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item parameters used in the simulation study

S1 Proofs in Section 2

Proof of Lemma 1. The continuity of ¢* and g. follows from the so-called Maximum Theorem
(see, e.g., Sundaram, R.K.(1996), p. 239). In order to prove the remaining part of the Lemma,
we can assume without loss of generality that g(zo;b) = 0 for every b € B. Indeed, if this is

not the case, then we can work with g(z,,b) — g(zo,b). Then, for any given n we have

sup [g(zn; b)| = supmax{g(zn;b), —g(zn;b)} < max{g”(zn), —g«(zn)},
beB beB

and consequently

lim sup sup g(as; b)| < max{g” (z0) , —gu(w0)} = 0,
beB

n

which completes the proof. &
Proof of Lemma 2. For any 6 and b we have

[s(0;b,-)] < max |ar —a(f;b)| < 2a"(b) <2 supa”(b).
1<k<m beB

Moreover,

0<J(6;b) <> ai pe(0;b) <m (a*(b))* < m sup (a”(b))?,
1 beB
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where the first inequality holds because the ax’s cannot be identical due to (2.2). When B is
compact, the upper bounds are finite and do not depend on b or . On the other hand, from

Lemma 1 it follows that J. is continuous, therefore J.(6) > 0 for every § when B compact. <>

S2 Proofs in Section 3

Proof of Lemma 3. The final ability estimator, 0, is not a root of Sy, (6) on the event A, U B,
where

An ={X; €k"(b;), V1<i<n}, Bn={X;€ke(b), V1<i<n}

Thus, it suffices to show that Pg(limsup,, A,) = 0 and Py(limsup,, B,) = 0. We will prove
only the first identity, since the second can be shown in a similar way. Indeed, Po(A,) =

Eg [Pg (An |b1;n)} and

n n

Po (An [brn) = [[Pe(Xi € k" (bi)) = [ [0 (6:b:) < (" (6))" .

=1 =1

where the first equality follows the assumption of conditional independence (3.2), whereas the

second identity and the inequality follow from the following definitions:

p (:b):= > p;(6;b), p(6) :=sup p*(6;b).
jek*(b) beB

Since p*(0; b) is jointly continuous and B is compact, from Lemma 1 it follows that p*(6) < 1.
Therefore, Y > | Po(An) < 00, and from the Borel-Cantelli lemma we obtain Pg(limsup,, A,) =

0, which completes the proof. &

Proof of Lemma 4. Fix n € N. Then, S,(0) — Sn—1(0) = s(0;b,, X,), and from Lemma 2 it
follows that |S,(0) — Sn—1(0)| < K. Moreover, since by, is F,—1-measurable, from representation

(2.5) it follows that

Eo[Sn(0) — Sn—1(0)|Fn-1] = Eo[s(0; b, X0n)|Fn_1] =0,
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which proves the martingale property of S, (6). Next, from (2.5)-(2.6) it follows that

Eo[(Sn(0) — Sn—1(0))?|Fn-1] = Eo[s*(0; bn, Xp)| Fr_1] = J(0: bn),

which proves that (S(6))» = Y ., J(0;bs).

&

Proof of Theorem 3.1. Let (bn)nen be an arbitrary item selection strategy. From Lemma 4 it
follows that S, (0) is a Pg-martingale with mean 0 and predictable variation I,,(0) > nJ.(0) —
oo, since J.(#) > 0. Then, from the Martingale Strong Law of Large Numbers (see, e.g.,

Williams, D.(1991), p. 124), it follows that as n — oo

Sn(0)
I.(9)

—0 Pg—as. (S2.1)

From a Taylor expansion of S,,(A) around 6, it follows that there exists some 6, that lies between

én and 6 such that

0= 5,(0) = Sn(0) + Sy, (0) (0 — 0)
(S2.2)

= Sn(e) - ]n(én)(én — 9) Py — a.s.

where the second equality follows from (3.6). From (??) and (??) we then obtain

In (0n) (én —0) >0 Pg—as.

The strong consistency of 6,, will then follow as long as we can guarantee that the fraction in

the last relationship remains bounded away from 0 as n — oo. However, for every n we have

In(én) _ E?:l J(én§bi) > ”J*(én) _ J*(én)
( “( *(

LO) ~ S, JO;b) = nJ

Since J*(6) > 0, it suffices to show that Py (liminf, J.(6,) > 0) = 1. Since J.(6) is continuous,

positive and bounded away from 0 when |0] is bounded away from infinity (Lemma 2) and 6,
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lies between 6,, and 0, it suffices to show that
Py (limsup |0,| = o0o) = 0. (S2.3)

In order to prove (??), we observe first of all that since S, (f,) = 0 for large n, (??) can be

rewritten as follows:
—0 Pg—as. (S2.4)

But for every n we have I,(0) < nJ*(#) and

Sn(6) = Su(n) = [s(e; bi, X;) — s(6n; bi,Xi)]

i=1

= i [@(én; b;) — 6(9;b¢)} > nti)rgﬁ [C_l(én;b) _ (_1(0;b)] 7

therefore we obtain

infpes [a(én; b) — a(o; b)]
J*(0)

v

(S2.5)

On the event {limsup, ,, = co} there exists a subsequence (én7) of (f,) such that énj —

oo. Consequently, for any b € B we have

lim [a(énj;b) —a(6; b)] =a*(b) —a(6;b) >0 (52.6)

and from Lemma 1 we obtain

liminf inf [a(enj;b) - a(a;b)] > inf [a"(b) — a(6; b)] > 0. (S2.7)

nj—oo beB
From (?7?) and (??) it follows that

S (0) = Sy (On.
lim inf ]( J( J) >0

)
nj oo I”j (9)

and comparing with (??) we conclude that Pg(limsup,, 6, = co) = 0. In an identical way we

can show that Pg(liminf, 6, = —oc) = 0, which establishes (??) and completes the proof of the
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strong consistency of 6,,. In order to prove (3.7), we observe that

|1 (0n) — 1 (0)) TN N
L@ S @) 2 /O — IO b0l

1 .
< — J(0n;b) — J(0;b)|.
= 7.0) pp V(O = )

But since J(6;b) is jointly continuous and 0y, strongly consistent, from Lemma 1 it follows that

sup [J(0n;b) — J(0;b)| = 0 Py —as. (S2.8)
beB
which completes the proof, since from Lemma 2 we know that J.(6) > 0. &

S3 Proofs in Section 4

Proof of Lemma 5. (i) After t — 1 responses, the examinee either proceeds to a new item or
revises a previous item. Therefore, the difference S¢(8) — S;—1(0) admits the following decom-

position:

S (9;]:)&,)({‘) ]l{dt_lzo} + Z S (97b“X;§|X;gz—1> l{dt—lzi}’ (831)
1€Cp_q

where the sum in the second term is understood to be 0 when C;_1 is the empty set. Since

di—1,Ci—1 are Fi_i-measurable, taking conditional expectations with respect to F;_1 we obtain

Eo[S0(0) — Su-1(0)|Foma] = Eo [s (0500, X{*) | Fit] a0y

+ > E [S (H;bi,X;ﬂXi;ggq) ‘-FH] Lia, y=iy-
i€Ch1

Since f; and gi are F;_i-measurable, it follows that

Eo [ (651, X{*) | Fica | =0 =0 [s (0300, X X100 ) | Fia]
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which proves that S¢() is a zero-mean F;-martingale under Pg. From (??) we also have

Eo[(Se(0) — St-1(0))* | Fi1]

=J(0;b5) Lga, =0y + D J(e;b”Xi:ngl) Tga, 1=
1€Ct_1

and, consequently, the predictable variation of S¢(6) will be
t
(SO =D Eo [(S+(0) = Ss-1(0))” | For]
s=1
t .
=> [JO:br) Ly + Y T (9? b;|X] ) Lia,_ =53 | =T
s=1 j€Cs 1 Tet
(ii) This follows from the Optional Sampling Theorem and the fact that (7, )nen is a strictly
increasing sequence of {F; }ien-stopping times that are bounded, since 7, < (m — 1)n for every
n € N.

¢

Proof of Theorem 4.1. From Lemma 5 we have that S;,(0) is a {F,, }-martingale with pre-
dictable variation I.,(0). Moreover, from (4.10) we have I, () > nJ.(0) — oo and from the

Martingale Strong Law of Large Numbers (Williams, D. (1991), p. 124 ) it follows that

S, (0) _
.0 —0 Py —as. (S3.2)

Since S, (0,,) = 0 for large enough n with probability 1, with a Taylor expansion around 6 we

have

0=S5,,(0,,) =S 0 +8, (6.,)0, —0)
(S3.3)

= 50, (0) ~ I, (0.,) (-, —0) Py —as.

where 6,, lies between 6, and 0, and (??) takes the form

I"'n (67'71, )

L. (6) (6, —0) =0 Pyg—as.
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However, since 7, < (m — 1)n and J.(0)f: < I(0) < Kt for every t, we have

I, (0.,) _ nJ.(0.,) 1 ~
I,0) = mK — (m—-1)K I+(6-.)

and it suffices to show that
limsup |0,,] < oo Py —as. (S3.4)

For large n we have S, (,,,) = 0 and (??) can be rewritten as follows

S, (0) — S-, (6-,)

T 0) —0 Py—as. (S3.5)

But from the definition of the score function in (4.8) it follows that

Sr(0) = Sr,,(0r,)

- 9%,
=3 [ (50D = 5(0r,b0)) + > (506 bi, X1 Xiy1) = 80, by X1 X51))
=1 j=2
n [ gin
=3 | (a0r,3b0) = a(0:b0)) + 3 (a(6r,3 b3l X7 1) = (0 bil X1 )
i=1 j=2

>n inf [d(em; b) — a(6; b)]

+(Tn —m) min  min inf [&(ém;b | X1:5-1) — d(a;b‘Xl;j—l):I ,

2<j<m—1X1.;_1 beB
where X1.5-1 := (X1,...,X;-1) is a vector of j—1 distinct responses on an item with parameter

b. On the other hand, I-, (§) < 7, K, which implies that

S"'n (9) - STn (érn) 1 . s -
I.,.(0) > o inf[a(0-,;b) — a(0; b))

=+ % min min inf |:0_é(é-rn;b | Xl;j71) — @(9; b|X1;j71):| .

2<j<m—1 X1.;_1 beEB
On the event {limsup, 6, — co} there is a subsequence (émj) of (0,,) such that éfnj — 00

and from (??) we have

liminf inf [a(émj;b) - @(a;b)] >0.

nj—oo beB
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Similarly, due to Lemma 6 (ii), for any 2 < 7 < m — 1 and X1.;_1 we have

liminf inf

imint inf |a(0r,, ;b | Xiy1) — a(6:b] Xiy1)| > 0.
Therefore,
ST?L ; (9) - S'f'nj (éTn ; )

lim inf 7 7

>0,
nj I, (0)

and comparing with (??) we conclude that P(limsup,, 6,,,

= 00) = 0. Similarly we can show

that P(lim sup,, 8,,, = —oo) = 0, which proves (??) and, consequently, the strong consistency of

0r,,. In order to prove the second claim of the theorem, we need to show that

|I7'n (éTn) — I"'n (9)' _
[0 —0 Py —a.s.

(S3.6)

But I, (0) > n J.(0), whereas |I., (0, ) — I, (0)] is bounded above by

n n gin
S 1 (0r,5b0) = JO:bi) + D0 [T 05 bil Xis 1) = J0: bl X )|
=1 =1 j=2

< n sup|J(0-,;b) — J(6;b)]

beB

+ (tn — 1) L TEX | gnax sup ‘J(eﬂ'n?bp(l:j—l) — J(0;b|X1:;-1)

k]

where again Xi.;_1 := (X1,...,X;-1) is a vector of j — 1 distinct responses on an item with

parameter b. Therefore, the ratio in (??) is bounded above by

ﬁ sup | J (65, : b) — J(0; b)|

beB

m—2
Jr

T.(0) 28X, Jnax sup J(0r,3b|X1:5-1) — J(0;b|X15-1)|.

But similarly to (??) we can show that

sup |J(0,,;b) — J(0;b)| > 0 Py —as.
beB

as well as that for every 2 < j < m — 1 and X;.;-1 we have

sup |J(0-,:b| X1.j-1) — J(O;b| X1.5_1)| = 0 Py —as.
beB
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which completes the proof. O
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S4 The histogram of item parameters in the discrete

item pool
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Figure 1: Calibrated item parameters of the nominal response model in a pool with 134

items, each having m = 4 categories.



