Computerized Adaptive Testing that Allows for Response Revision: Design and Asymptotic Theory

Shiyu Wang ${ }^{1}$, Georgios Fellouris ${ }^{2}$ and Hua-Hua Chang ${ }^{2}$
University of Georgia ${ }^{1}$ and University of Illinois at Urbana Champaign ${ }^{2}$
\section*{Supplementary Material}

This note contains the proofs of Theorems in section 2, 3 and 4 as well as the histogram for the item parameters used in the simulation study

S1 Proofs in Section 2

Proof of Lemma 1. The continuity of g^{*} and g_{*} follows from the so-called Maximum Theorem (see, e.g., Sundaram, R.K.(1996), p. 239). In order to prove the remaining part of the Lemma, we can assume without loss of generality that $g\left(x_{0} ; \mathbf{b}\right)=0$ for every $\mathbf{b} \in \mathbb{B}$. Indeed, if this is not the case, then we can work with $g\left(x_{n}, \mathbf{b}\right)-g\left(x_{0}, \mathbf{b}\right)$. Then, for any given n we have

$$
\sup _{\mathbf{b} \in \mathbb{B}}\left|g\left(x_{n} ; \mathbf{b}\right)\right|=\sup _{\mathbf{b} \in \mathbb{B}} \max \left\{g\left(x_{n} ; \mathbf{b}\right),-g\left(x_{n} ; \mathbf{b}\right)\right\} \leq \max \left\{g^{*}\left(x_{n}\right),-g_{*}\left(x_{n}\right)\right\},
$$

and consequently

$$
\limsup _{n} \sup _{\mathbf{b} \in \mathbb{B}}\left|g\left(x_{n} ; \mathbf{b}\right)\right| \leq \max \left\{g^{*}\left(x_{0}\right),-g_{*}\left(x_{0}\right)\right\}=0,
$$

which completes the proof.

Proof of Lemma 2. For any θ and \mathbf{b} we have

$$
|s(\theta ; b, \cdot)| \leq \max _{1 \leq k \leq m}\left|a_{k}-\bar{a}(\theta ; \mathbf{b})\right| \leq 2 a^{*}(\mathbf{b}) \leq 2 \sup _{\mathbf{b} \in \mathbb{B}} a^{*}(\mathbf{b})
$$

Moreover,

$$
0<J(\theta ; \mathbf{b}) \leq \sum_{k=1}^{m} a_{k}^{2} p_{k}(\theta ; \mathbf{b}) \leq m\left(a^{*}(\mathbf{b})\right)^{2} \leq m \sup _{\mathbf{b} \in \mathbb{B}}\left(a^{*}(\mathbf{b})\right)^{2}
$$

where the first inequality holds because the a_{k} 's cannot be identical due to (2.2). When \mathbb{B} is compact, the upper bounds are finite and do not depend on \mathbf{b} or θ. On the other hand, from Lemma 1 it follows that J_{*} is continuous, therefore $J_{*}(\theta)>0$ for every θ when \mathbb{B} compact. \diamond

S2 Proofs in Section 3

Proof of Lemma 3. The final ability estimator, $\hat{\theta}_{n}$, is not a root of $S_{n}(\theta)$ on the event $A_{n} \cup B_{n}$, where

$$
A_{n}=\left\{X_{i} \in k^{*}\left(\mathbf{b}_{i}\right), \forall 1 \leq i \leq n\right\}, \quad B_{n}=\left\{X_{i} \in k_{*}\left(\mathbf{b}_{i}\right), \forall 1 \leq i \leq n\right\}
$$

Thus, it suffices to show that $\mathrm{P}_{\theta}\left(\limsup _{n} A_{n}\right)=0$ and $\mathrm{P}_{\theta}\left(\limsup _{n} B_{n}\right)=0$. We will prove only the first identity, since the second can be shown in a similar way. Indeed, $\mathrm{P}_{\theta}\left(A_{n}\right)=$ $\mathrm{E}_{\theta}\left[\mathrm{P}_{\theta}\left(A_{n} \mid \mathbf{b}_{1: n}\right)\right]$ and

$$
\mathrm{P}_{\theta}\left(A_{n} \mid \mathbf{b}_{1: n}\right)=\prod_{i=1}^{n} \mathrm{P}_{\theta}\left(X_{i} \in k^{*}\left(\mathbf{b}_{i}\right)\right)=\prod_{i=1}^{n} p^{*}\left(\theta ; \mathbf{b}_{i}\right) \leq\left(p^{*}(\theta)\right)^{n}
$$

where the first equality follows the assumption of conditional independence (3.2), whereas the second identity and the inequality follow from the following definitions:

$$
p^{*}(\theta ; \mathbf{b}):=\sum_{j \in k^{*}(\mathbf{b})} p_{j}(\theta ; \mathbf{b}), \quad p^{*}(\theta):=\sup _{\mathbf{b} \in \mathbb{B}} p^{*}(\theta ; \mathbf{b}) .
$$

Since $p^{*}(\theta ; \mathbf{b})$ is jointly continuous and \mathbb{B} is compact, from Lemma 1 it follows that $p^{*}(\theta)<1$. Therefore, $\sum_{n=1}^{\infty} \mathrm{P}_{\theta}\left(A_{n}\right)<\infty$, and from the Borel-Cantelli lemma we obtain $\mathrm{P}_{\theta}\left(\lim \sup _{n} A_{n}\right)=$ 0 , which completes the proof.

Proof of Lemma 4. Fix $n \in \mathbb{N}$. Then, $S_{n}(\theta)-S_{n-1}(\theta)=s\left(\theta ; \mathbf{b}_{n}, X_{n}\right)$, and from Lemma 2 it follows that $\left|S_{n}(\theta)-S_{n-1}(\theta)\right| \leq K$. Moreover, since \mathbf{b}_{n} is \mathcal{F}_{n-1}-measurable, from representation (2.5) it follows that

$$
\mathrm{E}_{\theta}\left[S_{n}(\theta)-S_{n-1}(\theta) \mid \mathcal{F}_{n-1}\right]=\mathrm{E}_{\theta}\left[s\left(\theta ; \mathbf{b}_{n}, X_{n}\right) \mid \mathcal{F}_{n-1}\right]=0,
$$

which proves the martingale property of $S_{n}(\theta)$. Next, from (2.5)-(2.6) it follows that

$$
\mathrm{E}_{\theta}\left[\left(S_{n}(\theta)-S_{n-1}(\theta)\right)^{2} \mid \mathcal{F}_{n-1}\right]=\mathrm{E}_{\theta}\left[s^{2}\left(\theta ; \mathbf{b}_{n}, X_{n}\right) \mid \mathcal{F}_{n-1}\right]=J\left(\theta ; \mathbf{b}_{n}\right)
$$

which proves that $\langle S(\theta)\rangle_{n}=\sum_{i=1}^{n} J\left(\theta ; \mathbf{b}_{i}\right)$.
\diamond

Proof of Theorem 3.1. Let $\left(\mathbf{b}_{n}\right)_{n \in \mathbb{N}}$ be an arbitrary item selection strategy. From Lemma 4 it follows that $S_{n}(\theta)$ is a P_{θ}-martingale with mean 0 and predictable variation $I_{n}(\theta) \geq n J_{*}(\theta) \rightarrow$ ∞, since $J_{*}(\theta)>0$. Then, from the Martingale Strong Law of Large Numbers (see, e.g., Williams, D.(1991), p. 124), it follows that as $n \rightarrow \infty$

$$
\begin{equation*}
\frac{S_{n}(\theta)}{I_{n}(\theta)} \rightarrow 0 \quad \mathrm{P}_{\theta}-\mathrm{a} . \mathrm{s} . \tag{S2.1}
\end{equation*}
$$

From a Taylor expansion of $S_{n}(\theta)$ around $\hat{\theta}_{n}$ it follows that there exists some $\tilde{\theta}_{n}$ that lies between $\hat{\theta}_{n}$ and θ such that

$$
\begin{align*}
0=S_{n}\left(\hat{\theta}_{n}\right) & =S_{n}(\theta)+S_{n}^{\prime}\left(\tilde{\theta}_{n}\right)\left(\hat{\theta}_{n}-\theta\right) \tag{S2.2}\\
& =S_{n}(\theta)-I_{n}\left(\tilde{\theta}_{n}\right)\left(\hat{\theta}_{n}-\theta\right) \quad \mathrm{P}_{\theta}-\mathrm{a.s.}
\end{align*}
$$

where the second equality follows from (3.6). From (??) and (??) we then obtain

$$
\frac{I_{n}\left(\tilde{\theta}_{n}\right)}{I_{n}(\theta)}\left(\hat{\theta}_{n}-\theta\right) \rightarrow 0 \quad \mathrm{P}_{\theta}-\text { a.s. }
$$

The strong consistency of $\hat{\theta}_{n}$ will then follow as long as we can guarantee that the fraction in the last relationship remains bounded away from 0 as $n \rightarrow \infty$. However, for every n we have

$$
\frac{I_{n}\left(\tilde{\theta}_{n}\right)}{I_{n}(\theta)}=\frac{\sum_{i=1}^{n} J\left(\tilde{\theta}_{n} ; \mathbf{b}_{i}\right)}{\sum_{i=1}^{n} J\left(\theta ; \mathbf{b}_{i}\right)} \geq \frac{n J_{*}\left(\tilde{\theta}_{n}\right)}{n J^{*}(\theta)}=\frac{J_{*}\left(\tilde{\theta}_{n}\right)}{J^{*}(\theta)}
$$

Since $J^{*}(\theta)>0$, it suffices to show that $\mathrm{P}_{\theta}\left(\lim _{\inf }^{n} J_{*}\left(\tilde{\theta}_{n}\right)>0\right)=1$. Since $J_{*}(\theta)$ is continuous, positive and bounded away from 0 when $|\theta|$ is bounded away from infinity (Lemma 2) and $\tilde{\theta}_{n}$
lies between $\hat{\theta}_{n}$ and θ, it suffices to show that

$$
\begin{equation*}
\mathrm{P}_{\theta}\left(\limsup _{n}\left|\hat{\theta}_{n}\right|=\infty\right)=0 \tag{S2.3}
\end{equation*}
$$

In order to prove (??), we observe first of all that since $S_{n}\left(\hat{\theta}_{n}\right)=0$ for large n, (??) can be rewritten as follows:

$$
\begin{equation*}
\frac{S_{n}(\theta)-S_{n}\left(\hat{\theta}_{n}\right)}{I_{n}(\theta)} \rightarrow 0 \quad \mathrm{P}_{\theta}-\text { a.s. } \tag{S2.4}
\end{equation*}
$$

But for every n we have $I_{n}(\theta) \leq n J^{*}(\theta)$ and

$$
\begin{aligned}
S_{n}(\theta)-S_{n}\left(\hat{\theta}_{n}\right) & =\sum_{i=1}^{n}\left[s\left(\theta ; \mathbf{b}_{i}, X_{i}\right)-s\left(\hat{\theta}_{n} ; \mathbf{b}_{i}, X_{i}\right)\right] \\
& =\sum_{i=1}^{n}\left[\bar{a}\left(\hat{\theta}_{n} ; \mathbf{b}_{i}\right)-\bar{a}\left(\theta ; \mathbf{b}_{i}\right)\right] \geq n \inf _{\mathbf{b} \in \mathbb{B}}\left[\bar{a}\left(\hat{\theta}_{n} ; \mathbf{b}\right)-\bar{a}(\theta ; \mathbf{b})\right],
\end{aligned}
$$

therefore we obtain

$$
\begin{equation*}
\frac{S_{n}(\theta)-S_{n}\left(\hat{\theta}_{n}\right)}{I_{n}(\theta)} \geq \frac{\inf _{\mathbf{b} \in \mathbb{B}}\left[\bar{a}\left(\hat{\theta}_{n} ; \mathbf{b}\right)-\bar{a}(\theta ; \mathbf{b})\right]}{J^{*}(\theta)} \tag{S2.5}
\end{equation*}
$$

On the event $\left\{\lim \sup _{n} \hat{\theta}_{n}=\infty\right\}$ there exists a subsequence $\left(\hat{\theta}_{n_{j}}\right)$ of $\left(\hat{\theta}_{n}\right)$ such that $\hat{\theta}_{n_{j}} \rightarrow$ ∞. Consequently, for any $\mathbf{b} \in \mathbb{B}$ we have

$$
\begin{equation*}
\lim _{n_{j} \rightarrow \infty}\left[\bar{a}\left(\hat{\theta}_{n_{j}} ; \mathbf{b}\right)-\bar{a}(\theta ; \mathbf{b})\right]=a^{*}(\mathbf{b})-\bar{a}(\theta ; \mathbf{b})>0 \tag{S2.6}
\end{equation*}
$$

and from Lemma 1 we obtain

$$
\begin{equation*}
\liminf _{n_{j} \rightarrow \infty} \inf _{\mathbf{b} \in \mathbb{B}}\left[\bar{a}\left(\hat{\theta}_{n_{j}} ; \mathbf{b}\right)-\bar{a}(\theta ; \mathbf{b})\right] \geq \inf _{\mathbf{b} \in \mathbb{B}}\left[a^{*}(\mathbf{b})-\bar{a}(\theta ; \mathbf{b})\right]>0 . \tag{S2.7}
\end{equation*}
$$

From (??) and (??) it follows that

$$
\liminf _{n_{j} \rightarrow \infty} \frac{S_{n_{j}}(\theta)-S_{n_{j}}\left(\hat{\theta}_{n_{j}}\right)}{I_{n_{j}}(\theta)}>0
$$

and comparing with (??) we conclude that $\mathrm{P}_{\theta}\left(\lim \sup _{n} \hat{\theta}_{n}=\infty\right)=0$. In an identical way we can show that $\mathrm{P}_{\theta}\left(\liminf _{n} \hat{\theta}_{n}=-\infty\right)=0$, which establishes (??) and completes the proof of the
strong consistency of $\hat{\theta}_{n}$. In order to prove (3.7), we observe that

$$
\begin{aligned}
\frac{\left|I_{n}\left(\hat{\theta}_{n}\right)-I_{n}(\theta)\right|}{I_{n}(\theta)} & \leq \frac{1}{n J_{*}(\theta)} \sum_{i=1}^{n}\left|J\left(\hat{\theta}_{n} ; \mathbf{b}_{i}\right)-J\left(\theta ; \mathbf{b}_{i}\right)\right| \\
& \leq \frac{1}{J_{*}(\theta)} \sup _{\mathbf{b} \in \mathbb{B}}\left|J\left(\hat{\theta}_{n} ; \mathbf{b}\right)-J(\theta ; \mathbf{b})\right|
\end{aligned}
$$

But since $J(\theta ; \mathbf{b})$ is jointly continuous and $\hat{\theta}_{n}$ strongly consistent, from Lemma 1 it follows that

$$
\begin{equation*}
\sup _{\mathbf{b} \in \mathbb{B}}\left|J\left(\hat{\theta}_{n} ; \mathbf{b}\right)-J(\theta ; \mathbf{b})\right| \rightarrow 0 \quad \mathrm{P}_{\theta}-\text { a.s. } \tag{S2.8}
\end{equation*}
$$

which completes the proof, since from Lemma 2 we know that $J_{*}(\theta)>0$.

S3 Proofs in Section 4

Proof of Lemma 5. (i) After $t-1$ responses, the examinee either proceeds to a new item or revises a previous item. Therefore, the difference $S_{t}(\theta)-S_{t-1}(\theta)$ admits the following decomposition:

$$
\begin{equation*}
s\left(\theta ; \mathbf{b}_{f_{t}}, X_{1}^{f_{t}}\right) \mathbb{1}_{\left\{d_{t-1}=0\right\}}+\sum_{i \in C_{t-1}} s\left(\theta ; \mathbf{b}_{i}, X_{g_{t}^{i}}^{i} \mid X_{1: g_{t}^{i}-1}^{i}\right) \mathbb{1}_{\left\{d_{t-1}=i\right\}} \tag{S3.1}
\end{equation*}
$$

where the sum in the second term is understood to be 0 when C_{t-1} is the empty set. Since d_{t-1}, C_{t-1} are \mathcal{F}_{t-1}-measurable, taking conditional expectations with respect to \mathcal{F}_{t-1} we obtain

$$
\begin{aligned}
\mathrm{E}_{\theta}\left[S_{t}(\theta)-S_{t-1}(\theta) \mid \mathcal{F}_{t-1}\right] & =\mathrm{E}_{\theta}\left[s\left(\theta ; \mathbf{b}_{f_{t}}, X_{1}^{f_{t}}\right) \mid \mathcal{F}_{t-1}\right] \mathbb{1}_{\left\{d_{t-1}=0\right\}} \\
& +\sum_{i \in C_{t-1}} \mathrm{E}_{\theta}\left[s\left(\theta ; \mathbf{b}_{i}, X_{g_{t}^{i}}^{i} \mid X_{1: g_{t}^{i}-1}^{i}\right) \mid \mathcal{F}_{t-1}\right] \mathbb{1}_{\left\{d_{t-1}=i\right\}}
\end{aligned}
$$

Since f_{t} and g_{t}^{i} are \mathcal{F}_{t-1}-measurable, it follows that

$$
\mathrm{E}_{\theta}\left[s\left(\theta ; \mathbf{b}_{f_{t}}, X_{1}^{f_{t}}\right) \mid \mathcal{F}_{t-1}\right]=0=\mathrm{E}_{\theta}\left[s\left(\theta ; \mathbf{b}_{i}, X_{g_{t}^{i}}^{i} \mid X_{1: g_{t}^{i}-1}^{i}\right) \mid \mathcal{F}_{t-1}\right],
$$

which proves that $S_{t}(\theta)$ is a zero-mean \mathcal{F}_{t}-martingale under P_{θ}. From (??) we also have

$$
\begin{aligned}
& \mathrm{E}_{\theta}\left[\left(S_{t}(\theta)-S_{t-1}(\theta)\right)^{2} \mid \mathcal{F}_{t-1}\right] \\
& =J\left(\theta ; \mathbf{b}_{f_{t}}\right) \mathbb{1}_{\left\{d_{t-1}=0\right\}}+\sum_{i \in C_{t-1}} J\left(\theta ; \mathbf{b}_{i} \mid X_{1: g_{t}^{i}-1}^{i}\right) \mathbb{1}_{\left\{d_{t-1}=i\right\}}
\end{aligned}
$$

and, consequently, the predictable variation of $S_{t}(\theta)$ will be

$$
\begin{aligned}
\langle S(\theta)\rangle_{t} & :=\sum_{s=1}^{t} \mathrm{E}_{\theta}\left[\left(S_{s}(\theta)-S_{s-1}(\theta)\right)^{2} \mid \mathcal{F}_{s-1}\right] \\
& =\sum_{s=1}^{t}\left[J\left(\theta ; \mathbf{b}_{f_{s}}\right) \mathbb{1}_{\left\{d_{s-1}=0\right\}}+\sum_{j \in C_{s-1}} J\left(\theta ; \mathbf{b}_{j} \mid X_{1: g_{s-1}^{j}}^{j}\right) \mathbb{1}_{\left\{d_{s-1}=j\right\}}\right]=I_{t} .
\end{aligned}
$$

(ii) This follows from the Optional Sampling Theorem and the fact that $\left(\tau_{n}\right)_{n \in \mathbb{N}}$ is a strictly increasing sequence of $\left\{\mathcal{F}_{t}\right\}_{t \in \mathbb{N}}$-stopping times that are bounded, since $\tau_{n} \leq(m-1) n$ for every $n \in \mathbb{N}$.

Proof of Theorem 4.1. From Lemma 5 we have that $S_{\tau_{n}}(\theta)$ is a $\left\{\mathcal{F}_{\tau_{n}}\right\}$-martingale with predictable variation $I_{\tau_{n}}(\theta)$. Moreover, from (4.10) we have $I_{\tau_{n}}(\theta) \geq n J_{*}(\theta) \rightarrow \infty$ and from the Martingale Strong Law of Large Numbers (Williams, D. (1991), p. 124) it follows that

$$
\begin{equation*}
\frac{S_{\tau_{n}}(\theta)}{I_{\tau_{n}}(\theta)} \rightarrow 0 \quad \mathrm{P}_{\theta}-\mathrm{a} . \mathrm{s} . \tag{S3.2}
\end{equation*}
$$

Since $S_{\tau_{n}}\left(\hat{\theta}_{\tau_{n}}\right)=0$ for large enough n with probability 1 , with a Taylor expansion around θ we have

$$
\begin{align*}
0=S_{\tau_{n}}\left(\hat{\theta}_{\tau_{n}}\right) & =S_{\tau_{n}}(\theta)+S_{\tau_{n}}^{\prime}\left(\tilde{\theta}_{\tau_{n}}\right)\left(\hat{\theta}_{\tau_{n}}-\theta\right) \tag{S3.3}\\
& =S_{\tau_{n}}(\theta)-I_{\tau_{n}}\left(\tilde{\theta}_{\tau_{n}}\right)\left(\hat{\theta}_{\tau_{n}}-\theta\right) \quad \mathrm{P}_{\theta}-\text { a.s. }
\end{align*}
$$

where $\tilde{\theta}_{\tau_{n}}$ lies between $\hat{\theta}_{\tau_{n}}$ and θ, and (??) takes the form

$$
\frac{I_{\tau_{n}}\left(\tilde{\theta}_{\tau_{n}}\right)}{I_{\tau_{n}}(\theta)}\left(\hat{\theta}_{\tau_{n}}-\theta\right) \rightarrow 0 \quad \mathrm{P}_{\theta}-\text { a.s. }
$$

However, since $\tau_{n} \leq(m-1) n$ and $J_{*}(\theta) f_{t} \leq I_{t}(\theta) \leq K t$ for every t, we have

$$
\frac{I_{\tau_{n}}\left(\tilde{\theta}_{\tau_{n}}\right)}{I_{\tau_{n}}(\theta)} \geq \frac{n J_{*}\left(\tilde{\theta}_{\tau_{n}}\right)}{\tau_{n} K} \geq \frac{1}{(m-1) K} J_{*}\left(\tilde{\theta}_{\tau_{n}}\right)
$$

and it suffices to show that

$$
\begin{equation*}
\limsup _{n}\left|\hat{\theta}_{\tau_{n}}\right|<\infty \quad \mathrm{P}_{\theta}-\text { a.s } \tag{S3.4}
\end{equation*}
$$

For large n we have $S_{\tau_{n}}\left(\hat{\theta}_{\tau_{n}}\right)=0$ and (??) can be rewritten as follows

$$
\begin{equation*}
\frac{S_{\tau_{n}}(\theta)-S_{\tau_{n}}\left(\hat{\theta}_{\tau_{n}}\right)}{I_{\tau_{n}}(\theta)} \rightarrow 0 \quad \mathrm{P}_{\theta}-\mathrm{a} . \mathrm{s} . \tag{S3.5}
\end{equation*}
$$

But from the definition of the score function in (4.8) it follows that

$$
\begin{aligned}
& S_{\tau_{n}}(\theta)-S_{\tau_{n}}\left(\hat{\theta}_{\tau_{n}}\right) \\
& =\sum_{i=1}^{n}\left[\left(s\left(\theta ; \mathbf{b}_{i}\right)-s\left(\hat{\theta}_{\tau_{n}} ; \mathbf{b}_{i}\right)\right)+\sum_{j=2}^{g_{\tau_{n}}^{i}}\left(s\left(\theta ; \mathbf{b}_{i}, X_{j}^{i} \mid X_{1: j-1}^{i}\right)-s\left(\hat{\theta}_{\tau_{n}} ; \mathbf{b}_{i}, X_{j}^{i} \mid X_{1: j-1}^{i}\right)\right)\right] \\
& =\sum_{i=1}^{n}\left[\left(\bar{\alpha}\left(\hat{\theta}_{\tau_{n}} ; \mathbf{b}_{i}\right)-\bar{\alpha}\left(\theta ; \mathbf{b}_{i}\right)\right)+\sum_{j=2}^{g_{\tau_{n}}^{i}}\left(\bar{\alpha}\left(\hat{\theta}_{\tau_{n}} ; \mathbf{b}_{i} \mid X_{1: j-1}^{i}\right)-\bar{\alpha}\left(\theta ; \mathbf{b}_{i} \mid X_{1: j-1}^{i}\right)\right)\right] \\
& \geq n \inf _{\mathbf{b} \in \mathbb{B}}\left[\bar{\alpha}\left(\hat{\theta}_{\tau_{n}} ; \mathbf{b}\right)-\bar{\alpha}(\theta ; \mathbf{b})\right] \\
& +\left(\tau_{n}-n\right) \min _{2 \leq j \leq m-1} \min _{X_{1: j-1}} \inf _{\mathbf{b} \in \mathbb{B}}\left[\bar{\alpha}\left(\hat{\theta}_{\tau_{n}} ; \mathbf{b} \mid X_{1: j-1}\right)-\bar{\alpha}\left(\theta ; \mathbf{b} \mid X_{1: j-1}\right)\right],
\end{aligned}
$$

where $X_{1: j-1}:=\left(X_{1}, \ldots, X_{j-1}\right)$ is a vector of $j-1$ distinct responses on an item with parameter b. On the other hand, $I_{\tau_{n}}(\theta) \leq \tau_{n} K$, which implies that

$$
\begin{aligned}
\frac{S_{\tau_{n}}(\theta)-S_{\tau_{n}}\left(\hat{\theta}_{\tau_{n}}\right)}{I_{\tau_{n}}(\theta)} & \geq \frac{1}{K} \inf _{\mathbf{b} \in \mathbb{B}}\left[\bar{\alpha}\left(\hat{\theta}_{\tau_{n}} ; \mathbf{b}\right)-\bar{\alpha}(\theta ; \mathbf{b})\right] \\
& +\frac{1}{K} \min _{2 \leq j \leq m-1} \min _{X_{1: j-1}} \inf _{\mathbf{b} \in \mathbb{B}}\left[\bar{\alpha}\left(\hat{\theta}_{\tau_{n}} ; \mathbf{b} \mid X_{1: j-1}\right)-\bar{\alpha}\left(\theta ; \mathbf{b} \mid X_{1: j-1}\right)\right] .
\end{aligned}
$$

On the event $\left\{\lim \sup _{n} \hat{\theta}_{\tau_{n}} \rightarrow \infty\right\}$ there is a subsequence $\left(\hat{\theta}_{\tau_{n_{j}}}\right)$ of $\left(\hat{\theta}_{\tau_{n}}\right)$ such that $\hat{\theta}_{\tau_{n_{j}}} \rightarrow \infty$ and from (??) we have

$$
\liminf _{n_{j} \rightarrow \infty} \inf _{\mathbf{b} \in \mathbb{B}}\left[\bar{\alpha}\left(\hat{\theta}_{\tau_{n_{j}}} ; \mathbf{b}\right)-\bar{\alpha}(\theta ; \mathbf{b})\right]>0
$$

Similarly, due to Lemma 6 (ii), for any $2 \leq j \leq m-1$ and $X_{1: j-1}$ we have

$$
\liminf _{n_{j} \rightarrow \infty} \inf _{\mathbf{b} \in \mathbb{B}}\left[\bar{\alpha}\left(\hat{\theta}_{\tau_{n_{j}}} ; \mathbf{b} \mid X_{1: j-1}\right)-\bar{\alpha}\left(\theta ; \mathbf{b} \mid X_{1: j-1}\right)\right] \geq 0 .
$$

Therefore,

$$
\liminf _{n_{j}} \frac{S_{\tau_{n_{j}}}(\theta)-S_{\tau_{n_{j}}}\left(\hat{\theta}_{\tau_{n_{j}}}\right)}{I_{\tau_{n_{j}}}(\theta)}>0
$$

and comparing with (??) we conclude that $\mathrm{P}\left(\lim \sup _{n} \hat{\theta}_{\tau_{n}}=\infty\right)=0$. Similarly we can show that $\mathrm{P}\left(\lim \sup _{n} \hat{\theta}_{\tau_{n}}=-\infty\right)=0$, which proves (??) and, consequently, the strong consistency of $\hat{\theta}_{\tau_{n}}$. In order to prove the second claim of the theorem, we need to show that

$$
\begin{equation*}
\frac{\left|I_{\tau_{n}}\left(\hat{\theta}_{\tau_{n}}\right)-I_{\tau_{n}}(\theta)\right|}{I_{\tau_{n}}(\theta)} \rightarrow 0 \quad \mathrm{P}_{\theta}-\mathrm{a} . \mathrm{s} . \tag{S3.6}
\end{equation*}
$$

But $I_{\tau_{n}}(\theta) \geq n J_{*}(\theta)$, whereas $\left|I_{\tau_{n}}\left(\hat{\theta}_{\tau_{n}}\right)-I_{\tau_{n}}(\theta)\right|$ is bounded above by

$$
\begin{aligned}
& \sum_{i=1}^{n}\left|J\left(\hat{\theta}_{\tau_{n}} ; \mathbf{b}_{i}\right)-J\left(\theta ; \mathbf{b}_{i}\right)\right|+\sum_{i=1}^{n} \sum_{j=2}^{g_{\tau_{n}}^{i}}\left|J\left(\hat{\theta}_{\tau_{n}} ; \mathbf{b}_{i} \mid X_{1: j-1}^{i}\right)-J\left(\theta ; \mathbf{b}_{i} \mid X_{1: j-1}^{i}\right)\right| \\
& \leq n \sup _{\mathbf{b} \in \mathbb{B}}\left|J\left(\hat{\theta}_{\tau_{n}} ; \mathbf{b}\right)-J(\theta ; \mathbf{b})\right| \\
& +\left(\tau_{n}-n\right) \max _{2 \leq j \leq m-1} \max _{X_{1: j-1}} \sup _{\mathbf{b} \in \mathbb{B}}\left|J\left(\hat{\theta}_{\tau_{n}} ; \mathbf{b} \mid X_{1: j-1}\right)-J\left(\theta ; \mathbf{b} \mid X_{1: j-1}\right)\right|
\end{aligned}
$$

where again $X_{1: j-1}:=\left(X_{1}, \ldots, X_{j-1}\right)$ is a vector of $j-1$ distinct responses on an item with parameter \mathbf{b}. Therefore, the ratio in (??) is bounded above by

$$
\begin{aligned}
& \frac{1}{J_{*}(\theta)} \sup _{\mathbf{b} \in \mathbb{B}}\left|J\left(\hat{\theta}_{\tau_{n}} ; \mathbf{b}\right)-J(\theta ; \mathbf{b})\right| \\
& +\frac{m-2}{J_{*}(\theta)} \max _{2 \leq j \leq m-1} \max _{X_{1: j-1}} \sup _{\mathbf{b} \in \mathbb{B}}\left|J\left(\hat{\theta}_{\tau_{n}} ; \mathbf{b} \mid X_{1: j-1}\right)-J\left(\theta ; \mathbf{b} \mid X_{1: j-1}\right)\right|
\end{aligned}
$$

But similarly to (??) we can show that

$$
\sup _{\mathbf{b} \in \mathbb{B}}\left|J\left(\hat{\theta}_{\tau_{n}} ; \mathbf{b}\right)-J(\theta ; \mathbf{b})\right| \rightarrow 0 \quad \mathrm{P}_{\theta}-\text { a.s. }
$$

as well as that for every $2 \leq j \leq m-1$ and $X_{1: j-1}$ we have

$$
\sup _{\mathbf{b} \in \mathbb{B}}\left|J\left(\hat{\theta}_{\tau_{n}} ; \mathbf{b} \mid X_{1: j-1}\right)-J\left(\theta ; \mathbf{b} \mid X_{1: j-1}\right)\right| \rightarrow 0 \quad \mathrm{P}_{\theta}-\text { a.s. }
$$

which completes the proof.

S4 The histogram of item parameters in the discrete

item pool

Figure 1: Calibrated item parameters of the nominal response model in a pool with 134 items, each having $m=4$ categories.

