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S.1. Proof of Theorem 1:

Before we prove Theorem 1, we show an intermediate result in Lemma 2.

Lemma 2 Suppose Assumptions (L1)–(L3) hold and λn = o(n−1/2). Then we have θ̂L
P−→

θ0L and D̂L
P−→ D0L as n→∞.

To show θ̂L → θ0L, we apply Theorem 5.7 of van der Vaart (1998). Firstly, we show that,

uniformly in θ, the empirical risk OnL(θ) converges to the true risk RL(θ) in probability.

Assumption (L3) guarantees that the loss function L(yf(x;θ)) is convex in θ, and it is easy

to see that OnL(θ) converges to RL(θ) for each θ. Then we have supθ |OnL(θ)−RL(θ)| →

0 in probability by uniform convergence Theorem for convex functions in Pollard (1991).

Secondly, according to assumption (L2), we have that RL(θ) has a unique minimizer θ0L.

Therefore, we know that θ̂L converges to θ0L in probability. The consistency of D̂(θ̂L) can

be obtained by the uniform law of large numbers. According to Assumption (L1), p(x) is

continuously differentiable, and hence |y − sign{f(x;θ)}| = |y − sign{x̃Tθ}| is continuous

in each θ for almost all x. This together with |y − sign{f(x;θ)}| ≤ 2 leads to uniform
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convergence supθ |D̂(θ) − 1
2
E|y0 − sign{f(x0;θ)}|| → 0. Therefore, we have D̂(θ̂L) → D0L

in probability. This concludes the proof of Lemma 2. �

Proof of Theorem 1:

We next prove (4) in three steps. Let Mi(θ0L) = OθL(Yif(X i;θ))|θ=θ0L . In step 1, we

show that
√
n(θ̂L − θ0L) = −n−1/2H(θ0L)−1

n∑
i=1

Mi(θ0L) + oP (1) (S.1)

by applying Theorem 2.1 in Hjort and Pollard (1993). Denote Z = (XT , Y ) and ∆θ =

(∆b,∆wT )T . Taylor expansion leads to

L(Y f(X;θ0L + ∆θ))− L(Y f(X;θ0L)) = M(θ0L)T∆θ +R(Z,∆θ), (S.2)

where

M(θ0L) = OθL(Y f(X;θ))
∣∣∣
θ=θ0L

; R(Z,∆θ) =
(∆θ)T

(
O2
θL(Y f(X;θ))

∣∣∣
θ=θ0L

)
∆θ

2
+ o(‖∆θ‖2).

According to Assumption (L1), it is easy to check that E(M(θ0L)) = OθRL(θ)|θ=θ0L = 0,

and

E[R(Z,∆θ)] =
1

2
(∆θ)TH(θ0L)(∆θ) + o(‖∆θ‖2); E[R2(Z,∆θ)] = o(‖∆θ‖3).

Denote s = (bs,w
T
s )T , Zi = (XT

i , Yi), and

An(s) =
n∑
i=1

{
L(Yif(X i;θ0L + s/

√
n))− L(Yif(X i;θ0L))

}
+ λn(w0L +ws/

√
n)T (w0L +ws/

√
n)− λnwT

0Lw0L.

Note that An(s) is minimized when s =
√
n(θ̂L−θ0L) and nE[R(Z, s/

√
n)] = 1

2
sTH(θ0L)s+
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o(‖s‖2). Based on the above Taylor expansion (S.2), we have

An(s) =
n∑
i=1

{
Mi(θ0L)T s/

√
n+R(Zi, s/

√
n)− ER(Zi, s/

√
n)
}

+ nE[R(Z, s/
√
n)] + λnw

T
sws

= UT
n s+

1

2
sTH(θ0L)s+ o(‖s‖2) +

n∑
i=1

{
R(Zi, s/

√
n)− ER(Zi, s/

√
n)
}

+ λnw
T
sws,

where Un = n−1/2
∑n

i=1Mi(θ0L). Note that
∑n

i=1{R(Zi, s/
√
n) − ER(Zi, s/

√
n)} → 0, and

λnw
T
sws → 0 since λn → 0 and ws is bounded. In addition, Hessian matrix H(θ0L) is

positive definite due to Assumption (L5). Therefore, we can conclude that (S.1) holds by

Theorem 2.1 in Hjort and Pollard (1993).

In step 2, we show that WL =
√
n{D̂(θ̂L) − D0L} → N(0, E(ψ2

1)). As shown in Jiang

et al. (2008), the class of functions Gθ(δ) =
{
|Y − sign{f(X;θ)}| : ‖θ − θ0L‖ ≤ δ

}
is a

P-Donsker class for any fixed 0 < δ < ∞. This together with (S.1) and consistency of θ̂L

implies that

√
n
(
D̂(θ̂L)−D0L

)
=
√
n
(
D̂(θ̂L)− D̂(θ0L)

)
+
√
n
(
D̂(θ0L)−D0L

)
d
=
√
nḋ(θ0L)T (θ̂L − θ0L) +

√
n
(
D̂(θ0L)−D0L

)
d
= n−1/2

n∑
i=1

{1

2
|Yi − sign{f(X i;θ0L)}| −D0L − ḋ(θ0L)TH(θ0L)−1M1(θ0L)

}
= n−1/2

n∑
i=1

ψi
d−→ N(0, E(ψ2

1)),

where “
d
= ” means asymptotical equivalence in the distributional sense.

In step 3, the distribution of WL = n1/2{D̂L −D0L} is asymptotically equivalent to that

of WL as shown in Theorem 3 in Jiang et al. (2008). This concludes the proof of Theorem

1. �
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S.2. Proof of Theorem 2

According to Appendix D in Jiang et al. (2008), we have

W ∗
1

d
= n−1/2

n∑
i=1

ψi1(Gi − 1) and W ∗
2

d
= n−1/2

n∑
i=1

ψi2(Gi − 1),

where ψij = 1
2
|Yi − sign{f(X i;θ0j)}| −D0j − ḋ(θ0j)

TH(θ0j)
−1Mi(θ0j), for j = 1, 2. Recall

that “
d
= ” means the distributional equivalence. As shown in Jiang et al. (2008), conditional

on the data, W ∗
j converges to a normal with mean 0 and variance n−1

∑n
i=1 ψ

2
ij for j = 1, 2.

Note that

W ∗
2 −W ∗

1
d
= n−1/2

n∑
i=1

(ψi2 − ψi1)(Gi − 1).

Here, (ψi2 − ψi1)’s, i = 1, . . . , n, are i.i.d random vectors with E(ψi2 − ψi1) = 0 and E|ψi2 −

ψi1|2 <∞. Independent of (ψi2−ψi1), (Gi− 1)’s are i.i.d random variables with mean 0 and

variance 1. Since (ψi2 − ψi1) depends on the sample (xi, yi), Lemma 2.9.5 in van der Vaart

and Wellner (1996) implies that, conditional on the data,

n−1/2

n∑
i=1

(ψi2 − ψi1)(Gi − 1)
d

=⇒ N(0, V ar(ψ12 − ψ11)). (S.3)

Next, as shown in Theorem 1, W1
d
= n−1/2

∑n
i=1 ψi1 and W2

d
= n−1/2

∑n
i=1 ψi2, therefore,

W2 −W1
d
= n−1/2

n∑
i=1

(ψi2 − ψi1)
d−→ N(0, V ar(ψ12 − ψ11)).

This together with (S.3) and the asymptotic equivalence of WL and WL (Jiang et al. 2008)

lead to the asymptotic equivalence between W∆12 and W ∗
∆12

, which concludes the proof. �

S.3. Calculation of the transformation matrix in Section 3.2

Given a d dimensional hyperplane f(x;θ) = b + w1x1 + · · · + wdxd = 0, we aim to find

a transformation matrix R ∈ Rd×d such that the transformed hyperplane f(x;θ†) = b† +
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w†1x1 + · · · + w†dxd = 0 is parallel to X1, . . . ,Xd−1, where (w†1, · · · , w
†
d)
T = R(w1, · · · , wd)T

and b† = b. Here, we implicitly assume that wd 6= 0.

We construct a class of linearly independent vectors spanning the hyperplane:



1

0

...

0

−w1

wd





0

1

...

0

−w2

wd

 · · ·



0

0

...

1

−wd−1

wd


.

Denote these vectors as v1, v2,...,vd−1. Then, by Gram-Schmidt process, we can produce the

following orthogonal vectors v̄1, v̄2,..., v̄d−1:

v̄1 = v1,

v̄2 = v2 − <v2,v̄1>
<v̄1,v̄1>

v̄1,

v̄d−1 = vd−1 − <vd−1,v̄1>

<v̄1,v̄1>
v̄1 − · · · − <vd−1,v̄d−2>

<v̄d−2,v̄d−2>
v̄d−2,

where the inner product < u, v >=
∑d

i=1 uivi for u = (u1, . . . , ud) and v = (v1, . . . , vd).

Denote v̄d = [w1, · · · , wd]T , which is orthogonal to every v̄i, i = 1, · · · , d − 1 by the above

construction. In the end, we normalize ui = v̄i‖v̄i‖−1 for i = 1, · · · , d, and define the

orthogonal transformation matrix R as [u1, . . . , ud]
T . By some elementary calculation, we

can verify that that w†i = 0 for i = 1, · · · , d − 1 but w†d 6= 0 under the above construction.

Therefore, the transformed hyperplane f(x;θ†) is parallel to X1, . . . ,Xd−1. �

S.4. Asymptotic Normality of θ̂γ and D̂γ for LUM

This section establishes the asymptotic normality of D̂γ and θ̂γ (with more explicit forms

of the asymptotic variances) by verifying the conditions in Theorem 1, i.e., (L1)–(L5). In

particular, we provide a set of sufficient conditions for the LUM, i.e., (L1) and (A1) below.

(A1) Var(X|Y ) ∈ Rd×d is a positive definite matrix for Y ∈ {1,−1}.
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Assumption (A1) is needed to guarantee the uniqueness of the true minimizer θ0γ. It is

worth pointing out that the asymptotic normality of the estimated coefficients for SVM has

also been established by Koo et al. (2008) under another set of assumptions.

Corollary 1 Suppose Assumptions (L1) and (A1) hold and λn = o(n−1/2). For each γ ∈

[0, 1],
√
n(θ̂γ − θ0γ)

d−→ N(0,Σ0γ) as n→∞, (S.4)

where Σ0γ = H(θ0γ)
−1G(θ0γ)H(θ0γ)

−1 with G(θ0γ) and H(θ0γ) defined in (S.6) and (S.10)

in the supplementary materials.

In practice, direct estimation of Σ0γ in (S.4) is difficult because of the involvement of

the Dirac delta function; see (S.8) and (S.9) in Section S.5 of the supplementary materials.

Instead, we find that the perturbation-based resampling procedure proposed in Stage 1 works

well.

Next we establish the asymptotic normality of D̂γ.

Corollary 2 Suppose that the assumptions in Corollary 1 hold. We have, as n→∞,

√
n(D̂γ −D0γ)

d−→ N
(

0, E(ψ2
1γ)
)
, (S.5)

where ψ1γ = 1
2
|Y1−sign{f(X1;θ0γ)}|−D0γ−ḋ(θ0γ)

TH(θ0γ)
−1M1(θ0γ), ḋ(θ) = OθE(D̂γ(θ)),

and

M1(θ0γ) = −Y1X̃1I{Y1f(X1;θ0γ)<γ} −
(1− γ)2Y1X̃1I{Y1f(X1;θ0γ)≥γ}(
Y1f(X1;θ0γ)− 2γ + 1

)2 .

Corollary 2 demonstrates that the K-CV error induced from each LUM loss function yields

the desirable asymptotic property under Assumptions (L1) and (A1). It can be applied to

justify the perturbation-based resampling procedure for LUM as shown in Theorem 2.
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S.5. Proof of Corollary 1

It suffices to show that (A1) and (L1) imply Assumptions (L2)-(L5).

(L2). We first show that the minimizer θ0γ exists for each fixed γ. It is easy to see

that Rγ(θ) is continuous w.r.t. θ. We next show that, for any large enough M , the closed

set S(M) =
{
θ ∈ Rd : Rγ(θ) ≤ M

}
is bounded. When yf(x,θ) < γ, we need to show

S(M) =
{
θ ∈ Rd : E[1 − Y f(X;θ)] ≤ M

}
is contained in a box around the origin.

Denote ej as the vector with one in the j-th component and zero otherwise. Motivated by

Rocha et al. (2009), we can show that, for any M , there exists a αj,M such that any θ

satisfying | < θ, ej > | > αj,M leads to E[(1− Y f(X;θ)I(Y f(X;θ)<γ))] > M . Similarly, when

yf(x,θ) ≥ γ, S(M) is contained in a sphere around the origin, that is, for any M , there exists

a σ such that any θ satisfying | < θ,θ > | > σ leads to E[ (1−γ)2

Y f(X;θ)−2γ+1
I(Y f(X;θ)≥γ))] > M .

These imply the existence of θ0γ. The uniqueness of θ0γ is implied by the positive definiteness

of Hessian matrix as verified in (L5) below.

(L3). The loss function Lγ(yf(x;θ)) is convex by noting that two segments of Lγ(yf(x;θ))

are convex, and the sum of convex functions is convex.

(L4). The loss function Lγ(yf(x;θ)) is not differentiable only on the set {x : x̃Tθ =

γ or x̃Tθ = −γ}, which is assumed to be a zero probability event. Therefore, with probability

one, it is differentiable with

OθLγ(yf(x;θ)) = −x̃yI(yx̃T θ<γ) −
(1− γ)2x̃y

(yx̃Tθ − 2γ + 1)2
I(yx̃T θ≥γ),

and hence

G(θ0γ) = E
[
OθLγ(Y f(X;θ))OθLγ(Y f(X;θ))T |θ=θ0γ

]
= E

{
X̃X̃

T
Y 2I

(Y X̃
T
θ0γ<γ)

+
(1− γ)4X̃X̃

T
Y 2

(Y X̃
T
θ0γ − 2γ + 1)4

I
(Y X̃

T
θ0γ≥γ)

}
= E

{
X̃X̃

T
[
p(X)A(X,θ0γ) + (1− p(X))B(X,θ0γ)

]}
, (S.6)
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where A(X,θ0γ) and B(X,θ0γ) are defined as

A(X,θ0γ) = I
(X̃

T
θ0γ<γ)

+
(1− γ)4

(X̃
T
θ0γ − 2γ + 1)4

I
(X̃

T
θ0γ≥γ)

;

B(X,θ0γ) = I
(−X̃T

θ0γ<γ)
+

(1− γ)4

(X̃
T
θ0γ + 2γ − 1)4

I
(−X̃T

θ0γ≥γ)
.

Obviously, |A(X,θ0γ)| and |B(X,θ0γ)| are both bounded by one. Therefore, G(θ0γ) < ∞

based on the moment condition of X.

(L5). We prove it in three steps. First, we show the risk Rγ(θ) is bounded. For each

fixed γ ∈ [0, 1],

Rγ(θ) ≤ E
∣∣∣Lγ(Y f(X;θ))

∣∣∣ = E
∣∣∣(1− Y X̃T

θ)I
(Y X̃

T
θ<γ)

+
(1− γ)2

Y X̃
T
θ − 2γ + 1

I
(Y X̃

T
θ≥γ)

∣∣∣
≤ E

∣∣∣(1− Y X̃T
θ)I

(Y X̃
T
θ<γ)

∣∣∣+ E
∣∣∣ (1− γ)2

Y X̃
T
θ − 2γ + 1

I
(Y X̃

T
θ≥γ)

∣∣∣
≤ E

∣∣∣(1− Y X̃T
θ)I

(Y X̃
T
θ<1)

∣∣∣+ |1− γ| <∞, (S.7)

where the first term in (S.7) was shown to be bounded in Rocha et al. (2009).

Next, we derive the form of Hessian matrix. The moment assumption of x and the

inequality (yx̃Tθ − 2γ + 1)2 ≤ (1 − γ)2 lead to E|OθLγ(Y f(X;θ))| ≤ E| − X̃Y | + E| −

X̃Y | ≤ 2E|X̃| < ∞. Then, dominated convergence theorem implies that OθRγ(θ) =

E[OθLγ(Y f(X;θ))]. Hence, the Hessian matrix equals OθE[OθLγ(Y f(X;θ))]. We next
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derive the form of E[OθLγ(Y f(X;θ))]. Note that

E[OθLγ(Y f(X;θ))] = E
[
− X̃Y I{Y X̃T

θ<γ} −
(1− γ)2X̃Y

(Y X̃
T
θ − 2γ + 1)2

I{Y X̃T
θ≥γ}

]
= E

{
I{Y=1}

[
− X̃I{X̃T

θ<γ} −
(1− γ)2X̃

(X̃
T
θ − 2γ + 1)2

I{X̃T
θ≥γ}

]
+ I{Y=−1}

[
X̃I{−X̃T

θ<γ} +
(1− γ)2X̃

(X̃
T
θ + 2γ − 1)2

I{−X̃T
θ≥γ}

]}
= E

{
p(X)

[
− X̃I{X̃T

θ<γ} −
(1− γ)2X̃

(X̃
T
θ − 2γ + 1)2

I{X̃T
θ≥γ}

]}
+ E

{
(1− p(X))

[
X̃I{−X̃T

θ<γ} +
(1− γ)2X̃

(X̃
T
θ + 2γ − 1)2

I{−X̃T
θ≥γ}

]}
= E1(θ) + E2(θ).

After tedious algebra, we can show

OθE1(θ)|θ=θ0γ = E
{
X̃X̃

T
p(X)C(X,θ0γ)

}
,

OθE2(θ)|θ=θ0γ = E
{
X̃X̃

T
(1− p(X))D(X,θ0γ)

}
,

where

C(X,θ0γ) = δ(γ − X̃T
θ0γ)−

(1− γ)2δ(X̃
T
θ0γ − γ)

(X̃
T
θ0γ − 2γ + 1)2

+
2(1− γ)2I

(X̃
T
θ0γ≥γ)

(X̃
T
θ0γ − 2γ + 1)3

, (S.8)

D(X,θ0γ) = δ(γ + X̃
T
θ0γ)−

(1− γ)2δ(X̃
T
θ0γ + γ)

(X̃
T
θ0γ + 2γ − 1)2

−
2(1− γ)2I

(−X̃T
θ0γ≥γ)

(X̃
T
θ0γ + 2γ − 1)3

, (S.9)

and δ(·) is the Dirac delta function. Hence, we can write the Hessian matrix as

H(θ0γ) = E
{
X̃X̃

T
[
p(X)C(X,θ0γ) + (1− p(X))D(X,θ0γ)

]}
. (S.10)

Finally, we establish the positive definiteness of H(θ0γ). We write H(θ0γ) = R1(θ0γ) +
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R2(θ0γ) with

R1(θ0γ) = E

{
X̃X̃

T
[
p(X)δ(γ − X̃T

θ0γ) + (1− p(X))δ(γ + X̃
T
θ0γ)

]}
,

R2(θ0γ) = (1− γ)2E

{
X̃X̃

T
[
(1− p(X))

( δ(γ + X̃
T
θ0γ)

(X̃
T
θ0γ + 2γ − 1)2

−
2I

(−X̃T
θ0γ≥γ)

(X̃
T
θ0γ + 2γ − 1)3

)
− p(X)

( δ(X̃
T
θ0γ)− γ

(X̃
T
θ0γ − 2γ + 1)2

−
2I

(X̃
T
θ0γ≤γ)

(X̃
T
θ0γ − 2γ + 1)3

)]}
.

Next we show the positive definiteness of R1(θ0γ). Let fx be the density of x̃Tθ0γ. According

to Lemma 9 in Rocha et al. (2009), Assumption (L1) implies that fx(γ) > 0, fx(−γ) > 0,

P (Y = 1|X̃T
θ0γ = γ) > 0, and P (Y = −1|X̃T

θ0γ = −γ) > 0. Note that R1(θ0γ) can be

rewritten as

R1(θ0γ) = E
[
X̃X̃

T |Y = 1, X̃
T
θ0γ = γ

]
P (Y = 1|X̃T

θ0γ = γ)fX(γ)

+ E
[
X̃X̃

T |Y = −1, X̃
T
θ0γ = −γ

]
P (Y = −1|X̃T

θ0γ = −γ)fX(−γ).

In order to showR1(θ0γ) is positive definite, it remains to show thatE
[
X̃X̃

T |Y = 1, X̃
T
θ0γ =

γ
]

or E
[
X̃X̃

T |Y = −1, X̃
T
θ0γ = −γ

]
is strictly positive definite. Rocha et al. (2009)

showed that

E
[
X̃X̃

T |Y, X̃T
θ0γ = γ

]
= E

[
X̃X̃

T |Y,XTvw0γ =
γ − b0γ

‖w0γ‖

]
�

(γ − b0γ

‖w0γ‖

)2

(vw0γv
T
w0γ

) + V ar
(
X|Y,XTvw0γ =

γ − b0γ

‖w0γ‖

)
,(S.11)

where S1 � S2 means S1 − S2 is positive semi-definite, and vw0γ = w0γ

‖w0γ‖ . By assumption

(A1), V ar(X|Y ) is non-singular, and hence V ar
(
X|Y,XTvw0γ = γ−b0γ

‖w0γ‖

)
has rank (d− 1) .

Therefore, the right hand side of (S.11) is strictly positive definite when γ 6= b0γ. Similarly,

E
[
X̃X̃

T |Y, X̃T
θ0γ = −γ

]
is strictly positive definite when γ 6= −b0γ. Therefore, either

E
[
X̃X̃

T |Y = 1,XTw0γ + b0γ = γ
]

or E
[
X̃X̃

T |Y = −1,XTw0γ + b0γ = −γ
]

will be
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strictly positive definite at θ0γ. This leads to the positive definiteness of R1(θ0γ).

In addition, similar argument implies that R2(θ0γ) is positive definite at θ0γ. This is due

to the fact that (X̃
T
θ0γ + 2γ − 1)3 < 0 when X̃

T
θ0γ + γ ≤ 0, and (X̃

T
θ0γ − 2γ + 1)3 > 0

when X̃
T
θ0γ − γ ≥ 0. Therefore, the Hessian matrix H(θ0γ) is strictly positive definite for

any γ ∈ [0, 1]. This concludes the proof of Corollary 1. �

S.6. Proof of Corollary 2

Following the proof of Theorem 1, we only need to show that

√
n(θ̂γ − θ0γ) = −n−1/2H(θ0γ)

−1

n∑
i=1

Mi(θ0γ) + oP (1),

where

Mi(θ0γ) = −YiX̃ iI{Yif(Xi;θ0γ)<γ} −
(1− γ)2YiX̃ iI{Yif(Xi;θ0γ)≥γ}(
Yif(X i;θ0γ)− 2γ + 1

)2 .

Similarly, we denote Z = (XT , Y ) and t = (bt,w
T
t )T , and write

Lγ(Y f(X;θ0γ + t))− Lγ(Y f(X;θ0γ))

= (1− Y X̃T
(θ0γ + t))I{Y X̃T

(θ0γ+t)<γ} +
(1− γ)2

Y X̃
T

(θ0γ + t)− 2γ + 1
I{Y X̃T

(θ0γ+t)≥γ}

− (1− Y X̃T
θ0γ)I{Y X̃T

θ0γ<γ}
− (1− γ)2

Y X̃
T
θ0γ − 2γ + 1

I{Y X̃T
θ0γ≥γ}

= M(θ0γ)
T t+R(Z, t),

11



where

M(θ0γ) = −Y X̃T
I{Y f(X̃

T
;θ0γ)<γ} −

(1− γ)2Y X̃
T

(Y f(X̃
T

;θ0γ)− 2γ + 1)2
I{Y f(X̃

T
;θ0γ)≥γ};

R(Z, t) =
(

1− Y f(X;θ0γ + t)
)[
I{Y f(X̃

T
;θ0γ+t)<γ} − I{Y f(X̃

T
;θ0γ)<γ}

]
+

(1− γ)2I{Y f(X̃
T

;θ0γ+t)≥γ}

Y f(X̃
T

;θ0γ + t)− 2γ + 1

−

[
(1− γ)2

Y f(X̃
T

;θ0γ)− 2γ + 1
− (1− γ)2Y f(X, t)

Y f(X̃
T

;θ0γ)− 2γ + 1

]
I{Y f(X̃

T
;θ0γ)≥γ}.

It is easy to check that E(M(θ0γ)) = OθRγ(θ)|θ=θ0γ ,

E[R(Z, t)] =
1

2
tTH(θ0γ)t+ o(‖t‖2) and E[R2(Z, t)] = O(‖t‖3).

The remaining arguments follow exactly from the proof of Theorem 1. �

S.7. Proof of Lemma 1

In the proof of Corollary 2, we showed that for any γ ∈ [0, 1],

√
n(θ̂γ − θ0γ) = −n−1/2H(θ0γ)

−1

n∑
i=1

Mi(θ0γ) + oP (1); (S.12)

√
n(D̂γ −D0γ) = n−1/2

n∑
i=1

ψiγ + oP (1), (S.13)

where ψiγ = 1
2
|Yi − sign{f(X i;θ0γ)}| −D0γ − ḋ(θ0γ)

TH(θ0γ)
−1Mi(θ0γ). In addition, (S.12)

and (S.13) converge to normal distributions.

Next, we show that the right hand sides of (S.12) and (S.13) are uniformly bounded over

12



γ ∈ [0, 1]. Denoting the L1 norm as ‖ · ‖1, we have

sup
γ∈[0,1]

∥∥∥Mi(θ0γ)
∥∥∥

1

≤ sup
γ∈[0,1]

∥∥∥− YiX̃ iI(Yif(Xi;θ0γ)<γ)

∥∥∥
1

+ sup
γ∈[0,1]

∥∥∥∥∥∥∥
(1− γ)2YiX̃ iI(Yif(Xi;θ0γ)≥γ)(
Yif(X i;θ0γ)− 2γ + 1

)2

∥∥∥∥∥∥∥
1

≤ 2
∥∥∥X̃ i

∥∥∥
1
. (S.14)

In addition, λmax(H(θ0γ)) ≤ c2 in Assumption (B1) implies that each component of the

Hessian matrix is uniformly bounded since ‖H(θ0γ)‖max ≤ ‖H(θ0γ)‖2 = λmax(H(θ0γ)). This

combining with (S.14) and Central Limit Theorem leads to

sup
γ∈[0,1]

∥∥∥√n(θ̂γ − θ0γ)
∥∥∥

1
= OP (1). (S.15)

Similarly,

sup
γ∈[0,1]

∣∣∣ψiγ∣∣∣
≤ sup

γ∈[0,1]

1

2
|Yi − sign(X̃

T

i θ0γ)|+ sup
γ∈[0,1]

|D0γ|+ sup
γ∈[0,1]

∣∣∣ḋ(θ0γ)
TH(θ0γ)

−1Mi(θ0γ)
∣∣∣

≤ 1 + 1 + sup
γ∈[0,1]

∥∥∥ḋ(θ0γ)
∥∥∥

1
sup
γ∈[0,1]

∥∥∥H(θ0γ)
−1
∥∥∥

max
sup
γ∈[0,1]

∥∥∥Mi(θ0γ)
∥∥∥

1

≤ 2 + c3‖X̃ i‖1, (S.16)

where c3 in (S.16) is a constant according to ‖H(θ0γ)
−1‖max ≤ ‖H(θ0γ)

−1‖2 = 1/λmin(H(θ0γ)) ≤

1/c1 from Assumption (B1), and

‖ḋ(θ0γ)‖1 ≤ 4
∥∥∥OE(I(Yif(Xi;θ0γ)<0)

)∥∥∥
1
≤ 4δ(−YiθT0γX̃ i)‖X̃ i‖1 = 0 a.s.

13



with δ(z) = 0 for z 6= 0 and ∞ at z = 0. So (S.16) leads to

sup
γ∈[0,1]

√
n
∣∣∣D̂γ −D0γ

∣∣∣ = OP (1). (S.17)

In the end, the definitions of γ∗0 and γ̂∗0 imply that

D0γ∗0
−D0γ̂∗0

≤ 0 and D̂γ̂∗0 − D̂γ∗0 ≤ 0. (S.18)

Therefore, we have D0γ∗0
−D̂γ̂∗0 = D0γ∗0

−D0γ̂∗0
+D0γ̂∗0

−D̂γ̂∗0 ≤ D0γ̂∗0
−D̂γ̂∗0 = OP (n−1/2) based

on (S.17) and (S.18). Using similar arguments, we have D̂γ̂∗0 −D0γ∗0
≤ OP (n−1/2). The above

discussions imply that
∣∣∣D̂γ̂∗0 −D0γ∗0

∣∣∣ = OP (n−1/2). This concludes the proof of Lemma 1. �

S.8. Lemma 3

The following Lemma will be used in the proof of Lemma 4.

Lemma 3 The generalization error D0γ = 1
2
E|Y0− sign{X̃T

0 θ̂γ}| is continuous w.r.t. γ a.s.

Proof of Lemma 3: The discontinuity of sign function happens only at X̃
T

0 θ̂γ = 0, which

is assumed to have probability zero. Hence, it is sufficient to show θ̂γ is continuous in γ by

dominated convergence theorem. Recall that θ̂γ = arg minθ∈Rd+1 Onγ(θ) with

Onγ(θ) =
1

n

n∑
i=1

Lγ

(
yi(w

Txi + b)
)

+
λnw

Tw

2
.

Note that Onγ(θ) is continuous w.r.t. γ due to the continuity of Lγ(u) w.r.t. γ. Then, for any

sequence γn → γ00 with γ00 ∈ [0, 1], continuous mapping theorem implies that |Onγn(θ) −

Onγ00(θ)| < δ for any δ > 0 when n is sufficiently large. Denote θ̂γ00 = arg minθ Onγ00(θ)

and G = {θ : ‖θ − θ̂γ00‖ ≤ ε}. For each fixed ε, we construct

δ =
minθ∈Rd+1\G Onγ00(θ)−Onγ00(θ̂γ00)

2
.
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Then we have

Onγ00(θ̂γ00) = min
θ∈Rd+1\G

Onγ00(θ)− 2δ

< min
θ∈Rd+1\G

Onγ00(θ) +Onγn(θ)−Onγ00(θ)− δ

≤ Onγn(θ)− δ,

which is true for any θ ∈ Rd+1. Therefore,

Onγ00(θ̂γ00) < min
θ∈Rd+1\G

Onγn(θ)− δ. (S.19)

On the other hand, |Onγn(θ)− Onγ00(θ)| < δ implies that Onγn(θ̂γ00)− Onγ00(θ̂γ00) < δ and

hence minθ∈Rd+1 Onγn(θ) < Onγ00(θ̂γ00) + δ. This combining with (S.19) leads to

min
θ∈Rd+1

Onγn(θ) < min
θ∈Rd+1\G

Onγn(θ).

Therefore, arg minθ∈Rd+1 Onγn(θ) ∈ G, and hence θ̂γ is continuous at γ00. Note that ε can be

made arbitrarily small and γ00 is an arbitrary element within [0, 1]. This concludes Lemma

3. �

S.9. Lemma 4

Lemma 4 shows the (element-wise) asymptotic equivalence between Λ0 and Λ̂0. It will be

used in the proof of Theorem 3.

Lemma 4 Suppose that the assumptions in Lemma 1 hold. We have, as n → ∞, (i) for

any γ̂ ∈ Λ̂0, there exists a γ ∈ Λ0 such that γ̂
P→ γ; (ii) for any γ ∈ Λ0, there exists a γ̂ ∈ Λ̂0

satisfying γ̂
P→ γ.

Proof of Lemma 4: Our proof consists of two steps. In the first step, for any γ̂ ∈ Λ̂0 with

15



γ̂
P→ γ, we have

D0γ −D0γ∗0
= (D0γ −D0γ̂) + (D0γ̂ − D̂γ̂) + (D̂γ̂ − D̂γ∗0 ) + (D̂γ∗0 −D0γ∗0

)

= I + II + III + IV.

Obviously, we have I = oP (1) according to continuous mapping theorem and Lemma 3, and

II, IV = oP (1) due to (S.17). As for III, we have III ≤ D̂γ̂∗0 −D̂γ∗0 +n−1/2φγ̂,γ̂∗0 ;α/2 ≤ oP (1)

since γ̂ ∈ Λ̂0 defined in (15). The above discussions lead to the conclusion that D0γ−D0γ∗0
≤

oP (1). Therefore, we have P (γ ∈ Λ0) ≥ P (D0γ −D0γ∗0
≤ 0)→ 1.

In the second step, we apply the contradiction argument. Assume there exists some

γ ∈ Λ0 such that γ̂ /∈ Λ̂0 for any γ̂
P→ γ. The above assumption directly implies that

D̂γ̂ − D̂γ̂∗0 > oP (1). The analysis in the first step further implies that there exists some

γ∗ ∈ Λ0, i.e., D0γ∗ = D0γ∗0
, with probability tending to one such that γ̂∗0

P→ γ∗. Then, we

have

D0γ −D0γ∗ = (D0γ −D0γ̂) + (D0γ̂ − D̂γ̂) + (D̂γ̂ − D̂γ̂∗0 ) + (D̂γ̂∗0 −D0γ∗)

= I + II + III ′ + IV ′.

Recall that I, II = oP (1) and III ′ > oP (1) as shown in the above. We also have IV ′ = oP (1)

due to (S.17) and the fact that γ̂∗0
P→ γ∗. In summary, we have D0γ −D0γ∗ > oP (1), which

contradicts the definition of γ. This concludes the proof of Lemma 4. �

S.10. Proof of Theorem 3

The proof consists of two major steps. In the first step, we show that

sup
γ∈[0,1]

n
∣∣∣D̂BI(S(X; θ̂γ))−DBI(S(X; θ̂γ))

∣∣∣→ 0. (S.20)
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Denote DBI(S(X; θ̂γ)) = 1
n

∑n
i=1 x̃i

†T
(−d)V ar(η̂

†
γ)x̃i

†
(−d), where x̃i

†
(−d) = (1, (Rγxi)

T
(−d))

T and

Rγ is the transformation matrix associated with the loss function Lγ. Then we have

sup
γ∈[0,1]

n
∣∣∣D̂BI(S(X; θ̂γ))−DBI(S(X; θ̂γ))

∣∣∣
≤ sup

γ∈[0,1]

n
∣∣∣D̂BI(S(X; θ̂γ))−DBI(S(X; θ̂γ))

∣∣∣+ sup
γ∈[0,1]

n
∣∣∣DBI(S(X; θ̂γ))−DBI(S(X; θ̂γ))

∣∣∣.
(S.21)

Next we show each summand in (S.21) converges to 0. For the first summand, we have

sup
γ∈[0,1]

n
∣∣∣D̂BI(S(X; θ̂γ))−DBI(S(X; θ̂γ))

∣∣∣
= sup

γ∈[0,1]

n
∣∣∣ 1
n

n∑
i=1

x̃i
†T
(−d)V̂ ar(η̂

†
γ)x̃i

†
(−d) −

1

n

n∑
i=1

x̃i
†T
(−d)V ar(η̂

†
γ)x̃i

†
(−d)

∣∣∣
= sup

γ∈[0,1]

∣∣∣ n∑
i=1

x̃i
†T
(−d)[(V̂ ar(η̂

†
γ)− V ar(η̂

†
γ))]x̃i

†
(−d)

∣∣∣, (S.22)

where

V ar(η̂†γ) =
Σ†0γ,(−d)

n(w†γ,d)
2

and V̂ ar(η̂†γ) =
Σ̂†γ,(−d)

n(ŵ†γ,d)
2
.

Here, ŵ†γ,d is the last dimension of θ̂
∗
γ. Since ŵ†γ,d follows the normal distribution with mean

w†γ,d and variance converging to 0, we have ŵ†γ,d = w†γ,d+oP (1), and hence (ŵ†γ,d)
2 = (w†γ,d)

2 +

oP (1) due to the boundedness of w†γ,d. In addition, uniform law of large numbers implies

that each component of Σ̂†γ − Σ†0γ uniformly converges to 0 w.r.t. γ, because each element

of Σ̂†γ is continuous w.r.t. γ (by similar arguments as in Lemma 3). Therefore, we have

n
[
V̂ ar(η̂†γ)− V ar(η̂

†
γ)
]

=
Σ̂†γ,(−d)

(ŵ†γ,d)
2
−

Σ†0γ,(−d)

(w†γ,d)
2

=
Σ̂†γ,(−d) − Σ†0γ,(−d)

(w†γ,d)
2 + oP (1)

−
Σ†0γ,(−d)oP (1)

(w†γ,d)
2[(w†γ,d)

2 + oP (1)]
, (S.23)
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where the second term in (S.23) uniformly converges to 0 due to Assumption (B1) and the

boundedness of w†γ,d. Therefore, each element of (S.23) uniformly converges to 0, which

implies that (S.22) converges to 0.

As for the second summand of (S.21), we again apply uniform law of large numbers to

show

sup
γ∈[0,1]

n
∣∣∣DBI(S(X; θ̂γ))−DBI(S(X; θ̂γ))

∣∣∣→ 0.

Note that X̃
†T
(−d)V ar(η̂γ)

†X̃
†
(−d) is continuous w.r.t. γ by similar arguments as in Lemma 3,

and

n
∣∣∣X̃†T(−d)V ar(η̂

†
γ)X̃

†
(−d)

∣∣∣ =
∣∣∣(1, (Rγx)T(−d))

TnV ar(η̂†γ)(1, (Rγx)T(−d))
∣∣∣ ≤ c4

∣∣∣1+xT(−d)x(−d)

∣∣∣ ≤ c5,

where the first inequality holds because each component of nV ar(η̂†γ) is uniformly bounded

due to the boundedness of w†γ,d and Assumption (B1). Then the uniform law of large number

implies

sup
γ∈[0,1]

n
∣∣∣DBI(S(X; θ̂γ))−DBI(S(X; θ̂γ))

∣∣∣
= sup

γ∈[0,1]

∣∣∣ 1
n

n∑
i=1

x̃i
†T
(−d)(w

†
γ,d)
−2Σ†0γ,(−d)(η̂

†
γ)x̃i

†
(−d) − E

(
X̃
†T
(−d)(w

†
γ,d)
−2Σ†0γ,(−d)X̃

†
(−d)

)∣∣∣
→ 0. (S.24)

Combining (S.22) and (S.24) leads to (S.20).

In the second step of the proof, we show n(D̂BI(S(X; θ̂γ̂0))−DBI(S(X; θ̂γ0))) ≤ oP (1)

and n(DBI(S(X; θ̂γ0)) − D̂BI(S(X; θ̂γ̂0))) ≤ oP (1), from which the desirable result (20)

follows.

Firstly, we prove

n
(
D̂BI(S(X; θ̂γ̂0))−DBI(S(X; θ̂γ0))

)
≤ oP (1).
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Denote γ̂]0 = arg minγ∈Λ̂0
DBI(S(X; θ̂γ)). For γ0 defined in (19), Theorem 4 implies that

there exists a γ̂40 ∈ Λ̂0 such that γ̂40
P→ γ0, then we have

n
(
D̂BI(S(X; θ̂γ̂0))−DBI(S(X; θ̂γ0))

)
= n

(
D̂BI(S(X; θ̂γ̂0))−DBI(S(X; θ̂γ̂]0

))
)

+ n
(
DBI(S(X; θ̂γ̂]0

))−DBI(S(X; θ̂γ̂40
))
)

+ n
(
DBI(S(X; θ̂γ̂40

))−DBI(S(X; θ̂γ0))
)

≤ n
(
D̂BI(S(X; θ̂γ̂]0

))−DBI(S(X; θ̂γ̂]0
))
)

+ n
(
DBI(S(X; θ̂γ̂]0

))−DBI(S(X; θ̂γ̂40
))
)

+ n
(
DBI(S(X; θ̂γ̂40

))−DBI(S(X; θ̂γ0))
)

≤ sup
γ∈Λ̂0

n
∣∣∣D̂BI(S(X; θ̂γ))−DBI(S(X; θ̂γ))

∣∣∣+ oP (1)

≤ oP (1), (S.25)

where D̂BI(S(X; θ̂γ̂0)) ≤ D̂BI(S(X; θ̂γ̂]0
)) according to (18), DBI(S(x; θ̂γ̂]0

)) ≤ DBI(S(x; θ̂γ̂40
))

due to γ̂]0 ∈ Λ̂0, DBI(S(X; θ̂γ̂40
)) −DBI(S(X; θ̂γ0)) = oP (n−1) according to γ̂40

P→ γ0 and

continuous mapping theorem. All these together with (S.20) lead to (S.25).

Secondly, we prove

n(DBI(S(X; θ̂γ0))− D̂BI(S(X; θ̂γ̂0))) ≤ oP (1).

Denote γ̃0 = arg minγ∈Λ0 D̂BI(S(X; θ̂γ)). For γ̂0 defined in (18), Lemma 4 implies that

there exists γ̃]0 ∈ Λ0 such that γ̂0
P→ γ̃]0, then we have

n
(
DBI(S(X; θ̂γ0))− D̂BI(S(X; θ̂γ̂0))

)
≤ n

(
DBI(S(X; θ̂γ̃0))− D̂BI(S(X; θ̂γ̃0))

)
+ n
(
D̂BI(S(X; θ̂γ̃0))− D̂BI(S(X; θ̂γ̃]0

))
)

+ n
(
D̂BI(S(X; θ̂γ̃]0

))− D̂BI(S(X; θ̂γ̂0))
)

≤ sup
γ∈Λ0

n
∣∣∣D̂BI(S(X; θ̂γ))−DBI(S(X; θ̂γ))

∣∣∣+ oP (1) ≤ oP (1), (S.26)

where DBI(S(X; θ̂γ0)) ≤ DBI(S(X; θ̂γ̃0)) by the definition of γ0, D̂BI(S(X; θ̂γ̃0)) ≤
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D̂BI(S(X; θ̂γ̃]0
)) due to the definition of γ̃0, and D̂BI(S(X; θ̂γ̃]0

)) − D̂BI(S(X; θ̂γ̂0)) =

oP (n−1) according to γ̂0
P→ γ̃]0 and continuous mapping theorem.

Consequently, combining (S.25) and (S.26) leads to n
∣∣∣D̂BI(S(X; θ̂γ̂0))−DBI(S(X; θ̂γ0))

∣∣∣→
0, which concludes the proof of Theorem 3. �

S.11. Notation Table S1
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Table S1: Important notation, its meaning, and where it first appears.

Notation Meaning Section No.

x input variable 2
x̃ x̃ = (1,xT )T 2
p(x) conditional probability P (Y = 1|X = x) 2
b,w, θ intercept, coefficient and parameter θ = (b,wT )T 2
S(x;θ) the decision boundary induced from θ 2
P(X, Y ) joint distribution of (X, Y ) 2
RL risk of loss function L 2

b0L, w0L, θ0L true intercept, coefficient, and parameter 2
(xi, yi), Dn training data Dn = {(xi, yi), i = 1, . . . , n} 2

OnL empirical risk of loss function L 2

b̂L, ŵL, θ̂L estimated intercept, coefficient, and parameter 2
D0L GE from loss function L 3.1

D̂L, D̂(θ̂L) empirical generalization error from loss function L 3.1

D̂L K-CV error from loss function L 3.1
G(θ0L), H(θ0L) the gradient matrix and Hessian matrix 3.1

WL = n1/2(D̂L −D0L) 3.1
D0(θ) = 1

2E|y0 − sign{f(x0;θ)}| 3.1

ḋ(θ) = OθE(D̂(θ)) 3.1

D0j , D̂j , D̂j GE, empirical GE, and K-CV error w.r.t Lj 3.1

∆12, ∆̂12 ∆12 = D02 −D01; ∆̂12 = D̂2 − D̂1 3.1

Wj = n1/2(D̂j −D0j) 3.1
W∆12 =W2 −W1 3.1
Gi the random variable generated from Exp(1) 3.1

θ̂
∗
j , W

∗
j , W ∗∆12

the perturbed version of the corresponding terms 3.1

θ̂
∗(r)
j , W

∗(r)
j , W

∗(r)
∆12

the corresponding terms in the rth replication 3.1

φ1,2;α the αth upper percentile of the sequence W
∗(r)
∆12

3.1

X1, . . . ,Xd the original axes 3.2
RL the transformation matrix induced from loss L 3.2

b̂†L, ŵ†L, θ̂
†
L transformed estimates of parameters 3.2

Σ†0L, Σ̂†L the covariance matrix and its transformed estimator 3.2

Σ†0L,(−d), Σ̂†L,(−d) removing last row and last column of Σ†0L and Σ̂†L 3.2

Lγ the LUM loss function indexed by γ 4

θ0γ , θ̂γ true and estimated parameter from Lγ 4
Rγ true risk from Lγ 4

D0γ , D̂γ GE and CV error from Lγ 4
γ∗0 , γ̂∗0 LUM index of minimal GE, minimal K-CV error 4

Λ0, Λ̂0 true and estimated set of potentially good classifiers 4
γ0, γ̂0 optimal index and its estimate 4
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