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Abstract: Stability is an important aspect of a classification procedure as unstable

predictions can potentially reduce users’ trust in a classification system and harm

the reproducibility of scientific conclusions. We introduce a concept of classifica-

tion instability, decision boundary instability (DBI), and incorporate it with the

generalization error (GE) as a standard for selecting the most accurate and stable

classifier. For this, we implement a two-stage algorithm: (i) select a subset of classi-

fiers whose estimated GEs are not significantly different from the minimal estimated

GE among all the candidate classifiers; (ii) take the optimal classifier to be the one

achieving the minimal DBI among the subset selected in stage (i). This selection

principle applies to both linear and nonlinear classifiers. Large-margin classifiers

are used as a prototypical example to illustrate this idea. Our selection method

is shown to be consistent in the sense that the optimal classifier simultaneously

achieves the minimal GE and the minimal DBI. Various simulations and examples

further demonstrate the advantage of our method over alternative approaches.

Key words and phrases: Asymptotic normality, large-margin, model selection, se-

lection consistency, stability.

1. Introduction

Classification aims to identify the class label of a new subject using a clas-

sifier constructed from training data whose class memberships are given. It

has been widely used in such fields as medical diagnosis, fraud detection, and

natural language processing. Classification methods have been successfully de-

veloped with classical approaches such as Fisher’s linear discriminant analy-

sis (LDA), quadratic discriminant analysis (QDA), and logistic regression (see

Hastie, Tibshirani and Friedman (2009) for a comprehensive review), and mod-

ern approaches such as the support vector machine (SVM) (Cortes and Vapnik

(1995)) and boosting (Freund and Schapire (1997)). Liu, Zhang and Wu (2011)

proposed a platform, large-margin unified machine (LUM), for unifying various

large margin classifiers ranging from soft to hard.

https://doi.org/10.5705/ss.202016.0260
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In the literature, much of the research has focused on improving the pre-

dictive accuracy of classifiers and hence generalization error (GE) is often the

primary criterion for selecting the optimal one from the rich pool of existing

classifiers; see Vapnik (1998) and Steinwart (2007). Recently, researchers have

started to explore alternative measures to evaluate the performance of classifiers.

For instance, besides prediction accuracy, computational complexity and train-

ing time of classifiers are considered in Lim, Loh and Shih (2000). Wu and Liu

(2007) proposed the robust truncated hinge loss SVM to improve the robustness

of the standard SVM. Qiao and Liu (2009) and Wang (2013) investigated several

measures of cost-sensitive weighted generalization errors for highly unbalanced

classification tasks since, in this case, GE itself is not sufficiently informative. In

this paper, we focus on the stability of a classification procedure. Stability has

received attention in statistics and machine learning. For example, Wang (2010)

employed clustering instability as a criterion to select the number of clusters;

Adomavicius and Zhang (2010) introduced stability as a new performance mea-

sure for recommender systems; Meinshausen and Bühlmann (2010) and Shah and

Samworth (2013) used stability for variable selection; Sun, Wang and Fang (2013)

applied variable selection stability for model selection, and Lim and Yu (2016) in-

corporated estimation stability into the tuning parameter selection of regularized

regression models. While successes of stability have been reported in these works,

little has been done for classification stability itself, expect for some results on

nearest neighbor classifiers (Sun, Qiao and Cheng (2016)). Consequently, there

is a need for a systematic study of stability in a general classification context.

We introduce a notion of decision boundary instability (DBI) to assess the

stability (Breiman (1996)) of a classification procedure arising from the random-

ness of training samples. Providing a stable prediction plays a crucial role on

users’ trust of a classification system. In the psychology literature, for exam-

ple, it has been shown that advice-giving agents with larger variability in past

opinions are considered less informative and less helpful than those with a more

consistent pattern of opinions (Gershoff, Mukherjee and Mukhopadhyay (2003);

Van Swol and Sniezek (2005)). Then too, scientific conclusions should be repro-

ducible with respect to small perturbations of data. Reproducible research has

recently received much attention in statistics (Yu (2013)), biostatistics (Kraft,

Zeggini and Ioannidis (2009); Peng (2009)), computational science (Donoho et

al. (2009)) and other scientific communities (Ioannidis (2005)). A classification

procedure with more stable prediction performance is preferred when researchers

aim to reproduce the reported results from randomly generated samples.
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We attempt to select the most accurate and stable classifier by incorporating

DBI into our selection process. We suggest a two-stage selection procedure: (i)

eliminate the classifiers whose GEs are significantly larger than the minimal one

among all the candidate classifiers; (ii) select the optimal classifier as that has

the minimal DBI among the remaining classifiers.

In the first stage, we show that the cross-validation estimator for the differ-

ence of GEs induced from two large-margin classifiers is asymptotically Gaussian,

which enables us to construct a confidence interval for the GE difference. If this

confidence interval contains 0, the classifiers are considered indistinguishable in

terms of GE. By applying this, we can obtain a collection of potentially good

classifiers whose GEs are close enough to the minimal value. In the second stage,

we check whether the collection of potentially good classifiers perform well in

terms of their stability by invoking a further selection criterion DBI. This mea-

sure can precisely reflect the visual variability in the decision boundaries due to

perturbed training samples.

This two-stage selection algorithm is shown to be consistent in the sense

that the selected optimal classifier simultaneously achieves the minimal GE and

the minimal DBI. The proof is nontrivial because of the stochastic nature of the

two-stage algorithm. Our method is distinguished from bias-variance analysis in

classification since the latter focuses on the decomposition of GE, e.g., Valentini

and Dietterich (2004). Our DBI also differs from the stability-oriented measure

of Bousquet and Elisseeff (2002), which was defined as the maximal difference of

the decision functions trained from the original datasets and the leave-one-out

datasets. More discussion of the connection with other variability measures is

given in Section 3.3. In the end, extensive experiments illustrate the advantage of

our selection algorithm over alternative approaches in terms of both classification

accuracy and stability.

For simplicity, we focus on linear classifiers. The nonlinear extension is

conceptually feasible by mapping the nonlinear feature space into a higher di-

mensional linear space; see the Appendix for further discussion. The rest of the

article is organized as follows. Section 2 reviews the large-margin classifiers that

are used as prototypical examples to illustrate our method. Section 3 describes

the main properties of our classifier selection procedure. Section 4 establishes the

selection consistency of the proposed selection procedure. Simulations and exam-

ples are in Section 5, followed by a brief discussion in Section 6. The Appendix

and Supplementary Materials are devoted to technical details and a notation

table.
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2. Large-Margin Classifiers

This section briefly reviews the large-margin classifiers, that serve as pro-

totypical examples to illustrate our two-stage classifier selection technique. The

proposed method is broadly applicable to general classifiers.

Let (X, Y ) ∈ Rd × {1,−1} be random variables from an underlying distri-

bution P(X, Y ). Denote the conditional probability of class Y = 1 given X = x

as p(x) = P (Y = 1|X = x), where p(x) ∈ (0, 1) to exclude the degenerate

case. Let the input variable be x = (x1, . . . , xd)
T , x̃ = (1, x1, . . . , xd)

T , with

coefficient w = (w1, . . . , wd)
T and parameter θ = (b,wT )T . The linear decision

function is defined as f(x;θ) = b + xTw = x̃Tθ with the decision boundary

S(x;θ) = {x : f(x;θ) = 0}. The performance of the classifier sign{f(x;θ)} is

measured by the classification risk E[1{Y 6= sign{f(X;θ)}}], where the expec-

tation is with respect to P(X, Y ). Since the direct minimization of this risk is

NP hard (Zhang (2004)), various convex surrogate loss functions L(·) have been

proposed to deal with this computational issue. Denote the surrogate risk as

RL(θ) = E[L(Y f(X;θ))], and assume that the minimizer of RL(θ) is obtained

at θ0L = (b0L,w
T
0L)T . Here θ0L depends on the loss function L.

Given the training sample Dn = {(xi, yi); i = 1, . . . , n} drawn from P(X, Y ),

a large-margin classifier minimizes the empirical risk

OnL(θ) =
1

n

n∑
i=1

L
(
yi(w

Txi + b)
)

+
λn
2
wTw, (2.1)

where λn is some positive tuning parameter. The estimator minimizing OnL(θ)

is denoted by θ̂L = (̂bL, ŵ
T
L)T . Common large-margin classifiers employ squared

loss L(u) = (1−u)2, exponential loss L(u) = e−u, logistic loss L(u) = log(1+e−u),

and hinge loss L(u) = (1 − u)+. There seems to be no general guideline for

selecting loss functions in practice, except for cross-validation error. Ideally, if

we had access to an arbitrarily large test set, we would choose the classifier for

which the test error was the smallest. In reality where only limited samples are

available, cross-validation error may not be able to accurately approximate the

testing error. Our goal is to establish a practically useful selection criterion by

incorporating DBI with the cross-validation error.

3. Classifier Selection Algorithm

In this section, we propose a two-stage classifier selection algorithm that

selects candidate classifiers whose estimated GEs are relatively small and deems

the optimal classifier the one with the smallest DBI from those chosen.
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3.1. Stage 1: initial screening via GE

We show that the difference of the cross-validation errors obtained from two

large-margin classifiers is asymptotically Gaussian, which enables us to construct

a confidence interval for their GE difference. We further propose a perturbation-

based resampling approach to construct this confidence interval.

Given a new input (X0, Y0) from P(X, Y ), we define the GE induced by the

loss function L as

D0L =
1

2
E|Y0 − sign{f(X0; θ̂L)}|, (3.1)

where θ̂L is based on the training sample Dn, and the expectation is with respect

to both Dn and (X0, Y0). The GE in (3.1) is equivalent to the mis-classification

risk E[1{Y0 6= sign{f(X0; θ̂L)}}]. In practice, the GE, which depends on the

underlying distribution P(X, Y ), needs to be estimated using Dn. The empirical

generalization error D̂L ≡ D̂(θ̂L) with D̂(θ) = (2n)−1
∑n

i=1 |yi − sign{f(xi;θ)}|
as an estimate suffers from the problem of overfitting (Wang and Shen (2006)).

We use the K-fold cross-validation procedure to estimate the GE; this can sig-

nificantly reduce the bias (Jiang, Zhang and Cai (2008)). We randomly split Dn
into K disjoint subgroups and denote the kth subgroup as Ik. For k = 1, . . . ,K,

we obtain the estimator θ̂L(−k) from all the data except those in Ik, and calcu-

late the empirical average D̂(θ̂L(−k)) = (2|Ik|)−1
∑

i∈Ik |yi − sign{f(xi; θ̂L(−k))}|
with |Ik| the cardinality of Ik. The K-fold cross-validation (K-CV) error is thus

computed as

D̂L = K−1
K∑
k=1

D̂(θ̂L(−k)). (3.2)

We took K = 5 for our numerical experiments.

To establish the asymptotic normality of the K-CV error D̂L for a general

loss L(·), we require certain regularity conditions.

(L1) The probability distribution function of X and the conditional probability

p(x) are continuously differentiable.

(L2) The parameter θ0L is bounded and unique.

(L3) The map θ 7→ L(yf(x;θ)) is convex.

(L4) The map θ 7→ L(yf(x;θ)) is differentiable at θ = θ0L a.s., and G(θ0L) is

element-wisely bounded, where

G(θ0L) = E
[
OθL(Y f(X;θ))OθL(Y f(X;θ))T

]∣∣∣
θ=θ0L

.
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(L5) The surrogate risk RL(θ) is bounded and twice differentiable at θ = θ0L

with positive definite Hessian matrix H(θ0L) = O2
θRL(θ)|θ=θ0L .

Assumption (L1) ensures that the uniform law of large numbers can be applied.

Assumption (L3) ensures that the uniform convergence theorem for convex func-

tions (Pollard (1991)) can be applied; it is satisfied by all the large-margin loss

functions considered in this paper. Assumptions (L4) and (L5) are required to ob-

tain the local quadratic approximation to the surrogate risk function around θ0L.

Assumptions (L2)–(L5) were previously used by Rocha, Wang and Yu (2009) to

prove the asymptotic normality of θ̂L.

Our result establishes the asymptotic normality of D̂L for any large-margin

classifier, generalizing the result for the SVM in Jiang, Zhang and Cai (2008).

Theorem 1. If (L1)–(L5) hold and λn = o(n−1/2), for any fixed K,

WL =
√
n
(
D̂L −D0L

)
d−→ N

(
0, E(ψ2

1)
)

as n→∞, (3.3)

where ψ1 = 1/2|Y1 − sign{f(X1;θ0L)}| −D0L − ḋ(θ0L)TH(θ0L)−1M1(θ0L) with

ḋ(θ) = OθE(D̂(θ)), and M1(θ) = OθL(Y1f(X1;θ)).

The proof of Theorem 1 is in Section S.1 of the online supplement. An

immediate application compares competing loss functions L1 and L2. Take their

GE difference ∆12 and its consistent estimate ∆̂12 to be D02−D01 and D̂2−D̂1,

respectively. To test whether the GEs induced by L1 and L2 are significantly

different, we need to establish an approximate confidence interval for ∆12 based

on the distribution of W∆12
≡ W2 − W1 = n1/2(∆̂12 − ∆12). We apply the

perturbation-based resampling procedure of Park and Wei (2003) to approximate

the distribution of W∆12
, this in common with Jiang, Zhang and Cai (2008) who

employed it to construct the confidence interval of SVM’s GE. Specifically, let

{Gi}ni=1 be i.i.d. random variables drawn from the exponential distribution with

unit mean and unit variance, and let

θ̂∗j = arg min
b,w

{
1

n

n∑
i=1

GiLj

(
yi(w

Txi + b)
)

+
λn
2
wTw

}
. (3.4)

Conditionally on Dn, the randomness of θ̂∗j merely comes from that of G1, . . . , Gn.

Take W ∗∆12
= W ∗2 −W ∗1 , with

W ∗j = n−1/2
n∑
i=1

{1

2

∣∣∣yi − sign{f(xi, θ̂
∗
j )}
∣∣∣− D̂j

}
Gi. (3.5)

By repeatedly generating a set of random variables {Gi, i = 1, . . . , n}, we can
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obtain a large number of realizations of W ∗∆12
to approximate the distribution of

W∆12
. The proof of the following is in the online supplement.

Theorem 2. Suppose that the assumptions in Theorem 1 hold. Then as n→∞,

W∆12

d−→ N
(

0, V ar(ψ12 − ψ11)
)
,

where ψ11 and ψ12 are defined in Section S.2 of the online supplement, and

W ∗∆12

d
=⇒ N

(
0, V ar(ψ12 − ψ11)

)
conditional on Dn,

where “=⇒” means conditional weak convergence in the sense of Hoffmann-

Jorgensen (1984).

Our algorithm summarizes the resampling procedure for establishing the

confidence interval of the GE difference ∆12.

Algorithm 1 (Generalization Error Comparison Algorithm)

Input: Training sample Dn and candidate loss functions L1 and L2.

Step 1. Calculate K-CV errors D̂1 and D̂2 induced from L1 and L2, respec-

tively.

Step 2. For r = 1, . . . , N , repeat the following steps:

(a) generate i.i.d. samples {G(r)
i }ni=1 from Exp(1);

(b) find θ̂
∗(r)
j via (3.4), W

∗(r)
j via (3.5), and calculate W

∗(r)
∆12

= W
∗(r)
2 −

W
∗(r)
1 .

Step 3. Construct the 100(1− α)% confidence interval for ∆12 as[
∆̂12 − n−1/2φ1,2;α/2, ∆̂12 − n−1/2φ1,2;1−α/2

]
,

where ∆̂12 = D̂2 − D̂1 and φ1,2;α is the αth upper percentile of {W ∗(1)
∆12

, . . . ,

W
∗(N)
∆12
}.

In our experiments, we repeated the resampling procedure N = 100 times

in Step 2, and fix α = 0.1. The effect of the choice of α is discussed at the end

of Section 3.4. The GEs of two classifiers induced from L1 and L2 are judged

as significantly different if the confidence interval established in Step 3 does not

contain 0. We apply Algorithm 1 to eliminate the classifiers whose GEs are

significantly different from the minimal GE of a set of candidate classifiers.

Employing statistical testing for classifier comparison has been successfully

applied in practice (Dietterich (1998); Demsar (2006)). In particular, Demsar
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(2006) reviewed several statistical tests in comparing two classifiers on multi-

ple data sets and recommended the Wilcoxon sign rank test, which examined

whether two classifiers were significantly different by calculating the relative rank

of their corresponding performance scores on multiple data sets. Compared to

the Wilcoxon sign rank test, our perturbed cross-validation estimator has the ad-

vantage of being theoretically justified without assuming measured performance

scores have no sampling error.

The classifiers that emerge from Algorithm 1 are potentially good. However,

their decision boundaries may change dramatically following small perturbations

of the training sample, indicating prediction instability. We introduce the DBI

to capture the prediction instability, and embed it into our classifier selection

algorithm.

3.2. Stage 2: final selection via DBI

In this section, we define the DBI and then provide an efficient way to esti-

mate it in practice.

Example 1. To motivate the DBI, we start with a simulated example using

two classifiers: squared loss L1 and hinge loss L2. We generated 100 obser-

vations from a mixture of two Gaussian distributions with equal probability:

N((−0.5,−0.5)T , I2) and N((0.5, 0.5)T , I2) with I2 an identity matrix of dimen-

sion two. In Figure 1, we plot the decision boundary S(x; θ̂j) based on Dn, and

100 perturbed decision boundaries {S(x; θ̂
∗(1)
j ), . . . , S(x; θ̂

∗(100)
j )} for j = 1, 2; see

Step 2 of Algorithm 1. Figure 1 reveals that the perturbed decision boundaries of

the squared loss are more stable than those of the SVM given a small perturba-

tion of the training sample. To quantify the variability of the perturbed decision

boundaries with respect to the original unperturbed decision boundary S(x; θ̂j)

is a nontrivial task since the boundaries spread over a d-dimensional space, d = 2

in Figure 1. We transform the data in such a way that the variability can be

fully measured in a single dimension. We find a d× d transformation matrix RL,

orthogonal with determinant 1, such that the decision boundary based on the

transformed data D†n = {(x†i , yi), i = 1, . . . , n} with x†i = RLxi is parallel to the

X1, . . . ,Xd−1 axes; see the supplementary material S.3 for the calculation of RL.

The variability of the perturbed decision boundaries with respect to the original

unperturbed decision boundary then reduces to the variability along the last axis

Xd. To illustrate, we apply the data-transformation idea to the SVM plotted in

the middle plot of Figure 1. From the right plot in Figure 1, the variability of the

transformed perturbed decision boundaries (in gray) with respect to the trans-
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Figure 1. Two classes are shown in circles and crosses. The black line is the decision
boundary based on the original training sample, and the gray lines are 100 decision
boundaries based on perturbed samples. The left (middle) panel corresponds to the least
square loss (SVM). The perturbed decision boundaries of SVM after data transformation
are shown on the right.

formed unperturbed decision boundary (in black) reduces to the variability along

the X2 axis only; the transformed unperturbed decision boundary is parallel to

the X1 axis. The choice of data transformation is not unique as, for example,

we could interchange the role of the two axes; the DBI measure we introduce is

transformation invariant.

Given the loss function L, we define the coefficient estimator based on trans-

formed data D†n as θ̂†L and the coefficient estimator of its corresponding perturbed

decision boundary as θ̂†∗L . We find the following relationship via the transforma-

tion matrix RL:

θ̂L ≡

(
b̂L
ŵL

)
⇒ θ̂†L ≡

(
b̂L

RLŵL

)
and θ̂∗L ≡

(
b̂∗L
ŵ∗L

)
⇒ θ̂†∗L ≡

(
b̂∗L

RLŵ
∗
L

)
.

This can be shown by replacing xi with RLxi in (2.1) and (3.4) and using the

property of RL. Given θ̂†∗L = (̂b∗L, ŵ
†∗
L,1, . . . , ŵ

†∗
L,d)

T , we define the d-th dimension

of S(X; θ̂†∗L ) as

Sd := −
b̂†∗L

ŵ†∗L,d
−

d−1∑
j=1

ŵ†∗L,j

ŵ†∗L,d
Xj . (3.6)

DBI is then the variability of the transformed perturbed decision bound-

ary S(X; θ̂†∗L ) with respect to the transformed unperturbed decision boundary

S(X; θ̂†L) along its d-th dimension.

Definition 1. The decision boundary instability (DBI) of S(x; θ̂L) is

DBI
(
S(X; θ̂L)

)
= E

[
V ar

(
Sd|X†(−d)

)]
, (3.7)
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where Sd is defined in (3.6) and X†(−d) = (X†1, . . . , X
†
d−1)T .

Remark 1. The conditional variance V ar(Sd|X†(−d)) in (3.7) captures the vari-

ability of the transformed perturbed decision boundary along the dth dimension

based on a given sample. After data transformation, the transformed unper-

turbed decision boundary is parallel to the X1, . . . ,Xd−1 axes. This conditional

variance precisely measures the variability of the perturbed decision boundary

with respect to the unperturbed decision boundary conditioned on the given sam-

ple. The expectation in (3.7) then averages out the randomness in the sample.

Example Continuation: We give an illustration of (3.7) via the 2-dimen-

sional example shown in the right plot of Figure 1. For each sample, the condi-

tional variance in (3.7) was estimated via the sample variability of the projected

X2 values on the perturbed decision boundary. Then the final DBI was estimated

by averaging over all samples.

In Appendix A.1, we demonstrate an efficient way to simplify (3.7) by ap-

proximating the conditional variance via the weighted variance of θ̂†L. The idea

is to connect the conditional variance of the d-th dimension of decision boundary

with the variance of the coefficients of the corresponding decision function. We

show that

DBI
(
S(X; θ̂L)

)
≈ (w†L,d)

−2E
[
X̃†T(−d)

(
n−1Σ†0L,(−d)

)
X̃†(−d)

]
, (3.8)

where w†L,d is the last entry of the transformed coefficient θ†0L, and n−1Σ†0L,(−d)

is the asymptotic variance of the first d dimensions of θ̂†L. Therefore, DBI can be

viewed as a proxy measure of the asymptotic variance of the decision function.

We propose a plug-in estimate for the approximate version of DBI in (3.8).

Direct estimation of DBI in (3.7) is possible, but it requires perturbing the trans-

formed data. To reduce the computational cost, we can take advantage of the

resampling results in Stage 1 based on the relationship between Σ†0L and Σ0L.

We can estimate Σ†0L by

Σ̂†L =

(
Σ̂b Σ̂b,wR

T
L

RLΣ̂w,b RLΣ̂wR
T
L

)
given that Σ̂L =

(
Σ̂b Σ̂b,w

Σ̂w,b Σ̂w

)
, (3.9)

where Σ̂L is the sample variance of θ̂∗L obtained from Stage 1 as a byproduct.

Hence, combining (3.8) and (3.9), we propose the estimator

D̂BI
(
S(X; θ̂L)

)
=

∑n
i=1 x̃i

†T
(−d)Σ̂

†
L,(−d)x̃i

†
(−d)

(nŵ†L,d)
2

, (3.10)
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where ŵ†L,d is the last entry of θ̂†L, and Σ̂†L,(−d) is obtained by removing the last

row and last column of Σ̂†L defined in (3.9). The DBI estimate in (3.10) is the

one we use in numerical experiments.

3.3. Relationship of DBI with other variability measures

DBI may appear to be related to the asymptotic variance E(ψ1)2 in Theorem

1. But these two quantities are quite different. When data are nearly separable,

reasonable perturbations to the data may only lead to a small variation in the

K-CV error, while small changes in the data (especially those support points near

the decision boundary) may lead to a large variation in the decision boundary

which implies a large DBI. In Section 5, we provide examples to show that these

variation measures generally lead to different choices of loss functions, and the

loss function with the smallest DBI often corresponds to the classifier that is

more accurate and stable.

While the stability-oriented measure of Bousquet and Elisseeff (2002) shares

a similar spirit as our DBI, they focus on the variability of the decision function

as opposed to the decision boundary. Their procedure is not transformation

invariant while ours is.

In the experiments, we compare our classifier selection algorithm with ap-

proaches using these two alternatives. Our method achieves superior performance

in classification accuracy and stability.

3.4. Summary of classifier selection algorithm

Algorithm 2 (Two-Stage Classifier Selection Procedure):

Input: Training sample Dn and a collection of candidate loss functions {Lj : j ∈
J}.

Step 1. Obtain the K-CV errors D̂j for each j ∈ J , with minimal value D̂t.

Step 2. Apply Algorithm 1 to establish the pairwise confidence interval for

each GE difference ∆tj . Eliminate the loss Lj if the corresponding confi-

dence interval does not cover zero. The set of potentially good classifiers

is

Λ =
{
j ∈ J : ∆̂tj − n−1/2φt,j;α/2 ≤ 0

}
,

where ∆̂tj and φt,j;α/2 are defined in Step 3 of Algorithm 1.

Step 3. Estimate DBI for each Lj , j ∈ Λ via (3.10). The optimal loss

function is Lj∗ with
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j∗ = arg min
j∈Λ

D̂BI
(
S(X; θ̂j)

)
. (3.11)

In Step 2, we fix the confidence level α = 0.1 since it provides a sufficient

but not too stringent confidence level. Our experiment in Section 6.1 further

shows that the set Λ is quite stable against α within a reasonable range around

0.1. The optimal loss function Lj∗ selected in (3.11) is not necessarily unique.

However, according to our experiments, multiple optimal loss functions are quite

uncommon. In principle we can perform an additional significance test for DBI

in Step 3, but the related computational cost is high given that DBI is already a

second-moment measure. We choose not to include this test in our algorithm.

4. Selection Consistency

This section investigates the selection consistency of our algorithm by show-

ing that the selected classifier achieves the minimal GE and minimal DBI asymp-

totically. To simplify the presentation, we establish our selection consistency via

the large-margin unified machines (LUM, Liu, Zhang and Wu (2011)); the ex-

tension to other large-margin classifiers is straightforward.

The LUM offers a platform unifying various large margin classifiers ranging

from soft to hard ones. A soft classifier estimates the class conditional probabili-

ties explicitly and makes the class prediction via the largest estimated probability,

while a hard classifier directly estimates the classification boundary without a

class-probability estimation (Wahba (2002)). The class of LUM loss functions

can be written as

Lγ(u) =


1− u if u < γ,

(1− γ)2

(
1

u− 2γ + 1

)
if u ≥ γ,

(4.1)

where the index parameter γ ∈ [0, 1]. As shown by Liu, Zhang and Wu (2011),

when γ = 1 the LUM loss reduces to the hinge loss of SVM, which is a typical

example of hard classification; when γ = 0.5 the LUM loss is equivalent to the

DWD classifier, which can be viewed as a classifier that is between hard and

soft; and when γ = 0 the LUM loss is a soft classifier that has an interesting

connection with the logistic loss. Therefore, the LUM framework approximates

many of the soft and hard classifiers in the literature. Figure 2 displays LUM

loss functions for various values of γ and compares them with some commonly

used loss functions.

In the LUM framework, we denote the true risk as Rγ(θ) = E[Lγ(yf(x;θ))],
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γ

γ

γ

Figure 2. Plots of least square, exponential, logistic, and LUM loss functions with γ =
0, 0.5, 1.

the true parameter as θ0γ = arg minθRγ(θ), the GE as D0γ , the empirical gen-

eralization error as D̂γ , and the K-CV error as D̂γ . Given data Dn, LUM solves

θ̂γ = arg min
b,w

{
1

n

n∑
i=1

Lγ

(
yi(w

Txi + b)
)

+
λnw

Tw

2

}
. (4.2)

In Corollaries 1 and 2 provided in Section S.4 of the online supplement, we

establish the asymptotic normality of θ̂γ and D̂γ , respectively. These preliminary

results are used to develop the selection consistency of our two-stage classifier

selection algorithm.

For the LUM class, the set of potentially good classifiers is

Λ̂0 =
{
γ ∈ [0, 1] : D̂γ ≤ D̂γ̂∗

0
+ n−1/2φγ,γ̂∗

0 ;α/2

}
, (4.3)

where γ̂∗0 = arg minγ∈[0,1] D̂γ , based on Dn. Its population version is defined as

those classifiers achieving the minimal GE, denoted

Λ0 =
{
γ ∈ [0, 1] : D0γ = D0γ∗

0

}
, (4.4)

where γ∗0 = arg minγ∈[0,1]D0γ . To show the selection consistency, we require an

additional assumption on the Hessian matrix H(θ0γ) defined in Corollary 1, see

the online supplement.

(B1) The smallest eigenvalue of the true Hessian matrix λmin(H(θ0γ)) ≥ c1, and

the largest eigenvalue of the true Hessian matrix λmax(H(θ0γ)) ≤ c2, where

the positive constants c1, c2 do not depend on γ.
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As seen in the proof of Corollary 1, the true Hessian matrix H(θ0γ) is positive

definite for any fixed γ ∈ [0, 1]. Therefore, Assumption (B1) is slightly stronger

in the uniform sense. It is required to guarantee the uniform convergence results,

(S.15) and (S.17), in Section S.7 of the online supplement.

Lemma 1. If (L1), (B1), and (A1) in the online supplement hold, for λn =

o(n−1/2), ∣∣∣D̂γ̂∗
0
−D0γ∗

0

∣∣∣ = OP (n−1/2). (4.5)

In the second stage, we denote the index of the selected optimal classifier as

γ̂0 = arg min
γ∈Λ̂0

D̂BI
(
S(X; θ̂γ)

)
, (4.6)

and its population version as

γ0 = arg min
γ∈Λ0

DBI
(
S(X; θ̂γ)

)
. (4.7)

Theorem 3. If the assumptions in Lemma 1 hold, as N →∞,∣∣∣D̂BI(S(X; θ̂γ̂0)
)
−DBI

(
S(X; θ̂γ0)

)∣∣∣ = oP (n−1), (4.8)

where N is the number of resamplings in Step 2 of Algorithm 1.

Theorem 3 implies that the estimated DBI of the selected classifier converges

to the DBI of the true optimal classifier, that has the smallest DBI. Therefore,

the proposed two-stage algorithm is able to select the classifier with the minimal

DBI among those classifiers having the minimal GE. In summary, we have shown

that the selected optimal classifier has achieved the minimal GE and the minimal

DBI asymptotically.

5. Experiments

In this section, we first demonstrate the DBI estimation procedure introduced

in Section 3.2, and then illustrate the applicability of our classifier selection

method in various examples. In all experiments, we compared our selection

procedure, denoted as “cv+dbi”, with two alternative methods: “cv+varcv”, the

two-stage approach selecting the loss with the minimal variance of the K-CV

error in Stage 2; “cv+be”, the two-stage approach selecting the loss with the

minimal classification stability, as in Bousquet and Elisseeff (2002), in Stage 2.

Stage 1 of each alternative approach is the same as ours. We consider six large-

margin classifier candidates: least squares loss, exponential loss, logistic loss, and

LUM with γ = 0, 0.5, 1. In all the large-margin classifiers, the tuning parameter

λn was selected via cross-validation.
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5.1. Illustration

This subsection demonstrates the DBI estimation procedure and checks the

sensitivity of the confidence level α in Algorithm 2.

We generated labels y ∈ {−1, 1} with equal probability. Given Y = y, the

predictor vector (x1, x2) was generated from a bivariate normal N((µy, µy)T , I2)

with the signal level µ = 0.8.

We first compared the estimated DBIs with the true DBIs for various sample

sizes. We varied the sample size n as 50, 100, 200, 500, and 1,000. The classifier

with the least squares loss was investigated due to its simplicity. Simple algebra

gives the true parameter θ0L = (0, 0.351, 0.351) and the transformed parameter

θ†0L = (0, 0, 0.429). The covariance matrix Σ0L and the transformed covariance

matrix Σ†0L were computed as

Σ0L =

0.439 0 0

0 0.268 −0.170

0 −0.170 0.268

 and Σ†0L =

0.439 0 0

0 0.439 0

0 0 0.098

 ,

given the transformation matrix

RL =

−
√

2

2

√
2

2
√

2

2

√
2

2

 .

Plugging these terms into (3.8) led to

DBI
(
S(X; θ̂L)

)
≈ 3.563

n
. (5.1)

Figure 3 compares the estimated DBIs in (3.10) with the true DBIs in (5.1).

They match well for various sample sizes and their difference vanishes as the

sample size increases.

To show the sensitivity of the confidence level α to the set Λ in Algorithm

2, we randomly selected one replication and found the proportion of potentially

good classifiers over all six classifiers. As α increases, the confidence interval

for the difference of GEs narrows, and hence the size of Λ will be smaller. The

change of the proportion reflects exactly the change of Λ since Λ is monotone with

respect to α. For each α ∈ {l/100; l = 0, . . . , 50}, we computed the proportion

of potentially good classifiers and observed that the proportion was stable in a

reasonable large range around 0.1.
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Figure 3. Comparison of true and estimated DBIs in Example 6.1. The true DBI for
each n is denoted as a triangle and the estimated DBIs from replicated experiments are
illustrated by box plots.

5.2. Simulations

In this section, we recount the performance of our method using four sim-

ulated examples. These simulations were previously studied by Liu, Zhang and

Wu (2011). In each simulation, the size of training data sets was 100 and that of

testing data sets was 1,000. All procedures were repeated 100 times and the av-

eraged test errors and averaged test DBIs of the selected classifier were reported.

Simulation 1: Two predictors were uniformly generated over {(x1, x2) :

x2
1 + x2

2 ≤ 1}. The class label y was 1 when x2 ≥ 0 and −1 otherwise. We

generated 100 samples and then contaminated the data by randomly flipping the

labels of 15% of the instances.

Simulation 2: The setting of Simulation 1 except that we contaminated

the data by randomly flipping the labels of 25% of the instances.

Simulation 3: The setting of Simulation 1 except that we contaminated the

data by randomly flipping the labels of 80% of the instances whose |x2| ≥ 0.7.

Simulation 4: Two predictors were uniformly generated over {(x1, x2) :

|x1| + |x2| ≤ 2}. Conditionally on X1 = x1 and X2 = x2, the class label y took

1 with probability e3(x1+x2)/(1 + e3(x1+x2)) and −1 otherwise.

We demonstrate the mechanism of our proposed method for one repetition

of Simulation 1. As shown in the upper left plot of Figure 4, exponential loss and

LUMs with γ = 0.5 or 1 are potentially good classifiers in Stage 1; they happen
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Figure 4. The K-CV error, the DBI estimate, and the perturbed decision boundaries
in Simulation 1 with flipping rate 15%. The minimal K-CV error and minimal DBI
estimate are indicated with triangles. The labels Ls, Exp, Logit, LUM0, LUM0.5, and
LUM1 refer to least squares loss, exponential loss, logistic loss, and LUM loss with index
γ = 0, 0.5, 1, respectively.

to have the same K-CV error. Their corresponding DBIs are compared in the

second stage. As shown in the upper right plot of Figure 4, LUM with γ = 0.5

gives the minimal DBI and is selected as the final classifier. In this example,

while exponential loss gives the minimal K-CV error, its decision boundary is

unstable compared to that of LUM with γ = 0.5. To show that our DBI estima-

tion is reasonable, we display the perturbed decision boundaries for these three

potentially good classifiers on the bottom of Figure 4. The relationship among

their instabilities is captured by our DBI estimate: compared with exponential

loss and LUM with γ = 1, LUM with γ = 0.5 is more stable.

We report the averaged test errors and averaged test DBIs of the classifier

selected from our method as well as two alternative approaches, see Table 1. In

the four simulated examples, “cv+dbi” achieves the smallest test errors, while

the difference among test errors of all algorithms is generally not significant. All

methods are the same during the first stage and those left from Stage 1 are all
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Table 1. The averaged test errors and averaged test DBIs (multiplied by 100) of all
methods: “cv+varcv” is the two-stage approach which selects the loss with the minimal
variance of the K-CV error in Stage 2; “cv+be” is the two-stage approach which in
Stage 2 selects the loss with the minimal classification stability defined in Bousquet and
Elisseeff (2002); “cv+dbi” is our method. The smallest value in each case is given in
bold. Standard errors are given in subscript.

Simulations cv+varcv cv+be cv+dbi
Sim 1 Error 0.1910.002 0.1940.002 0.1900.002

DBI 0.1390.043 0.1350.019 0.0810.002

Sim 2 Error 0.2960.002 0.3030.003 0.2950.002

DBI 0.2910.044 0.3180.036 0.2290.012

Sim 3 Error 0.2180.006 0.2340.006 0.2090.004

DBI 0.1240.008 0.2910.037 0.1070.003

Sim 4 Error 0.1200.001 0.1210.001 0.1190.001

DBI 0.8840.207 0.4140.106 0.2350.038

potentially good in terms of classification accuracy, but “cv+dbi” is able to choose

the classifiers with minimal test DBIs in all simulations and the improvements

over other algorithms are significant. Overall, our method is able to choose

the classifier with outstanding performance in both classification accuracy and

stability.

5.3. Examples

In this subsection, we compare our method with the alternatives on three

datasets in the UCI Machine Learning Repository (Frank and Asuncion (2010)).

The first data set is the liver disorders data set (liver) that consists of 345

samples with 6 variables of blood test measurements. The class label splits the

data into two classes with sizes 145 and 200. The second data set is the breast

cancer data set (breast) which consists of 683 samples after removing missing

values (Wolberg and Mangasarian (1990)). Each sample has 10 experimental

measurement variables and one binary class label indicating whether the sample

is benign or malignant. These 683 samples arrived periodically as Dr. Wolberg

reported his clinical cases. In total, there are 8 groups of samples which reflect the

chronological order of the data. It is expected that a good classification procedure

should generate a classifier that is stable across these groups of samples. The

third data set is the credit approval data set (credit) which consists of 690 samples

with 15 features, among which 307 samples have a positive class label and the

rest have a negative class label.

For each dataset, we randomly split the data into 2/3 training samples and
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Table 2. The averaged test errors and averaged test DBIs of all methods in real example.
The smallest value in each case is given in bold. Standard errors are given in subscript.

Data cv+varcv cv+be cv+dbi
Liver Error 0.3310.006 0.3350.006 0.3270.006

DBI 0.1400.013 0.1570.024 0.1130.012

Breast Error 0.0380.002 0.0380.002 0.0380.002

DBI 0.3880.066 0.1520.028 0.1240.023

Credit Error 0.1350.004 0.1380.004 0.1360.004
DBI 0.2290.101 0.1570.042 0.1120.023

1/3 testing samples, and reported the averaged test errors and averaged test

DBIs based on all classifier selection algorithms over 50 replications, see Table

2. Compared with the alternatives, “cv+dbi” obtains significant improvements

in DBIs and simultaneously attains satisficatory test errors that are minimal or

statistically indistinguishable to the minimal one.

6. Discussion

This paper proposes a two-stage classifier selection procedure based on GE

and DBI. It selects the classifier with the most stable decision boundary among

those classifiers with relatively small estimated GEs. The concept of DBI is quite

general, and its extension to a broader framework, e.g., multi-category classifica-

tion (Shen and Wang (2007); Zhang and Liu (2013)) or high-dimensional classifi-

cation (Fan, Feng and Tong (2012)), is conceptually simple. In particular, in the

multi-category classification, we suggest using the one-versus-all idea (Rifkin and

Klautau (2004)) to extend our DBI measure. For K classes, we compute DBIk
as the DBI between the k-th class and the other K − 1 classes, then average the

DBIs to obtain the final DBI as K−1
∑K

k=1 DBIk. When K = 2, this reduces to

our original DBI.

The extension to the nonlinear classifiers is also feasible. We give detailed

discussions of the nonlinear extension in Appendix A.2. Briefly, in Stage 1, the

asymptotic normality of the nonlinear K-CV error remains valid due to Hable

(2012); in Stage 2, measuring the instability of the nonlinear decision boundaries

is possible by mapping the nonlinear decision boundaries to a higher-dimensional

space where the projected decision boundaries are linear.

Supplementary Materials

In the online supplement, we provide all proofs, discuss the calculation of
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the transformation matrix, and provide a notation table.
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Appendix: Technical Details

In the Appendix, we discuss an efficient approximation of DBI, and propose

a nonlinear extension of our two-stage classifier selection algorithm.

A.1. Approximating DBI via (3.8)

We propose an approximate version of DBI, (3.8), which is easily estimated

in practice. According to (3.7), we can calculate DBI(S(X; θ̂L)) as

E
[
X̃†T(−d)V ar

(
η̂†∗L |X

†
(−d)

)
X̃†(−d)

]
, (A.1)

where X̃†(−d) = (1,X†T(−d))
T and η̂†∗L = (−b̂†∗L /ŵ

†∗
L,d,−ŵ

†∗
L,1/ŵ

†∗
L,d . . . ,−ŵ

†∗
L,d−1/ŵ

†∗
L,d).

To further simplify (A.1), we need the following as an intermediate step.

Theorem 4. If (L1)–(L5) hold and λn = o(n−1/2), as n→∞,
√
n(θ̂L − θ0L)

d−→ N(0,Σ0L), (A.2)
√
n(θ̂∗L − θ̂L)

d
=⇒ N(0,Σ0L) conditional on Dn, (A.3)

where Σ0L = H(θ0L)−1G(θ0L)H(θ0L)−1. After data transformation, as n→∞,
√
n(θ̂†L − θ

†
0L)

d−→ N(0,Σ†0L), (A.4)
√
n(θ̂†∗L − θ̂

†
L)

d
=⇒ N(0,Σ†0L) conditional on D†n, (A.5)

where θ†0L = (b0L,w
T
0LR

T
L)T and

Σ†0L =

(
Σb Σb,wR

T
L

RLΣw,b RLΣwR
T
L

)
if we partition Σ0L as

(
Σb Σb,w

Σw,b Σw

)
.

We omit the proof of Theorem 4 since (A.2) and (A.3) directly follow from

(S.1) and Appendix D in Jiang, Zhang and Cai (2008), and (A.4) and (A.5)

follow from the Delta method.

Let η̂†L = (−b̂†L/ŵ
†
L,d,−ŵ

†
L,1/ŵ

†
L,d . . . ,−ŵ

†
L,d−1/ŵ

†
L,d). According to (A.4)
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and (A.5), we know that V ar(η̂†∗L |X
†
(−d)) is a consistent estimate of V ar(η̂†L) be-

cause η̂†∗L and η̂†L can be written as the same function of θ̂†∗L and θ̂†L, respectively.

Hence, we claim that

DBI
(
S(X; θ̂L)

)
≈ E

(
X̃†T(−d)V ar(η̂

†
L)X̃†(−d)

)
.

Furthermore, we can approximate V ar(η̂†L) by (w†L,d)
−2[n−1Σ†0L,(−d)], where

n−1Σ†0L,(−d) is the asymptotic variance of the first d dimensions of θ̂†L, since

ŵ†L,d is asymptotically normal with mean w†L,d and variance converging to 0 as

n grows (Hinkley (1969)). Finally, we can get the desirable approximation (3.8)

for DBI.

A.2. Nonlinear extension

The extension of our two-stage algorithm to nonlinear classifiers contains

two aspects: asymptotic normality of the K-CV error in Stage 1; the application

of DBI in Stage 2. The former is still valid due to Hable (2012), and the latter

is feasible by mapping the nonlinear decision boundaries to a higher dimensional

space where the projected decision boundaries are linear.

Extension of Stage 1: We first modify several key concepts. The loss

L : X × Y × R → [0,∞) is convex if it is convex in its third argument for every

(x, y) ∈ X × Y. A reproducing kernel Hilbert space (RKHS) H is a space of

functions f : X → R which is generated by a kernel k : X × X → R. Here the

kernel k could be a linear kernel, a Gaussian RBF kernel, or a polynomial kernel.

Given i.i.d training samples Dn = {(xi, yi); i = 1, . . . , n} drawn from P =

(X,Y ), the empirical function fL,Dn,λn
solves

min
f∈H

1

n

n∑
i=1

L(xi, yi, f(xi)) + λn‖f‖2H.

In the nonparametric case, the optimization problem of minimizing popu-

lation risk is ill-posed because a solution is not necessarily unique, and small

changes in P may have large effects on the solution. Therefore it is common

to impose a bound on the complexity of the predictor and estimate a smoother

approximation to the population version (Hable (2012)). For a fixed λ0 ∈ (0,∞),

we denote fL,P,λ0
as the population function which solves

min
f∈H

∫
L(x, y, f(x))P (d(x, y)) + λ0‖f‖2H.

The following conditions are assumed in Hable (2012) to prove the asymp-

totic normality of the estimated kernel decision function.
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(N1) The loss L is a convex, P-square-integrable Nemitski loss function of order

p ∈ [1,∞).

(N2) The partial derivatives L′(x, y, t) := ∂L(x, y, t)/∂t and L′′(x, y, t) := ∂2L(x,

y, t)/∂2t exist for every (x, y, t) ∈ X × Y × R and are continuous.

(N3) For every a ∈ (0,∞), there is b′a ∈ L2(P ) and b′′a ∈ [0,∞) such that, for every

(x, y) ∈ X×Y, supt∈[−a,a] |L′(x, y, t)| ≤ b′a(x, y) and supt∈[−a,a] |L′′(x, y, t)| ≤
b′′a.

Proposition 1. (Theorem 3.1, Hable (2012)) If (N1)-(N3) hold and λn = λ0 +

o(n−1/2), for every λ0 ∈ (0,∞), there is a tight, Borel-measurable Gaussian

process H : Ω→ H such that
√
n(fL,Dn,λn

− fL,P,λ0
)→ H.

Remark 2. Least squares, exponential, and logistic losses all satisfy (N1)-(N3),

while LUM loss is not differentiable and does not satisfy (N2). Hable (2012)

showed that any Lipschitz-continuous loss function (e.g. LUM loss) can be mod-

ified as a differentiable ε−version of the loss function such that (N1)-(N3) are

satisfied; see Remark 3.5 in Hable (2012).

In the nonlinear case, the GE D0L and the K-CV error D̂L are modified

accordingly. The asymptotic normality of WL =
√
n(D̂L − D0L) follows from

Proposition 1, Corollary 3.3 in Hable (2014), and a slight modification of the

proof of our Theorem 1. Then a perturbation-based resampling approach can be

constructed analogously to Algorithm 1.

Extension of Stage 2: The concept of DBI is defined for linear decision

boundaries. In order to measure the instability of nonlinear decision boundaries,

we map the nonlinear decision boundaries to a higher dimensional space where

the projected decision boundaries are linear.

Here we illustrate the estimation procedure via a bivariate normal example

with sample size n = 400. Assume the underlying distributions of the two classes

are f1 = N((−1,−1)T , I2) and f2 = N((1, 1)T , 2I2) with equal prior probability.

We map the input {x1, x2} to the polynomial basis {x1, x2, x1x2, x
2
1, x

2
2} and fit

the linear large-margin classifiers using the expanded inputs. The instability of

the original nonlinear decision boundary comes down to the instability of the

linear boundaries in the expanded space. Figure A1 demonstrates 100 nonlinear

perturbed decision boundaries for the least squares and SVM losses, where the

former is visually more stable than the latter. Indeed, their corresponding DBI

estimations in the expanded space capture this relationship in that the estimated

DBI of the former is 0.017 and that of the latter is 0.354.
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Figure A1. The nonlinear perturbed decision boundaries for the least squares loss (left)
and SVM (right) in the bivariate normal example with unequal variances.
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