shall not pursue in detail here, is to work with so-called ‘aggregate’ exponential families,

which are extensions of full families to their limit points. For models with finite support (such

as the multinomial) these are well-defined (Barndorff-Nielsen, 1978, page 154–158) and then

the MLE’s for these extended families are almost surely well-defined again, and the MLE’s are

sufficiently efficient by the same reasoning as above. Another approach that works in some cases

(e.g. multinomial) is to take µ̆1 to be a truncated MLE, that, at sample size n, maps Xn to the

MLE within some CINECSI subset M
(n)
1 of M1, where M

(n)
1 converges to M1 as n increases in

the sense that sup
µ∈M(n)

1 ,µ′∈M1\M
(n)
1

‖µ − µ′‖22 = O(1/n). The resulting truncated MLE, and

its projection on M0 (usually itself a truncated MLE) will then again be sufficiently efficient.

This approach also works if the modelsM0 andM1 are not full but restricted families to begin

with. For full families though, a more elegant approach than truncating MLE’s is to work with

Bayesian posterior MAP estimates with conjugate priors. For steep exponential families (nearly

all families one encounters in practice are steep), one can always find conjugate priors such that

the Bayes MAP estimates based on these priors exist and take a value in M1 almost surely
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(Grünwald and de Rooij, 2005). They then take the form µ̆1 =
∑n
i=1(φ(Xi) + λ0µ

◦
1)/(n+ λ0),

where λ0 > 0 and µ◦1 ∈ M1 are determined by the prior. µ̆0 can then again be taken to be the

projection of µ̆1 onto M0. Under the assumption that µ1 is contained in a CINECSI set M ′1,

one can now again show, using the same arguments as in Example 1, that such estimators are

sufficiently efficient for squared (standardized) error and Hellinger loss.

Example 3. [Sufficient Efficiency for Rényi and KL divergence] As is well-known,

for the multivariate Gaussian model with fixed covariance matrix, the squared error risk and

KL divergence are identical up to constant factors, so the unrestricted MLE’s will still be

sufficiently efficient for KL divergence. For other models, though, the MLE will not always

be sufficiently efficient. For example, with the Bernoulli model and other models with finite

support, to make the unrestricted MLE’s well-defined, we would have to extend the family to

its boundary points as indicated in Example 1. Since, however, for any 0 < µ < 1 and µ′ = 0,

the KL divergence D(µ‖µ′) = ∞ and Pµ(µ̂(Xn) = µ′) > 0, the unrestricted MLE in the full

Bernoulli model including the boundaries will have infinite risk and thus will not be sufficiently

efficient. The MAP estimators tend to behave better though: Grünwald and de Rooij (2005)

implicitly show that for 1-dimensional families, under weak conditions on the family (Condition

1 underneath Theorem 1 in their paper) — which were shown to hold for a number of families

such as Bernoulli, Poisson, geometric — sufficient efficiency for the KL divergence still holds

for MAP estimators of the form above. We conjecture that a similar result can be shown for

multidimensional families, but will not attempt to do so here.

A standard property of exponential families says that, for any µ ∈M , any distribution Q

on X with EX∼Q[φ(X)] = µ, any µ′ ∈M , we have

EX∼Q

[
log

pµ(X)

pµ′(X)

]
= EX∼Pµ

[
log

pµ(X)

pµ′(X)

]
= D(µ‖µ′), (S1.4)
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the final equality being just the definition of D(·‖·). Now fix an arbitry sample xn. By taking

Q to be the empirical distribution on X corresponding to sample xn, it follows from (S1.4) that

if µ̂(xn) ∈M then also the following relationship holds for any µ′ ∈M :

1

n
log

pµ̂(xn)(x
n)

pµ′(xn)
= D(µ̂(xn)‖µ′). (S1.5)

(S1.4) and (S1.5) are a direct consequence of the sufficiency of µ̂1(Xn), and folklore among

information theorists. For a proof of (S1.4) and more details on (S1.5), see e.g. (Grünwald,

2007, Chapter 19), who calls this the robustness property of the KL divergence for exponential

families.

We are now in a position to prove Proposition 1, which we repeat for convenience.

Proposition 1 Let M , a product of open intervals, be the mean-value parameter space

of an exponential family, and let M ′ be a CINECSI subset of M . Then there exist positive

constants ~c such that for all µ, µ′ ∈M ′,

c1‖µ′ − µ‖22 ≤ c2 · dST (µ′‖µ) ≤ dH2(µ′, µ) ≤ dR(µ′, µ) ≤ D(µ′‖µ) ≤ c3‖µ′ − µ‖22. (S1.6)

and for all µ′ ∈M ′, µ ∈M (i.e. µ is now not restricted to lie in M ′),

dH2(µ′, µ) ≤ c4‖µ′ − µ‖22 ≤ c5 · dST (µ′‖µ) ≤ c6‖µ′ − µ‖22. (S1.7)

Proof. We start with (S1.6). The third and fourth inequality are immediate by using − log x ≥

1− x and Jensen’s inequality, respectively. From standard properties of Fisher information for

exponential families (Barndorff-Nielsen, 1978) we have that, for any CINECSI (hence compact

and bounded away from the boundaries of M) subset M ′ of M , there exists positive ~C with

0 < C1 = inf
µ∈M′

det I(µ) < sup
µ∈M′

det I(µ) = C2 <∞, (S1.8)
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from which we infer that for all µ′ ∈M ′, µ, µ′′ ∈ Rm,

C3‖µ− µ′′‖22 ≤ (µ− µ′′)T I(µ′)(µ− µ′′) ≤ C4‖µ− µ′′‖22, (S1.9)

for some 0 < C3 ≤ C4 < ∞. Using (S1.9), the first inequality is immediate, and the final

inequality follows straightforwardly from a second-order Taylor approximation of KL divergence

as in (Grünwald, 2007, Chapter 4). It only remains to establish the second inequality. Now,

since M ′ is CINECSI and hence compact the fifth (rightmost) inequality implies that there

is a C5 < ∞ such that supµ,µ′∈M′ D(µ′‖µ) < C5 and hence, via the fourth inequality, that

supµ,µ′∈M′ dR(µ′, µ) < C5. Equality (3.2) now implies that there is a C6 such that

sup
µ,µ′∈M′

dR(µ′, µ)/dH2(µ′, µ) < C6. (S1.10)

Using again (S1.8), a second order Taylor approximation as in Van Erven and Harremoës (2014)

now gives that for some constant C7 > 0, ‖µ− µ′‖22 ≤ C7dR(µ′, µ) for all µ, µ′ ∈M ′. The first

result, (S1.6), now follows upon combining this with (S1.10).

As to (S1.7), the second and third inequality are immediate from (S1.9). For the first

inequality, note that, since M ′ is CINECSI and we assume M to be a product of open in-

tervals, there must exist another CINECSI subset M ′′ of M strictly containing M ′ such that

infµ′∈M′,µ∈M\M′′ ‖µ′ − µ‖22 = δ for some δ > 0. We now distinguish between µ in (S1.7) being

an element of (a) M ′′ or (b) M \M ′′. For case (a) (S1.6), with M ′′ in the role of M ′, gives

that there is a constant C8 such that for all µ ∈ M ′′, dH2(µ′, µ) ≤ C8‖µ′ − µ‖22. For case

(b), µ ∈ M \M ′′, we have ‖µ′ − µ‖22 ≥ δ and, using that squared Hellinger distance for any

pair of distributions is bounded by 2, we have dH2(µ′, µ) ≤ (2/δ)‖µ′ − µ‖22. Thus, by taking

c4 = max{C8, 2/δ}, case (a) and (b) together establish the first inequality in (S1.7).
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S2 Preparation for Proof of Main Result:

Results on Large Deviations

Let M1 and M1 be as in Theorem 1. For the following result, Lemma 1, we set µ̂′1(Xn) :=

n−1∑φ(Xi), so that µ̂′1(Xn) = µ̂1(Xn) whenever n−1∑φ(Xi) ∈ M1. It is essentially a

multidimensional extension of a standard information-theoretic result, with KL divergence re-

placed by squared error loss. This standard result states the following: whenever M1 is a

single-parameter exponential family (that is, m1 = 1), then for any µ ∈ M1, all a, a′ > 0 with

µ+ a ∈M1, µ− a′ ∈M1,

Pµ(µ̂′1(Xn) ≥ µ+ a) ≤ e−nD(µ+a‖µ). ; Pµ(µ̂′1(Xn) ≤ µ− a′) ≤ e−nD(µ−a′‖µ). (S2.1)

For a simple proof, see (Grünwald, 2007, Section 19.4.2); for discussion see (Csiszár, 1984) —

the latter reference gives a multidimensional extension of (S2.1) but of a very different kind

than Lemma 1 below. To prepare for the lemma, let M1 and M1 be as in Theorem 1 and,

for any µ ∈ M1 and any ~a,~b ∈ Rm1
>0 , define the `∞-rectangle R∞(µ,~a,~b) = {µ′ ∈ Rm1 : ∀j =

1, . . . ,m1,−bj ≤ µ′j − µj ≤ aj}.

Lemma 1. Let M1 and M1 be as in Theorem 1 and fix an arbitrary CINECSI subset M ′1 of

M1. Then there is a c > 0 (depending on M ′1) such that, for all µ ∈ M1, all n, all ~a,~b ∈ Rm1
>0

such that R∞(µ,~a,~b) ⊂M ′1,

Pµ(µ̂′1(Xn) 6∈ R∞(µ,~a,~b)) ≤ 2m1e
−nc·(minj min{aj ,bj})2 . (S2.2)

Proof. For j = 1, . . . ,m1, d ∈ R, let ~ej represent the jth standard basis vector, such that µ +

d~ej = (µ1, . . . , µj−1, µj +d, µj+1, . . . , µm1), and let Dµ+d ~ej := D(µ+d~ej‖µ). We now have that

there exist constants ca,1, . . . , ca,m1 , cb,1, . . . , cb,m1 > 0 such that for
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c := min{ca,1, . . . , ca,m1 , cb,1, . . . , cb,m1}, all n,

Pµ(µ̂1(Xn) 6∈ R∞(µ,~a,~b)) ≤
m1∑
j=1

Pµ(µ̂1,j(Xn) ≥ µj + aj) +

m1∑
j=1

Pµ(µ̂1,j(X
n) ≤ µj − bj)

≤
m1∑
j=1

(
e
−nDµ+aj ~ej + e

−nDµ−bj ~ej
)
≤

m1∑
j=1

(
e−nca,ja

2
j + e−ncb,jb

2
j

)

≤ 2m1e
−nc·(minj min{aj ,bj})2 ,

Here the first inequality follows from the union bound, and the second follows by applying, for

each of the 2m1 terms, (S2.1) above to the one-dimensional exponential sub-family {pµ | µ ∈

M1 ∩ {µ : µ = µ+ d~ej for some d ∈ R}}. The third follows by Proposition 1 together with the

equivalence of the `2 and sup norms on Rm1 , and the final inequality is immediate.

Lemma 2. Under conditions and notations as in Theorem 1, let µ, µ′ be elements of M1 and

suppose XN = (Xn1 , . . . , Xn2) is a sequence of i.i.d. observations of length N from pµ. Then,

for any A ∈ R:

Pµ
(

log
pµ(XN )

pµ′(XN )
< A

)
≤ e

1
2
Ae−

N
2
dR(µ′,µ). (S2.3)

Proof. For any A, by Markov’s inequality:

Pµ
(

log
pµ(XN )

pµ′(XN )
< A

)
= Pµ

((
pµ′(X

N )

pµ(XN )

) 1
2

> e−
1
2
A

)
≤ e

1
2
AEµ

[(
pµ′(X

N )

pµ(XN )

) 1
2

]

= e
1
2
A

(
Eµ

[(
pµ′(Xn1)

pµ(Xn1)

) 1
2

])N
= e

1
2
Ae

log

Eµ

( pµ′ (Xn1
)

pµ(Xn1 )

) 1
2

N

= e
1
2
Ae
−N

2

− 1
1−1/2

log Eµ

( pµ′ (Xn1 )

pµ(Xn1 )

) 1
2


= e

1
2
Ae−

N
2
dR(µ,µ′). (S2.4)

Proposition 2. Let M0,M1,M0,M1 be as in Theorem 1 and let M ′1 be a CINECSI subset of

M1. Then there exists another, larger, CINECSI subset M ′′1 of M1 and positive constants ~b such
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that M ′1 is itself a CINECSI subset of M ′′1 and for both j ∈ {0, 1}, the ML estimator µ̂j(x
n)

satisfies

sup
µ∈M′1

Pµ(µ̂j(X
n) 6∈M ′′1 ) ≤ small~b(n).

Proof. M1 can be written as in (3.7), and hence we can define a set

M ′′1 = [ζ∗1,1, η
∗
1,1]× . . .× [ζ∗1,m1

, η∗1,m1
]

for values ζ∗1,j , η
∗
1,j ∈ R such that M ′′1 is a CINECSI subset of M1. Since M ′1 is connected with

compact closure in interior of M1 and M ′′1 is a subset of M1, we can choose the ζ∗1,j , η
∗
1,j ∈ R

such that M ′1 is itself a CINECSI subset of M ′′1 . Since M ′1 is connected and its closure is in

the interior of M ′′1 which is itself compact, it follows that there is some δ > 0 such that, for all

µ′1 ∈M ′1, µ′′1 6∈M ′′1 , all j ∈ {1, . . . ,m1}, it holds |µ′1,j −µ′′1,j | > δ. It now follows from Lemma 1,

applied with ~a chosen such that R∞(µ′,~a) = M ′′1 , that for every µ′ ∈M ′1, all n,

Pµ′
(
µ̂1(Xn) 6∈M ′′1

)
≤ C1e

−nC2δ
2

for some constants C1, C2. Here we used that by construction, each entry of ~a must be at least

as large as δ. Since µ̂1,j(x
n) and µ̂0,j(x

n) coincide for 0 < j ≤ m0 and µ̂0,j(x
n) is constant for

m0 < j ≤ m1, the result follows for µ̂0(xn) as well.

S3 Preparation for Proof of Main Result:

Results on Bayes Factor Model Selection

Lemma 3. Let M0,M1,M0,M1 be as in Theorem 1 and let, for j ∈ {0, 1}, M ′j be a CINECSI

subset of Mj. For both j ∈ {0, 1}, there exist positive constants ~c,~b such that for all µ1 ∈M ′1,

c1 ≤ n−mj/2 ·
pµ̂j(Xn)(X

n)

pB,j(Xn)
≤ c2, (S3.1)
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with Pµ1 -probability at least 1− small~b(n).

Proof. For a Bayesian marginal distribution pB defined relative to m-dimensional exponential

familyM given in its mean-value parameterization M , with a prior ω(·) that is continuous and

strictly positive on M , we have as a consequence of the familiar Laplace approximation of the

Bayesian marginal distribution of exponential famlies as in e.g. (Kass and Raftery, 1995),

pB(xn) ∼
( n

2π

)−m/2
· ω(µ̂(xn))√

det I(µ̂(xn))
pµ̂(xn)(x

n).

As shown in Theorem 8.1 in (Grünwald, 2007), this statement holds uniformly for all sequences

xn with ML estimators in any fixed CINECSI subset M ′ of M . By compactness of M ′, and by

positive definiteness and continuity of Fisher information for exponential families, the quantity

ω(µ̂)/
√

det I(µ̂) will be bounded away from zero and infinity on such sequences, and, applying

the result to both the families M0 and M1 it follows that there exist c1, c2 > 0 such that for

all n larger than some n0, uniformly for all sequences xn with µ̂j(x
n) ∈M ′j , we have:

c1 ≤ n−mj/2 ·
pµ̂j(xn)(x

n)

pB,j(xn)
≤ c2. (S3.2)

The result now follows by combining this statement with Proposition 2.

Lemma 4. Let M0,M1,M0, M1 and the Bayesian marginal distribution pB,0 be as in Theo-

rem 1. Let M ′1 be a CINECSI subset of M1. Then there exist positive constants ~c and ~b such

that for all n, all µ1 ∈M ′1, all A ∈ R,

Pµ1

(
log

pB,1(Xn)

pB,0(Xn)
< A

)
≤ nm1/2 · c1 · e

1
2
c2Ae−

n
2
c3‖µ1−µ0‖22 + small~b(n),

where for each µ1, µ0 = Π0(µ1) as in (3.8).

Proof. Fix constants C1, C2 such that they are smaller and larger respectively than the constants

c1, c2 from Lemma 3 and define

En =

{
Xn : C1 ≤ n−m1/2

pµ̂1(Xn)(X
n)

pB,1(Xn)
≤ C2

}
.
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Using Lemma 3, we have that there exists positive ~b such that for all A ∈ R,

Pµ1

(
log

pB,1(Xn)

pB,0(Xn)
< A

)
=Pµ1

(
log

pB,1(Xn)

pB,0(Xn)
< A, En

)
+ Pµ1

(
log

pB,1(Xn)

pB,0(Xn)
< A, Ecn

)
≤Pµ1

(
log

C−1
2 n−m1/2pµ̂1(Xn)(X

n)

pB,0(Xn)
< A, En

)
+ small~b(n)

≤Pµ1

(
log

C−1
2 n−m1/2pµ1(Xn)

pB,0(Xn)
< A

)
+ small~b(n)

= Pµ1

(
log

pµ1(Xn)

pB,0(Xn)
< A+ logC2n

m1/2

)
+ small~b(n). (S3.3)

To bound this probability further, we need to relate pB,0 to pB′,0, the Bayesian marginal like-

lihood under model M0 under a prior with support restricted to a compact set M ′0. To define

M ′0, note first that there must exist a CINECSI subset, say M ′′1 , of M1 such that M ′1 is itself a

CINECSI subset of M ′′1 . Take any such M ′′1 and let M ′0 be the closure of M ′′1 ∩M0. Given ω, the

prior density on Π′(M0) used in the definition of pB,0, define ω′(ν) = ω(ν)/
∫
ν∈Π′(M′0)

ω(ν)dν

as the prior density restricted to and normalized on Π′(M ′0) and let pB′,0 be the corresponding

Bayesian marginal density on Xn.

To continue bounding (S3.3), define

E ′n =

{
Xn : C3 ≤ n−m0/2

pµ̂0(Xn)(X
n)

pB,0(Xn)
≤ C4 and C3 ≤ n−m0/2

pµ̂0(Xn)(X
n)

pB′,0(Xn)
≤ C4

}
,

with C3 and C4 smaller and larger respectively than the constants c1 and c2 resulting from

Lemma 3 (note that Lemma 3 can be applied to pB′,0 as well, by taking M0 in that lemma

to be the interior of M ′0 as defined here). Set C5 > C4/C3, and note that for any A1 ∈ R,
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abbreviating Pµ1

(
log

pµ1 (Xn)

C5pB′,0(Xn)
< A1

)
to p∗, we have

Pµ1

(
log

pµ1(Xn)

pB,0(Xn)
< A1

)
=Pµ1

(
log

pµ1(Xn)

pB,0(Xn)
< A1,

pB0(Xn)

pB′,0(Xn)
< C5

)
+ Pµ1

(
log

pµ1(Xn)

pB,0(Xn)
< A1,

pB0(Xn)

pB′,0(Xn)
≥ C5

)
≤Pµ1

(
log

pµ1(Xn)

C5pB′,0(Xn)
< A1

)
+ Pµ1 (pB,0(Xn) ≥ C5pB′,0(Xn))

=p∗ + Pµ1 (pB,0(Xn) ≥ C5pB′,0(Xn))

≤p∗ + Pµ1

(
pB,0(Xn)

pB′,0(Xn)
≥ C5, E ′n

)
+ Pµ1

(
pB,0(Xn)

pB′,0(Xn)
≥ C5, (E ′n)c

)
≤p∗ + 0 + small~b(n). (S3.4)

Now it only remains to bound p∗. To this end, let

C6 :=

∫
ν∈Π′(M′0)

√
ω(ν)dν. (S3.5)

Since M ′0 has compact closure in the interior of M0 and we are assuming that ω has full support

on M0, we have that C6 <∞.

Now using Markov’s inequality as in the proof of Lemma 2, that is, the first line of (S2.4)

with pB′,0 in the role of pµ′ , gives, for any A2 ∈ R,

Pµ1

(
log

pµ1(Xn)

pB′,0(Xn)
< A2

)
≤ e

1
2
A2Eµ1

[(
pB′,0(Xn)

pµ1(Xn)

) 1
2

]
. (S3.6)

The expectation on the right can be further bounded, defining ω′′ =
√
ω/C6 and noting that

ω′′ is a probability density, as

Eµ1

[(
pB′,0(Xn)

pµ1(Xn)

) 1
2

]
≤ Eµ1

∫ν∈Π′(M′0)
ω(ν)1/2pν(Xn)1/2dν

pµ1(Xn)1/2


= C6 · Eµ∼ω′′Eµ1

[(
pµ(Xn)

pµ1(Xn)

) 1
2

]
≤ C6 · Eµ1

[(
pµ◦(X

n)

pµ1(Xn)

) 1
2

]
,

where µ◦ ∈ M ′0 achieves the supremum of Eµ1

[(
pµ◦ (Xn)

pµ1 (Xn)

) 1
2

]
within M ′0. By compactness of

M ′0 and continuity, this supremum is achieved. The final term can be rewritten, following the
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same steps as in the second and third line of (S2.4), as

Eµ1

[(
pµ◦(X

n)

pµ1(Xn)

) 1
2

]
= e−

n
2
dR(µ1,µ

◦). (S3.7)

Since M ′0 and M ′1 are both CINECSI, it now follows from Proposition 1 that for some fixed

C7 > 0,

dR(µ1, µ
◦) ≥ C7‖µ1 − µ◦‖22 ≥ C7‖µ1 − µ0‖22, (S3.8)

where the latter inequality follows by the definition of µ0 = Π0(µ1), see the explanation below

(3.8). Combining (S3.6), (S3.7) and (S3.8), we have thus shown that for all n, all µ1 ∈M1, all

A2 ∈ R,

Pµ1

(
log

pµ1(Xn)

pB′,0(Xn)
< A2

)
≤ C6e

1
2
A′′e−

n
2
C7‖µ1−µ0‖22 . (S3.9)

The result now follows by combining (S3.3), (S3.4) and (S3.9).

S4 Proof of Main Result, Theorem 1

Proof Idea The proof is based on analyzing what happens if X1, X2, . . . , Xn are sampled

from p
µ
(n)
1

, where µ
(1)
1 , µ

(2)
1 , . . . are a sequence of parameters in M ′1. We consider three regimes,

depending on how fast (if at all) µ
(n)
1 converges to µ

(n)
0 as n → ∞. Here µ

(n)
0 = Π0(µ

(n)
1 ) is

the projection of µ(1) onto M0, i.e. the distribution in M0 defined, for each n, as in (3.8), with

µ1 and µ0 in the role of µ
(n)
1 and µ

(n)
0 , respectively. Our regimes are defined in terms of the

function f given by

f(n) :=
‖µ(n)

1 − µ(n)
0 ‖22

log logn
n

=
n · ‖µ(n)

1 − µ(n)
0 ‖22

log logn
, (S4.1)

which indicates how fast dSQ(µ
(n)
1 , µ

(n)
0 ) grows relative to the best possible rate (log logn)/n.

We fix appropriate constants Γ1 and Γ2, and we distinguish, for all n with Γ2 logn ≥ Γ1, the
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cases:

f(n) ∈



[0,Γ1] Case 1

[Γ1,Γ2 logn] Case 2 (Theorem 4)

[Γ2 logn,∞] Case 3 (Theorem 3).

For Case 1, the rate is easily seen to be upper bounded by O((log logn)/n), as shown inside

the proof of Theorem 1. In Case 2, Theorem 4 establishes that the probability that model M0

is chosen is at most of order 1/(logn), which, as shown inside the proof of Theorem 1, again

implies an upper-bound on the rate-of convergence of O((log log n)/n). Theorem 3 shows that

in Case 3, which includes the case that ‖µ(n)
1 − µ(n)

0 ‖22 does not converge at all, the probability

that model M0 is chosen is at most of order 1/n, which, as again shown inside the proof of

Theorem 1, again implies an upper-bound on the rate-of convergence of O((log log n)/n).

The two theorems take into account that µ
(n)
1 is not just a fixed function of n, but may

in reality be chosen by nature in a worst-case manner, and that f(n) may actually fluctuate

between regions for different n. Combining these two results, we finally prove the main theorem,

Theorem 1.

Theorem 3. Let M0,M1, M ′1 and psw,1(xn) be as in Theorem 1. Then there exist positive

constants ~b,~c such that for all µ1 ∈M ′1, all n,

Pµ1 (δsw(Xn) = 0) ≤ c1 · nm1/2 · e−c2n‖µ
(n)
1 −µ(n)

0 ‖22 + small~b(n), (S4.2)

where µ
(n)
0 = Π0(µ

(n)
1 ) is as in (3.8). As a consequence, with Γ2 := c−1

2 (1 +m1/2), we have the

following: for every sequence µ
(1)
1 , µ

(2)
1 , . . . with f(n) as in (S4.1) larger than Γ2 logn, we have

P
µ
(n)
1

(δsw(Xn) = 0) ≤ c1
n

+ small~b(n).
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Proof. We can bound the probability of selecting the simple model by:

P
µ
(n)
1

(δsw(Xn) = 0) = P
µ
(n)
1

(
psw,1(Xn)

pB,0(Xn)
≤ 1

)
= P

µ
(n)
1

(∑∞
i=0 π(2i)p̄2i(X

n)

pB,0(Xn)
≤ 1

)
≤ P

µ
(n)
1

(
π(1)pB,1(Xn)

pB,0(Xn)
≤ 1

)
.

Now (S4.2) follows directly by applying Lemma 4 to the rightmost probability. For the second

part, set Γ2 = c−1
2 (1 + m1/2). By assumption f(n) > Γ2 logn, we have ‖µ(n)

1 − µ
(n)
0 ‖22 >

Γ2(logn)(log log n)/n. Applying (S4.2) now gives the desired result.

Theorem 4. Let f be as in (S4.1) and M ′1 be as in Theorem 1. For any γ > 0, there exist

constants Γ1,Γ3 > 0 such that, for every sequence µ
(1)
1 , µ

(2)
1 , . . . of elements of M ′1 with for all

n, f(n) > Γ1, we have

P
µ
(n)
1

(
psw,1(Xn)

pB,0(Xn)
≤ γ

)
≤ Γ3

logn
. (S4.3)

In particular, by taking γ = 1, we have

P
µ
(n)
1

(δsw(Xn) = 0) ≤ Γ3

logn
.

The probabilities thus converge uniformly at rate O(1/(logn)) for all such sequences µ
(1)
1 , µ

(2)
1 , . . ..

Proof. We specify Γ1 later. By assumption, we have π(2i) & (logn)−κ for i ∈ {0, . . . , blog2 nc}.

We can restrict our attention to the strategy that switches to the complex model at the penul-

timate switching index, due to the following inequality: for any fixed γ, there exist positive

constants ~C such that for all large n:

P
µ
(n)
1

(
psw,1(Xn)

pB,0(Xn)
≤ γ

)
≤ P

µ
(n)
1

(∑blog2 nc
i=0 π(2i)p̄2i(X

n)

pB,0(Xn)
≤ γ

)

≤ P
µ
(n)
1

(∑blog2 nc
i=0 p̄2i(X

n)

pB,0(Xn)
≤ C1(logn)κ

)

≤ P
µ
(n)
1

(
p̄2blog2 nc−1(Xn)

pB,0(Xn)
≤ C1(logn)κ

)
= P

µ
(n)
1

(
log

p̄2blog2 nc−1(Xn)

pB,0(Xn)
≤ κ log logn+ C2

)
. (S4.4)
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For the remainder of this proof, we will denote the penultimate switching index by n∗, that is:

n∗ = 2blog2 nc−1. Now apply Lemma 3 twice, which gives that there exist C3, C4 such that, with

probability at least 1− small~b(n),

log p̄n∗(X
n) = log pB,0(Xn∗) + log pB,1(Xn|Xn∗) =

= log pB,0(Xn∗) + log pB,1(Xn)− log pB,1(Xn∗)

≥ log pB,0(Xn∗) + log pµ̂1(Xn)(X
n)− log pµ̂1(Xn

∗
)(X

n∗) +
m1

2
log

n∗

n
− C3

≥ log pB,0(Xn∗) + log
pµ̂1(Xn)(X

n)

pµ̂1(Xn
∗

)(X
n∗)
− C4, (S4.5)

where we used that log n∗

n
is of the order of a constant, because n∗ is between n

4
and n

2
. From

this, applying again Lemma 3 twice, it follows that there exists ~b and C5, C6 such that for all

n, with probability at least 1− small~b(n),

log
p̄n∗(X

n)

pB,0(Xn)
≥ log

pB,0(Xn∗)

pB,0(Xn)
+ log

pµ̂1(Xn)(X
n)

pµ̂1(Xn
∗

)(X
n∗)
− C4

= − log
pµ̂0(Xn)(X

n)

pµ̂0(Xn
∗

)(X
n∗)
− m0

2
log

n∗

n
+ log

pµ̂1(Xn)(X
n)

pµ̂1(Xn
∗

)(X
n∗)
− C5

≥ − log
pµ̂0(Xn)(X

n)

pµ̂0(Xn
∗

)(X
n∗)

+ log
pµ̂1(Xn)(X

n)

pµ̂1(Xn
∗

)(X
n∗)
− C6 (S4.6)

where we again used that log n∗

n
can be bounded by constants. Let Bn be the event that (S4.6)

holds. By (S4.4) and (S4.6), for all large n, all β ≥ 1,

P
µ
(n)
1

(
psw,1(Xn)

pB,0(Xn)
≤ γ

)
≤ P

µ
(n)
1

(
log

p̄n∗(X
n)

pB,0(Xn)
≤ κ log logn+ C2

)
≤P

µ
(n)
1

(
log

p̄n∗(X
n)

pB,0(Xn)
≤ κ log logn+ C2,Bn

)
+ P

µ
(n)
1

(Bcn)

≤P
µ
(n)
1

(
− log

pµ̂0(Xn)(X
n)

pµ̂0(Xn
∗

)(X
n∗)

+ log
pµ̂1(Xn)(X

n)

pµ̂1(Xn
∗

)(X
n∗)
− C6 ≤ κ log logn+ C2

)
+ small~b(n)

=P
µ
(n)
1

(
E(1)
n

)
+ small~b(n) ≤ P

µ
(n)
1

(
E(β)
n

)
+ small~b(n), (S4.7)

where we defined

E(β)
n =

{
log

pµ̂1(Xn)(X
n)

pµ̂1(Xn
∗

)(X
n∗)
·
pµ̂0(Xn

∗
)(X

n∗)

pµ̂0(Xn)(Xn)
≤ A(β)

n

}
(S4.8)
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and, for β ≥ 1, we set A
(β)
n = βκ log logn+ C2 − C6.

Below, if a sample is split up into two parts x1, . . . , xn∗ and xn∗+1, . . . , xn, these partial

samples will be referred to as xn
∗

and x>n
∗

respectively. We also suppress in our notation the

dependency of An, En and Dj,n as defined below on β; all results below hold, with the same

constants, for any β ≥ 1.

We will now bound the right-hand side of (S4.7) further. Define the events

D1,n =

{
log

p
µ
(n)
1

(xn)

p
µ
(n)
1

(xn∗)
≤ log

pµ̂1(Xn)(x
n)

pµ̂1(Xn
∗

)(x
n∗)

+An

}

D0,n =

{
log

p
µ
(n)
0

(xn)

p
µ
(n)
0

(xn∗)
≥ log

pµ̂0(Xn)(x
n)

pµ̂0(Xn
∗

)(x
n∗)
−An

}
.

The probability in (S4.7) can be bounded, for all β ≥ 1, as

P
µ
(n)
1

(En) = P
µ
(n)
1

(En,D0,n ∩ D1,n) + P
µ
(n)
1

(En, (D0,n ∩ D1,n)c) + small~b(n)

≤ P
µ
(n)
1

(En,D0,n,D1,n) + P
µ
(n)
1

(Dc1,n) + P
µ
(n)
1

(Dc0,n) + small~b(n). (S4.9)

We first consider the first probability in (S4.9): there are constants ~C such that, for all large n,

P
µ
(n)
1

(En,D0,n,D1,n)

≤ P
µ
(n)
1

(
log

p
µ
(n)
1

(Xn)

p
µ
(n∗)
1

(Xn∗)
−An + log

p
µ
(n)
0

(Xn)

p
µ
(n)
0

(Xn∗)
−An ≤ An

)

= P
µ
(n)
1

log
p
µ
(n)
1

(X>n∗)

p
µ
(n)
0

(X>n∗)
≤ 3An


≤ e

3
2
Ane−

n
4
dR(µ

(n)
1 ,µ

(n)
0 ) ≤ e(3/2)βκ log logn+C7e−C8n‖µ

(n)
1 −µ(n)

0 ‖22 = eC7(logn)(3/2)βκ−Γ1·C8 ,

(S4.10)

where Γ1 is as in the statement of the theorem, the second inequality follows by Lemma 2 and

noting n∗ < n
2

, we used Proposition 1.

We now consider the second probability in (S4.9). Using pµ̂1(Xn)(x
n) ≥ p

µ
(n)
1

(xn) we have

the following, where we define the event Fn = {µ̂1(Xn∗) ∈ M ′1} with M ′1 the CINECSI subset
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of M1 mentioned in the theorem statement: there is C9, C10 > 0 such that for al large n,

P
µ
(n)
1

(Dc1,n) = P
µ
(n)
1

(
log

p
µ
(n)
1

(Xn)

p
µ
(n)
1

(Xn∗)
> log

pµ̂1(Xn)(X
n)

pµ̂1(Xn
∗

)(X
n∗)

+An

)

≤ P
µ
(n)
1

(
log

pµ̂1(Xn)(X
n)

p
µ
(n)
1

(Xn∗)
> log

pµ̂1(Xn)(X
n)

pµ̂1(Xn
∗

)(X
n∗)

+An

)

≤ P
µ
(n)
1

(
log

pµ̂1(Xn
∗

)(X
n∗)

p
µ
(n)
1

(Xn∗)
> An,Fn

)
+ P

µ
(n)
1

(Fcn)

≤ P
µ
(n)
1

(
D(µ̂1(Xn∗)‖µ(n)

1 ) > An,Fn
)

+ small~b(n)

≤ P
µ
(n)
1

(
‖µ̂1(Xn∗)− µ(n)

1 ‖
2
2 > C9An,Fn

)
+ small~b(n)

≤ P
µ
(n)
1

(
‖µ̂1(Xn∗)− µ(n)

1 ‖∞ >
√
C9An/m1

)
+ small~b(n) (S4.11)

≤ e−C10An = e−C10(C2−C6) 1

(logn)C10βκ
, (S4.12)

where we used the KL robustness property (S1.5), Proposition 1 and Lemma 1.

The third probability in (S4.9) is considered in a similar way. Using pµ̂0(Xn
∗

)(X
n∗) ≥

p
µ
(n)
0

(Xn∗) we have C11, C12 > 0 such that:

P
µ
(n)
1

(Dc0,n) = P
µ
(n)
1

(
log

p
µ
(n)
0

(Xn)

p
µ
(n)
0

(Xn∗)
< log

pµ̂0(Xn)(X
n)

pµ̂0(Xn
∗

)(X
n∗)
− 1

3
An

)

≤ P
µ
(n)
1

(
log

p
µ
(n)
0

(Xn)

pµ̂0(Xn
∗

)(x
n∗)

< log
pµ̂0(Xn)(X

n)

pµ̂0(Xn
∗

)(X
n∗)
− 1

3
An

)

= P
µ
(n)
1

(
log

pµ̂0(Xn)(X
n)

p
µ
(n)
0

(Xn)
>

1

3
An

)

≤ C11
1

(logn)C12βκ
(S4.13)

where we omitted the last few steps which are exactly as in (S4.11).

We now finish the proof by combining (S4.9), (S4.10), (S4.11) and (S4.13), which gives

that, if we choose β ≥ max{1/(κC10), 1/(κC12)} and, for this choice β, we choose Γ1 as in

(S4.10) as Γ1 ≥ (1 + (3/2)βκ)/C8, then we have P
µ
(n)
1

(En) ≤ Γ4/(logn) for some constant Γ4

independent of n; the result now follows from (S4.7).



20

Proof of Theorem 1

Proof. We show the result in two stages. In Stage 1 we provide a tight upper bound on the risk,

based on an extension of the decomposition of the risk (3.9) to general families and estimators

µ̆0 and µ̆1 that are sufficiently efficient, i.e. that satisfy (4.1), and to losses dgen(·‖·) equal to

squared error loss, standardized squared error loss and KL divergence (it is not sufficient to

refer to Proposition 1 and prove the result only for squared error loss, because the equivalence

result of Proposition 1 only holds on CINECSI sets and our estimators may take values outside

of these; we do not need to consider Rényi and squared Hellinger divergences though, because

these are uniformly upper bounded by KL divergence even for µ outside any CINECSI set). In

Stage 2 we show how the bound implies the result.

Stage 1: Decomposition of Upper Bound on the Risk Let An be the

event that M1 is selected, as in Section 3.3. We will now show that, under the assumptions of

Theorem 1, we have for the constant C appearing in (4.1), for all µ1 ∈M ′1,

R(µ1, δ, n) ≤ 3C

n
+ 2P(Acn)dgen(µ1‖µ0), (S4.14)

where the left inequality holds for all divergence measures mentioned in the theorem, and the

right inequality holds for dgen(·‖·) set to any of the squared error, the standardized squared error

or the KL divergence.

To prove (S4.14), we use that for the three divergences of interest, for any µ1 ∈M1, µ ∈M0,

with µ0 ∈M0 as in (3.8), we have

dgen(µ1‖µ) ≤ 2(dgen(µ1‖µ0) + dgen(µ0‖µ)), (S4.15)
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For dgen(·‖·) the KL divergence, this follows because

D(µ1‖µ) = Eµ1

[
− log

pµ(X)

pµ1(X)

]
= Eµ1

[
− log

pµ(X)

pµ0(X)

]
+ Eµ1

[
− log

pµ0(X)

pµ1(X)

]
= Eµ0

[
− log

pµ(X)

pµ0(X)

]
+ Eµ1

[
− log

pµ0(X)

pµ1(X)

]
, (S4.16)

where the last line follows by the robustness property of exponential families (S1.4), since µ and

µ0 are both in M0.

For dgen(·‖·) the squared and standardized squared error case we show (S4.15) as follows:

Fix a matrix-valued function J : M1 → Rm
2
1 that maps each µ ∈ M1 to a positive definite

matrix Jµ. We can write

dgen(µ‖µ′) = (µ− µ′)TJµ(µ− µ′). (S4.17)

where Jµ is the identity matrix for the squared error case, and Jµ is the Fisher information

matrix for the standardized squared error case. (S4.15) follows since we can write, for any

function Jµ of the above type including these two:

(µ1 − µ)TJµ1(µ1 − µ) = (µ1 − µ0 + µ0 − µ)TJµ1(µ1 − µ0 + µ0 − µ)

= (µ1 − µ0)TJµ1(µ1 − µ0) + (µ0 − µ)TJµ1(µ0 − µ) + 2(µ1 − µ0)Jµ1(µ0 − µ)

≤ 2
(

(µ1 − µ0)TJµ1(µ1 − µ0) + (µ0 − µ)TJµ1(µ0 − µ)
)
,

where the last line follows because for general positive definite m × m matrices J and m-

component column vectors a and b, (b− a)TJ(b− a) ≥ 0 so that bTJ(b− a) ≥ aTJ(b− a) and,

after rearranging, bTJb+ aTJa ≥ 2aTJb.

We have thus shown (S4.15). It now follows that

R(µ1, δ, n) = Eµ1

[
1Andgen(µ1‖µ̆1(Xn)) + 1Acndgen(µ1‖µ̆0(Xn))

]
≤ Eµ1

[
dgen(µ1‖µ̆1(Xn)) + 2 · 1Acn (dgen(µ0‖µ̆0(Xn)) + dgen(µ1‖µ0))

]
≤ 3C

n
+ 2P(Acn)dgen(µ1‖µ0), (S4.18)
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where we used (S4.15) and our condition (4.1) on µ̆0 and µ̆1. We have thus shown (S4.14).

Stage 2 We proceed to prove our risk upper bound for the squared error loss, standardized

squared error loss and KL divergence, for which the right inequality in (S4.14) holds; the result

then follows for squared Hellinger and Rényi divergence because these are upper bounded by

KL divergence. From (S4.14) we see that it is sufficient to show that for all n larger than some

n0,

sup
µ1∈M′1

{Pµ1(Acn)dgen(µ1‖µ0)} = O

(
log logn

n

)
, (S4.19)

for our three choices of dgen(·‖·). We first note that, since M ′1 is CINECSI, supµ1∈M′1
dgen(µ1‖µ0)

is bounded by some constant C1. It thus follows by Proposition 2 that there exists some

CINECSI subset M ′′1 of M1 such that, with Bcn ⊂ Acn defined as Bcn = {xn : δ(xn) = 0; µ̂1(Xn) ∈

M ′′1 }, we have

sup
µ1∈M′1

{Pµ1(Acn)dgen(µ1‖µ0)} = sup
µ1∈M′1

{(Pµ1(Bcn) + Pµ1(Acn \Bcn))dgen(µ1‖µ0)}

= sup
µ1∈M′1

{Pµ1(Bcn)dgen(µ1‖µ0)}+ C1 · Pµ1(µ̂(1) 6∈M ′′1 )

= sup
µ1∈M′1

{Pµ1(Bcn)dgen(µ1‖µ0)}+ small~b(n),

so that it is sufficient if we can show (S4.19) with Bcn instead of Acn. But on the set Bcn, all three

divergence measures considered are within constant factors of each other, so that it is sufficient

if we can show that there is a constant C2 such that for all n larger than some n0,

sup
µ1∈M′1

{Pµ1(Bcn) · ‖µ1 − µ0‖22} ≤ C2 ·
log logn

n
. (S4.20)

Now, fix some µ1 ≡ µ
(n)
1 and consider f(n) as in (S4.1). By Theorem 3, Pµ1(Bcn) ≤ C3/n

for some constant C3 that can be chosen uniformly for all µ1 ∈ M ′1 whenever f(n) > Γ2 logn

with Γ2 as in that theorem. Using also that ‖µ1 − µ0‖22 is bounded by C1 as above, it follows
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that (S4.20) holds whenever f(n) > Γ2 logn and (C1C3)/n ≤ C2(log logn)/n, i.e. whenever

f(n) > Γ2 logn and C2 ≥ C1C3/(log logn).

Second, suppose that Γ1 < f(n) ≤ Γ2 logn with Γ1 as in Theorem 4. Then by that

theorem, uniformly for all µ
(n)
1 with such f(n), we have, with Γ3 as in that theorem,

‖µ(n)
1 − µ(n)

0 ‖
2
2 · Pµ(n)

1

(δsw(Xn) = 0) = f(n) · log logn

n
· P

µ
(n)
1

(δsw(Xn) = 0) ≤

Γ2 · (logn) · log logn

n
· P

µ
(n)
1

(δsw(Xn) = 0) ≤ Γ2Γ3 ·
log log n

n
,

where µ
(n)
0 = Π0(µ

(n)
1 ) is defined as in (3.8), so that (S4.20) holds again whenever C2 ≥ Γ2Γ3.

Finally, suppose that f(n) ≤ Γ1 with Γ1 as in Theorem 4. Then (S4.20) holds whenever

C2 ≥ Γ1. Combining the three cases we find that (S4.20) holds whenever C3 ≥ max{Γ1,Γ2Γ3, C1C3/(log log n)};

the result is proved.

S5 Switching as in Van Erven et al. (2012)

The basic building block of the switch distribution and criterion as formulated by Van Erven

et al. (2012) is a countable set of sequential prediction strategies (also known as ‘prequential

forecasting systems’ (Dawid, 1984)) {pk | k ∈ K}, where K is a finite or countable set indexing

the basic models under consideration. Thus, each model is associated with a corresponding

prediction strategy, where a prediction strategy p is a function from
⋃
i≥0 X

i to the set of

densities on X , where p(· | xn−1) denotes the density on X that xn−1 maps to, and p(xn | xn−1)

is to be interpreted as the probabilistic prediction that strategy p makes for outcome Xn upon

observation of the first n − 1 outcomes, Xn−1 = xn−1. For example, for a parametric model

{pθ | θ ∈ Θ} one can base pk on a Bayesian marginal likelihood, pB(xn) :=
∫

Θ
ω(θ)pθ(x

n)dθ,

where ω is a prior density on Θ. The corresponding prediction strategy could then be defined
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by setting pk(xn | xn−1) := pB(xn)/pB(xn−1), the standard Bayesian predictive distribution.

In this paper, the basic strategies pk were always Bayesian predictive distributions, but, in the

spirit of Dawid (1984), one may consider other choices as well.

After constructing the set of basic prediction strategies, a new family of prediction strate-

gies that switch between the strategies in the set {pk | k ∈ K} is defined. Formally, let S be the

set

S = {((t1, k1), . . . , (tm, km)) ∈ (N×K)m |m ∈ N, 1 = t1 < t2 < . . . < tm} . (S5.1)

Each s ∈ S specifies the times t1, . . . , tm at which a switch is made between the prediction

strategies from the original set, identified by the indices k1, . . . , km. The new family Q = {qs |

s ∈ S} is then defined by setting, for all n, xn ∈ Xn:

qs(xn | xn−1) = pkj (xn | x
n−1), tj ≤ n < tj+1, (S5.2)

with tm+1 = ∞ by convention. We now define qs(x
n) =

∏n
i=1 qs(xi | x

i−1); one easily verifies

that this defines a joint probability density on Xn.

We now place a prior mass function π′ on S and define, for each n, the switch distribution

in terms of its joint density for Xn and S:

psw(xn, s) = qs(x
n)π′(s), psw(xn) =

∑
s∈S

psw(xn, s) =
∑
s∈S

qs(x
n)π′(s).

If the pk are defined as Bayesian predictive distributions as above, then, as explained by Van

Erven et al. (2012), the density psw(xn) can be interpreted as a Bayesian marginal density of

xn under the prior π′ on meta-models (model sequences) in S.

The switch distribution can be used to define a model selection criterion δ′sw by selecting

the model with highest posterior probability under the switch distribution. This is done by
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defining the random variable Kn+1(s) on S to be the index of the prediction strategy that is

used by qs to predict the (n+ 1)th outcome. The model selection criterion is then:

δ′sw(xn) = arg max
k

psw(Kn+1 = k | xn) = arg max
k

∑
s:Kn+1(s)=k psw(xn, s)

psw(xn)

= arg max
k

∑
s:Kn+1(s)=k qs(x

n)π′(s)∑
s∈S qs(x

n)π′(s)
, (S5.3)

with ties resolved in any way desired.

In our nested two-model case, one might use, for example, a prior π′ with support on

S′ = {(1, 0), (1, 1), ( (1, 0), (2, 1) ), ( (1, 0), (4, 1) ), ( (1, 0), (8, 1) ), ( (1, 0), (16, 1), . . . )}.

Such a prior expresses that at time 1, for the first prediction, one can either switch to (i.e., start

with), model 0, and keep predicting according to its Bayes predictive distribution — this strategy

gets weight π((1, 0)). Or one can start with model 1, and keep predicting according to its Bayes

predictive distribution — this strategy gets weight π((1, 1)). Or one can start with model 0 and

switch to model 1 after 2i observations and then stick with 1 forever — this strategy gets weight

π(( (1, 0), (2i, 1) )). If we now start with a prior π on {1, 2, . . .} as in the main text and define

π′((1, 0)) = 1/2, π′((1, 1)) = (1/2) · π(1), and for i ≥ 1, π′((1, 0), (2i, 1)) = (1/2) · π(2i), then∑
s∈S′ π

′(s) = 1, so π′ is a probability mass function. A simple calculation gives that (S5.3)

based on switch prior π′ now chooses model 1 if

∑
1≤t<n

p̄t(x
n)π(t) > (1 + g(n)) · pB,0(xn), (S5.4)

where g(n) =
∑
t≥n π(t); note that g(n) is decreasing and converges to 0 with increasing n.

(S5.4) is thus an instance of the switch criterion of Van Erven et al. (2012). Comparing this to

(2.2), the criterion used in this paper, after rearranging we see that it chooses model 1 if

∑
1≤t<n

p̄t(x
n)π(t) > (1− g(n)) · pB,0(xn),
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which is more likely by constant factor to select modelM0, the factor however tending to 1 with

increasing n. It is completely straightforward to check that Theorem 1 and all other results in

this paper still hold if δsw with prior π as in the main text is replaced by δ′sw with corresponding

prior π′ as defined here; thus our results carry over to the original definitions of Van Erven et al.

(2012). Similarly, the proof for the strong consistency of δ′sw given by Van Erven et al. (2012)

carries through for δsw, needing only trivial modifications. From (S5.4) we see that modifying

the prior π in either our or Van Erven et al.’s original criterion has a similar effect as keeping

the same π but switching between the two versions of the switch criterion.
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