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S1 Iterative algorithm

The detailed algorithms of iterative screening-SCAD procedure are present as follows.

S1.1 Conditional random permutation C-SS (PC-SS)

Following the methods used by Fan, Feng and Song (2011) and Zhao and Li (2010),

randomly permute Y to get Yπ = (Yπ1 , · · · , Yπn)T and compute ĝπk , where π is a

permutation of {1, · · · , n}, based on the randomly coupled data {(Yπi ,Xi)}ni=1 that

present no relationships between covariates and response. These estimates serve as

the baseline of the marginal utilities under the null model (no relationship). To

control the false selection rate under the null model, choose the screening threshold

as the qth-ranked magnitude of {ĝπk , k = 1, · · · , p}. In practice, q = 1, the largest

marginal utility under the null model, is frequently used.

When the correlations among covariates are large, it is difficult to differentiate

between the marginal utilities of the true variables, and the false ones. Enlightened

by Fan, Ma and Dai (2014), we propose a PC-SS method, which performs conditional

random permutation in the screening steps to determine the threshold.

0. DeterminingM0. For k = 1, · · · , p, compute ĝk(0p) as in (2.3) using {(Yi,Xi), i =

1, · · · , n}. Select the top K variables by ranking ĝk(0p), resulting in the index

subset M0 to condition upon. Without loss of generality, we assume M0 =

{1, · · · , K}. Next estimate βM0 = (β1, · · · , βK)T by maximizing the smoothed
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C-statistic (7) using {(Yi,XiM0), i = 1, · · · , n}. Here, XiM0 = (Xi1, · · · , XiK)T .

We write this estimator as β̂M0 .

1. Large-scale feature screening. For all k /∈M0, compute ĝk((β̂
T

M0 , 0T(M0)c)
T ) using

{(Yi,Xi), i = 1, · · · , n}. To determine the threshold for screening, we apply ran-

dom permutation on the remaining covariates, i.e., Xc
iM0 = (Xi,K+1, · · · , Xip)

T .

Randomly permute {Xc
1M0 , · · · ,Xc

nM0} to get {Xc
π1M0 , · · · ,Xc

πnM0}, where π =

{π1, · · · ,πn} is a permutation of {1, · · · , n}. Next for k /∈M0, compute ĝπk ((β̂
T

M0 , 0T(M0)c)
T )

based on the randomly coupled data {(Yi,XiM0 ,Xc
iM0), i = 1, · · · , n}. Let γ∗q be

the qth-ranked magnitude of {|ĝπk ((β̂
T

M0 , 0T(M0)c)
T )|, k /∈ M0}. Then, the active

variable set is chosen as A1 = {k : |ĝπk ((β̂
T

M0 , 0T(M0)c)
T )| ≥ γ∗q , k /∈M0} ∪M0.

2. Moderate-scale feature selection. Apply the SCAD-penalized C-statistic (??) on

A1 to select a subset of variables M1. Details about the implementation of

SCAD are described in Section 4.3.

3. Repeating. Repeat steps 1 and 2, where we replace M0 in step 1 by Ml, l =

1, 2, · · ·, and obtain Al+1 and Ml+1 in step 2. Iterate until Ml+1 = Mk for

some k ≤ l or |Ml+1| ≥ ζn, for some prescribed positive integer ζn (such as

[n/ log(n)]).

In practice we may have a priori knowledge that certain relevant features should be

included, and could start with M0 containing these features in step 0. On the other



4 YUNBEI MA, YI LI, HUAZHEN LIN AND YI LI

hand, we could also setM0 = ∅ by taking K = 1. The associated algorithm is termed

Greedy C-SS, which is detailed below.

S1.2 Greedy C-SS (GC-SS)

To further expedite computation, we implement a greedy version of the iterative

screening-SCAD procedure. We skip step 0 and begin with step 1 in the algorithm

above (i.e., takeM0 = ∅), and select the top p0 variables that have the largest norms

of ĝk(0p). In our simulation studies, p0 is set as 1.

S2 More simulation studies of variable selection

Non-linear regression model. Y = exp{β1X1 + β2X2 + β3X3 + β4X4 + β5X5}+ e,

where the noise e was generated from normal distribution N(0, σ2) with σ = 0.5.

This example explores what happens when the model structure is nonlinear. Four

methods were compared, which included conditional permutation screening-SCAD

methods based on smoothed C-statistic (PC-SS) as in Section 1.1 with K = 0 (i.e.,

takeM0 = ∅), Greedy screening-SCAD methods based on smoothed C-statistic (GC-

SS) as in Section 1.2 with p0 = 1, Permutation-SIS-SCAD (PSIS) as in Fan and Lv

(2008), and Vanilla-SIS-SCAD (VSIS) as in Fan, Samworth and Wu (2009). Results

are presented in Table 1. The results show that for nonlinear regression models,

among the first three methods, the proposed methods had acceptable probabilities of
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Table 1: Simulation results for non-linear regression model

med.‖β̂oracle − β‖ = 0.064

t = 0 t = 1

PC-SS GC-SS PSIS VSIS PC-SS GC-SS PSIS VSIS

perc.incl.true 0.98 0.94 0.85 0.99 0.97 0.94 0.87 0.99

med.model size 5 5 6 37 5 5 6 37

aver. model size 5.16 4.84 5.90 30.77 4.99 4.82 6.02 31.64

med.‖β̂ − β‖ 0.068 0.068 0.751 2.752 0.066 0.067 0.735 2.688

including the true model, a smaller model size, and much smaller prediction error.

The VSIS method however failed as it enhanced probabilities of including the true

model at the expense of high false-positive rates .

Poisson regression model. In this example, we generated the response Y from

a Poisson distribution P (λ) with λ = exp{2× (β1X1 +β2X2 +β3X3 +β4X4 +β5X5)}.

The ordinal response was generated from the Poisson distribution; the PSIS-G and

the VSIS-G are carried out under the Poisson distribution.

Table 2 indicates that the proposed methods showed similar performance as Fan,

Samworth and Wu (2009)’s methods on model selection. This is not surprising, as

their methods were carried under the correctly specified model. However, our methods

had much smaller estimation errors than the competing methods.

Ordinal regression model. We evaluated the robustness of the proposed meth-
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Table 2: Simulation results for Poisson regression model

med.‖β̂oracle − β‖ = 0.063

t = 0 t = 1

PC-SS GC-SS PSIS-G VSIS-G PC-SS GC-SS PSIS-G VSIS-G

perc.incl.true 0.96 0.94 0.98 0.99 0.97 0.92 0.98 1.00

med. model size 5 5 5 5 5 5 5 37

aver. model size 4.99 4.82 5.07 5.04 5.02 4.71 5.07 5.11

med.‖β̂ − β‖ 0.063 0.067 1.001 0.999 0.066 0.065 1.006 1.002

ods via a comparison with Fan, Samworth and Wu (2009)’s methods when the dis-

tribution was misspecified. We generated the ordinal response Y as follows. Let

Y ∗ = β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + e, where the noise e was generated from

0.2 · t(1). Define Y = I(Y ∗ > −1.2) + I(Y ∗ > −0.6) + I(Y ∗ > −0.15) + I(Y ∗ >

0.3) + I(Y ∗ > 0.8) + I(Y ∗ > 1.5). We compared our proposed methods PC-SS and

GC-SS with Permutation-SIS-SCAD (PSIS-G) and Vanilla-SIS-SCAD (VSIS-G; Fan,

Samworth and Wu, 2009) for Poisson regression models. Table 3 shows that the

proposed methods had an acceptable probability of including the true model, a s-

maller model size, and a much smaller prediction error as compared to the PSIS-G

and VSIS-G. The PSIS-G and VSIS-G methods had low true-positive rates and large

prediction errors.
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Table 3: Simulation results for ordinal regression model

med.‖β̂oracle − β‖ = 0.069

t = 0 t = 1

PC-SS GC-SS PSIS VSIS PC-SS GC-SS PSIS VSIS

perc.incl.true 0.95 0.90 0.83 0.84 0.97 0.88 0.84 0.86

med.model size 5 5 5 5 5 5 5 5

aver. model size 5.05 4.64 5.52 5.29 5.10 4.50 5.61 5.49

med.‖β̂ − β‖ 0.074 0.071 0.522 0.655 0.075 0.071 0.500 0.686

S3 Some technical lemmas

Some technical Lemmas needed for our main results are stated and proved below.

Lemmas 1 and 2 characterize the exponential tails, which are useful for the main

proof. Lemma 3 is a Bernstein type inequality. Lemmas 4 and 5 provide a large

deviation theory and a Bernstein type inequality for U-statistic, respectively.

Lemma 1 Let W be a random variable. Suppose W has a conditional exponential

tail: P(|W | > t) ≤ exp(1− (t/K)r) for all t ≥ 0, where K > 0 and r ≥ 1. Then for

all m ≥ 2,

E(|W |m) ≤ eKmm!. (S3.1)
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Proof. Recall that for any non-negative random variable W , E[W ] =
∫∞
0

P{W ≥

t}dt. Then we have

E(|W |m) =

∫ ∞
0

P{|W |m ≥ t}dt

≤
∫ ∞
0

exp(1− (t1/m/K)r)dt

=
emKm

r
Γ(
m

r
).

The lemma follows from the fact r ≥ 1.

Lemma 2 Let W1, W2 be independent random variables, satisfying P(|Wi| > t) ≤

exp(1− (t/K)r), i = 1, 2 for all t ≥ 0, where K > 0 and r ≥ 1. for all t ≥ 0. Then

for all m ≥ 2,

E(|W1 +W2|m) ≤ 2e(2K)mm!. (S3.2)

Proof. For any t > 0, we have

P(|W1 +W2| > t) ≤ P(|W1| > t/2) + P(|W2| > t/2)

≤ 2 exp(1− (t/2K)r).

Hence, for all m ≥ 2,

E(|W1 +W2|m) =

∫ ∞
0

P{|W1 +W2|m ≥ t}dt

≤ 2

∫ ∞
0

exp(1− (t1/m/2K)r)dt

=
2em(2K)m

r
Γ(
m

r
)

≤ 2e(2K)mm!.
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Lemma 2 holds.

Lemma 3 (Bernstein inequality, Lemma 2.2.11, van der Vaart and Wellner (1996)).

For independent random variables Y1, · · · , Yn with mean zero such that E[|Yi|m] ≤

m!Mm−2νi/2 for every m ≥ 2 (and all i) and some constants M and νi. Then

P (|Y1 + · · ·+ Yn| > x) ≤ 2 exp{−x2/(2(ν +Mx))},

for v ≥ ν1 + · · ·+ νn.

Suppose h(·, ·) is a binary kernel of the U-statistic Un = 1
n(n−1)

n∑
i 6=j

h(Wi,Wj),

where W1,W2, · · · ,Wn are i.i.d. random variables or random vectors. Let dn = [n
2
],

the greatest integer ≤ n/2. For any permutation (i1, · · · , in) of (1, · · · , n), define

Υ(Wi1 , · · · ,Win) =
1

d
[h(Wi1 ,Wi2) + h(Wi3 ,Wi4) + · · ·+ h(Wi2dn−1

,Wi2dn
)].

Then we can rewrite Un as

Un =
1

n!

n∑
i1 6=i2 6=···6=in

Υ(Wi1 , · · · ,Win). (S3.3)

Note that Υ(·) is the average of dn i.i.d random variables. This type of representation

was introduced and utilized by (Hoeffding, 1963).

Lemma 4 If E[h(W1,W2)] = µ, and E[exp{th(W1,W2)}] < ∞ for any 0 < t ≤ t0,

then

P (Un − µ > δ) ≤ exp{− sup
0<t≤t0

[tdnδ − dn lnQ(t)]}.

Here Q(t) = E[exp{t(h(W1,W2)− µ)}].
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Proof. Note that for any random variable W satisfying E[exp{tW}] < ∞, for

0 < t ≤ t0, it follows from the Markov’s inequality that

P (W − E[W ] > δ) ≤ exp{−tδ}E[exp{t(W − E[W ])}].

Since the exponential function is convex, it follows by Jensen’s inequality that for

0 < t ≤ t0,

E[exp{tdnUn}] = E

[
exp{tdn

n!

n∑
i1 6=i2 6=···6=in

Υ(Wi1 , · · · ,Win)}

]

≤ 1

n!

n∑
i1 6=i2 6=···6=in

E [exp{tdnΥ(Wi1 , · · · ,Win)}]

=
1

n!

n∑
i1 6=i2 6=···6=in

E

[
dn∏
k=1

exp{th(Wi2k−1
,Wi2k)}

]

=
1

n!

n∑
i1 6=i2 6=···6=in

[
dn∏
k=1

E exp{th(Wi2k−1
,Wi2k)}

]

=
1

n!

n∑
i1 6=i2 6=···6=in

exp

[
dn∑
k=1

lnE exp{th(Wi2k−1
,Wi2k)}

]
= exp [dn lnE exp{th(W1,W2)}] <∞.

We can then obtain that

P (Un − µ > δ) ≤ exp{−tdnδ}E[exp{tdn(Un − µ)}] (S3.4)

≤ exp{−tdnδ} exp [dn lnE exp{th(W1,W2)} − tdnµ]

= exp{−[tdnδ − dn lnQ(t)]}. (S3.5)
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Since (S3.5) is true for all 0 < t ≤ t0,

P (Un − µ > δ) ≤ inf
0<t≤t0

exp{−[tdnδ − dn lnQ(t)]}

= exp{− sup
0<t≤t0

[tdnδ − dn lnQ(t)]},

and Lemma 4 holds.

Lemma 5 If E[h(W1,W2)] = µ, and for some A > 0 and any m ≥ 2, E|h(W1,W2)−

µ|m ≤ m!Am−2ν/2, then for any δ > 0,

P (|Un − µ| > δ) ≤ 2 exp{− dnδ
2

2(ν + Aδ)
}.

Proof. With Taylor’s expansion of exp{t(h(W1,W2)− µ)/dn} at 0, we have

E[exp{t(h(W1,W2)− µ)}] = 1 +
t2

2
E[h(W1,W2)− µ]2 +

∞∑
m=3

tm

m!
E[h(W1,W2)− µ]m

≤ 1 +
t2ν

2
+
t3Aν

2

∞∑
m=0

(tA)m.

Furthermore, if 0 < t < 1
A

,

E[exp{t(h(W1,W2)− µ)}] ≤ 1 +
t2ν

2
+
t3Aν

2

1

1− tA
= 1 +

t2ν

2(1− tA)
<∞.

Hence, by Lemma 4, we have for any δ > 0 and any small ε > 0,

P (Un − µ > δ) ≤ exp{− sup
0<t≤( 1

A
−ε)

[tdnδ − dn lnQ(t)]}. (S3.6)

Note that lnx ≤ x− 1 for any x ≥ 0, then for 0 < t < dn
A

lnQ(t) ≤ Q(t)− 1 = E[exp{t(h(W1,W2)− µ)}]− 1
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≤ t2ν

2
+
t3Aν

2

∞∑
m=0

(tA)m

≤ t2ν

2
+
t3Aν

2

1

1− tA

=
t2ν

2(1− tA)
, (S3.7)

whence

sup
0<t≤ 1

A
−ε

[tdnδ − dn lnQ(t)] ≥ sup
0<t≤ 1

A
−ε
dn

[
tδ − t2ν

2(1− tA)

]
. (S3.8)

By elementary calculus, we obtain the value of t that maximizes the expression in

brackets (out of the two roots of the second degree polynomial equation, we choose

the one which is < 1
A

) as, topt = 1
A

(1− 1√
1+2δA/ν

). Observing that
√

1 + x ≤ 1 + x/2,

one gets

topt ≤
1

A
(1− 1

1 + δA/ν
) =

δ

ν + δA
≡ t′ <

1

A
.

It then follows from (S3.8) that

sup
0<t≤ 1

A
−ε

[tdnδ − dn lnQ(t)] ≥ t′dnδ −
t′2dnν

2(1− t′A)
=

dnδ
2

2(ν + δA)
.

Combing with (S3.6) yields that

P (Un − µ > δ) ≤ exp{− dnδ
2

2(ν + δA)
}. (S3.9)

By letting U∗n = −Un = 1
n(n−1)

n∑
i 6=j

[−h(Wi,Wj)] and µ∗ = −µ, equivalently we have

P (Un − µ < −δ) = P (U∗n − µ∗ > δ) ≤ exp{− dnδ
2

2(ν + δA)
}. (S3.10)
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Thus

P (|Un − µ| > δ) = P (Un − µ > δ) + P (Un − µ < −δ) ≤ 2 exp{− dnδ
2

2(ν + δA)
}.

Lemma 5 holds.

S4 Proof of sure screening properties

Proof of Theorem 1

We first prove part (1). Recall that for k = 1, · · · , pn, gk(0) = Eĝk(0) = E[I{Y1 >

Y2}(X1k −X2k)]. Thus for any k = 1, · · · , pn

|ĝk(0)− Eĝk(0)|

=
1

n(n− 1)

∣∣∣∣∣
n∑
i 6=j

I(Yi > Yj)(Xik −Xjk)− E[I{Y1 > Y2}(X1k −X2k)]

∣∣∣∣∣
=

1

n(n− 1)

∣∣∣∣∣
n∑
i 6=j

I(Yi > Yj)(Xik −Xjk)− E[G(Z1, Z2)(X1k −X2k)]

∣∣∣∣∣
=

1

n(n− 1)

∣∣∣ n∑
i 6=j

{I(Yi > Yj)−G(Zi, Zj)} (Xik −Xjk)]

+
n∑
i 6=j

{G(Zi, Zj)(Xik −Xjk)− E[G(Z1, Z2)(X1k −X2k)]}
∣∣∣

≤ Tn1 + Tn2, (S4.1)

where

Tn1 =
1

n(n− 1)

∣∣∣∣∣
n∑
i 6=j

{I(Yi > Yj)−G(Z1, Z2)} (Xik −Xjk)]

∣∣∣∣∣ ,
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and

Tn2 =
1

n(n− 1)
|G(Z1, Z2)(Xik −Xjk)− E[G(Z1, Z2)(X1k −X2k)]| .

We first focus on Tn1. For all m ≥ 2,

E {|[I(Yi > Yj)−G(Zi, Zj)] (Xik −Xjk)|m}

≤ 2mE[|Xik −Xjk|m]

≤ 2e(4K1)
mm! = m!(4K1)

m−2(64eK2
1/2), (S4.2)

where the last inequality is obtained based on Condition (C.1) and Lemma 2. Since

E{[I(Yi > Yj)−G(Zi, Zj)] (Xik −Xjk)} = 0, it follows from Lemma 5 and equation

(S4.2) that for any δ > 0,

P

(
Tn1 >

δ

n

)
≤ 2 exp{− dnδ

2

2n(64neK2
1 + 4K1δ)

}.

We now focus on Tn2. According to the Minkowski inequality, for any m ≥ 2,

E {|G(Zi, Zj)(Xik −Xjk)− E[G(Z1, Z2)(X1k −X2k)]|m}

≤ 2mE {|G(Zi, Zj)(Xik −Xjk)|m}

≤ 2mE[|Xik −Xjk|m]

≤ 2e(4K1)
mm! = m!(4K1)

m−2(64eK2
1/2).

Hence, Tn2 has the same results as Tn1, that is for any δ > 0,

P

(
Tn2 >

δ

n

)
≤ 2 exp{− dnδ

2

2n(64neK2
1 + 4K1δ)

}.
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Consequently, the union bound of probability yields that

P (|ĝk(0)− Eĝk(0)| > 2δ

n
) ≤ 4 exp{− dnδ

2

2n(64neK2
1 + 4K1δ)

}. (S4.3)

Note that dn = [n/2] ≥ (n− 1)/2, then by letting c2 = 256eK2
1 and

c3 = 16K1, we obtain that for any k = 1, · · · , pn,

P (|ĝk(0)− Eĝk(0)| > 2δ

n
) ≤ 4 exp{− δ2

nc2 + c3δ
}. (S4.4)

Thus, we have for any constant c1,

P (|ĝk(0)− Eĝk(0)| > c1n
−κ) ≤ 4 exp{− c21n

1−2κ

2(2c2 + c1c3n−κ)
}. (S4.5)

Hence part (1) follows from the fact that

P ( max
1≤k≤pn

|ĝk(0)− Eĝk(0)| > c1n
−κ) ≤

pn∑
k=1

P (|ĝk(0)− Eĝk(0)| > c1n
−κ).

We now prove part (2). Note that Eĝk(0) = E[I{Y1 > Y2}(X1k −X2k)], and

|ĝk(0)− Eĝk(0)| ≥ |Eĝk(0)| − ĝk(0),

then for k ∈M0 on the event

Ank = {|ĝk(0)− Eĝk(0)| < δn−κ/2},

we have

|ĝk(0)| > |Eĝk(0)| − δn−κ/2 ≥ δn−κ/2.

Thus

P (|ĝk(0)| ≤ δn−κ/2) ≤ P (Acnk) ≤ 4 exp{− δ2n1−2κ

4(4c2 + δc3n−κ)
},
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and

P
(
M0 ⊂ M̂γn

)
≥ 1−

∑
k∈M0

P (Acnk) ≥ 1− 4s0 exp{− δ2n1−2κ

4(4c2 + δc3n−κ)
}.

Proof of Theorem 2:

Note that

p∑
i=1

|gk(0p)| = 2

p∑
i=1

|E[I{Y1 > Y2}(X1k −X2k)|,

which implies that for any δ > 0, the number of {k : |gk(0p)| > δn−κ} cannot exceed

O(nκ
∑p

i=1 |E[I{Y1 > Y2}(X1k−X2k)|). Then on the set Bn = {max1≤k≤pn |ĝk(0)− Eĝk(0)| ≤ δn−κ},

the number of {k : |ĝk(0p)| > 2δn−κ} can not exceed the number of {k : |gk(0p)| >

δn−κ}, which is bounded by O(nκ
∑p

k=1 |E[I{Y1 > Y2}(X1k−X2k)|). Hence, by taking

δ = c4/2, we have

Pr

{
|M̂γn| ≤ O(nκ

p∑
i=1

|E[I{Y1 > Y2}(X1k −X2k)|)

}
≥ Pr(Bn).

Then the desired result follows from Theorem 1(1).

S5 Conditions and Proof for the Oracle Property

S5.1 Regularity Conditions

Let an = max{p′λn(|βj0|) : βj0 6= 0} and bn = max{p′′λn(|βj0|) : βj0 6= 0}. We first

place the following conditions on the penalty functions:
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(P.1) an = O(n−1/2),

(P.2) bn → 0 as n→∞,

(P.3) lim infn→∞ infθ→0+ p
′
λn

(θ)/λn > 0,

(P.4) there are constants D1 and D2 such that, when θ1, θ2 > D1λn, |p′′λn(θ1) −

p′′λn(θ2)| ≤ D2|θ1 − θ2|.

Condition (P.1) ensures both the unbiasedness property for large parameters and

the existence. Condition (P.2) guarantees that the penalty function does not have

much more influence than the smoothed AUC function on the penalized smoothed

estimators. Condition (P.3) make the penalty function singular at the origin so that

the penalized smoothed estimators possess the sparsity property. Condition (P.4) is

a smoothness condition that is imposed on the penalty function.

The following conditions are necessary for obtaining the oracle property.

(C.1∗) Write Z = X̃
T
β̃0. For k = 1, · · · ,mn, let µk(Z) = E(Xk|Z) and vk(Z) =

V ar(Xk|Z). We assume that µk(·) and vk(·), k = 1, · · · ,mn, have bounded con-

tinuous second order derivatives.

(C.2∗) For 1 ≤ k, l ≤ mn, let ckl(Z) = Cov(Xk, Xl|Z). We assume that ckl(·), k, l =

1, · · · ,mn, have bounded continuous second order derivatives. Furthermore,

we assume that G(·, ·) has bounded second order partial derivatives, where

G(z1, z2) = E[I{Y1 > Y2}|X̃
T

1 β̃0 = z1, X̃
T

2 β̃0 = z2].
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(C.3∗) Define I(β̃0) = E[2Cov(X̃|Z)G(1,0)(Z,Z) + G(Z,Z)∂Cov(
˜X|Z)

∂Z
], where G(1,0)(·, ·)

is the partial derivative of G(·, ·) with respect to the first variable. Assume

that I(β̃0) is a positive definite matrix with finite maximum eigenvalue, and the

minimum eigenvalue is bounded away from 0.

(C.4∗) For all 1 ≤ i 6= j ≤ n, write C̃
(i,j)
s (β̃) = 1

n(n−1)

[
I(Yi > Yj)Φ

{
(X̃

T

i β̃ − X̃
T

j β̃)/h
}]

.

There is a large enough open subset ωn of Ωn ∈ Rmn that contains the true pa-

rameter point β̃0, such that for almost all (Yi, X̃i) and all β̃ ∈ ωn,

∣∣∣∣∂3C̃(i,j)
s (

˜β)

∂βk∂βl∂βt

∣∣∣∣ ≤
Mnklt((Yi, X̃i)), where Mnklt((Yi, X̃i)), satisfying that there exists a constant M

such that E[M2
nklt((Yi, X̃i))] ≤M <∞, for all 1 ≤ k, l, t ≤ mn.

(C.5∗) Suppose β10, · · · , βs00 satisfy min
1≤k≤s0

|βk0|/λn →∞, as n→∞.

(C.6∗) , m4
n = o(n) as n→∞.

Conditions (C.1∗)-(C.4∗) are imposed on the second and the third derivatives of

C̃s(β̃0), µk(·), vk(·) and ckl(·). These conditions are stronger than those for finite

parameter situations, but they facilitate the technical derivations. Condition (C.3∗)

assumes that the information matrix of the smoothed C-statistic C̃s(β̃) is positive

definite, and has uniformly bounded eigenvalues. Under (C.4∗), the variation of the

tail for C̃s(β̃) is assumed to be bounded. Similar conditions are imposed by Fan and

Peng (2004) for generalized linear models. Condition (C.5∗) explicitly shows the rate

at which the penalized smoothed C-statistic can distinguish nonvanishing parameters
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from zero, is necessary for obtaining the oracle property.

S5.2 Proof of Theorem 3 and 4:

Proof of Theorem 3:

Our goal is to show that for any given ε > 0, there exists a constant B, large enough

to make

Pr{ sup
‖u‖=1,uT ˜β0=1

PCs((1−B2α2
n)1/2β̃0 +Bαnu) < PCs(β̃0)} ≥ 1− ε, (S5.1)

where αn =
√
mn(n−1/2 + an).

This implies that with a probability tending to 1, there is a local maximum β̂n in

the ball {(1 − δ2α2
n)1/2β̃0 + δαnu : ‖u‖ = 1,uT β̃0 = 1, and δ < B}, hence satisfying

‖β̂n‖ = 1 and such that ‖β̂n − β̃0‖ = Op(αn).

Define β∗n = (1−B2α2
n)1/2β̃0 +Bαnu, using pλn(0) = 0, we have

DA(β∗n) = PCs(β
∗
n)− PCs(β̃0) ≤ C̃S(β∗n)− C̃s(β̃0)−

s0∑
j=1

[pλn(|β∗j |)− pλn(|βj0|)]

≡ In1 + In2.

By Taylor’s expansion we obtain

In1 = ∇T C̃s(β̃0)(β
∗
n − β̃0) +

1

2
(β∗n − β̃0)

T∇2C̃s(β̃0)(β
∗
n − β̃0)

+
1

6
∇T
(

(β∗n − β̃0)
T∇2C̃s(β

∗∗
n )(β∗n − β̃0)

)
≡ IIn1 + IIn2 + IIn3,
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where β∗∗n lies between β∗n and β̃0.

Note that

|IIn1|

= |∇T C̃s(β̃0)(β
∗
n − β̃0)|

=
1

hn(n− 1)

∣∣∣∣∣∑
i 6=j

I(Yi > Yj)φ(
Zi − Zj

h
)(X̃i − X̃j)

T (β∗n − β̃0)

∣∣∣∣∣
≤

∥∥∥∥∥ 1

hn(n− 1)

∑
i 6=j

I(Yi > Yj)φ(
Zi − Zj

h
)(X̃i − X̃j)

∥∥∥∥∥ ‖(β∗n − β̃0)‖

=


mn∑
k=1

[
[

1

hn(n− 1)

∑
i 6=j

I(Yi > Yj)φ(
Zi − Zj

h
)(Xik −Xjk)

]2
1/2

‖(β∗n − β̃0)‖.

Let qnk(β
∗
n) = 1

hn(n−1)
∑
i 6=j

I(Yi > Yj)φ(
Zi−Zj

h
)(Xik −Xjk), for k = 1, · · · , n. Then

q2nk(β
∗
n) = 2Skn1(β

∗
n) + 4Skn2(β

∗
n) + 6Skn3(β

∗
n),

where

Skn1(β
∗
n) =

1

h2n2(n− 1)2

∑
i 6=j

I(Yi > Yj)φ
2(
Zi − Zj

h
)(Xik −Xjk)

2,

Skn2(β
∗
n) =

1

h2n2(n− 1)2

∑
i 6=j 6=l

I(Yi > Yj)φ(
Zi − Zj

h
)(Xik −Xjk)

I{Yl > Yj}φ(
Zl − Zj

h
)(Xlk −Xjk),

Skn3(β
∗
n) =

1

h2n2(n− 1)2

∑
i 6=j 6=l 6=t

I(Yi > Yj)φ(
Zi − Zj

h
)(Xik −Xjk)

I(Yl > Yt)φ(
Zl − Zt

h
)(Xlk −Xtk).

By Condition (C.1∗),
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E[Skn1(β
∗
n)]

=
1

h2n(n− 1)
E

{
G(Z1, Z2)φ

2(
Z1 − Z2

h
){[µk(Z1)− µk(Z2)]

2 + vk(Z1) + vk(Z2)}
}

=
1

hn(n− 1)
E
{
π−1/2G(Z2, Z2)vk(Z2) + oP (1)

}
= O(

1

hn(n− 1)
),

E[Skn2(β
∗
n)]

=
n− 2

h2n(n− 1)
E

{
G(Z1, Z3)G(Z2, Z3)

φ(
Z1 − Z3

h
)φ(

Z2 − Z3

h
){[µk(Z1)− µk(Z3)][µk(Z2)− µk(Z3)] + vk(Z3)}

}
=

n− 2

n(n− 1)
E[G2(Z3, Z3)vk(Z3) + oP (1)

]
= O(

n− 2

n(n− 1)
),

E[Skn3(β
∗
n)]

=
(n− 2)(n− 3)

h2n(n− 1)
E2

{
G(Z1, Z2)φ(

Z1 − Z2

h
)[µk(Z1)− µk(Z2)]

}
=

h4(n− 2)(n− 3)

n(n− 1)
E2[G(Z2, Z2)µ

′′
k(Z2)/2 +G(1,0)(Z2, Z2)µ

′
k(Z2) + oP (1)]

= O(
h4(n− 2)(n− 3)

n(n− 1)
).

Since nh → ∞ and nh4 → 0, we have E[q2nk(β
∗
n)] = Op(n

−1). By similar argument

and algorithm, we can also obtain that V ar[q2nk(β
∗
n)] = Op(n

−2). Hence q2nk(β
∗
n) =
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Op(E[q2nk(β
∗
n)] +

√
V ar[q2nk(β

∗
n)]) = Op(n

−1), which yields that

|IIn1| = Op(

√
mn

n
)‖(β∗n − β̃0)‖. (S5.2)

We next consider IIn2,

IIn2 =
1

2
(β∗n − β̃0)

T∇2C̃s(β̃0)(β
∗
n − β̃0)

=
1

2
(β∗n − β̃0)

T
{
∇2C̃s(β̃0)− E[∇2C̃s(β̃0)]

}
(β∗n − β̃0)

+
1

2
(β∗n − β̃0)

TE[∇2C̃s(β̃0)](β
∗
n − β̃0). (S5.3)

Note that for any ε > 0, by Chebyshev inequality,

Pr(‖∇2C̃s(β̃0)− E[∇2C̃s(β̃0)]‖ ≥
ε

mn

)

≤ m2
n

ε2
E

mn∑
k,l=1


[
∂2C̃s(β̃0)

∂βk∂βl

]2
− E2

[
∂2C̃s(β̃0)

∂βk∂βl

]
=

m4
n

ε2n
(1 + o(1)) = o(1). (S5.4)

According to conditions (C.1∗)-(C∗.2),

E

[
∂2C̃s(β̃0)

∂βk∂βl

]
=

1

h2n(n− 1)

∑
i 6=j

I(Yi > Yj)φ
′(
Zi − Zj

h
)(Xik −Xjk)(Xil −Xjl)

=
1

h2
E

[
I(Y1 > Y2)φ

′(
Z1 − Z2

h
)(X1k −X2k)(X1l −X2l)

]
=

1

h2
E

[
G(Z1, Z2)φ

′(
Z1 − Z2

h
){

ckl(Z1) + ckl(Z2) + [µk(Z1)− µk(Z2)] [µl(Z1)− µl(Z2)]
}]
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= −E[2ckl(Z)G(1,0)(Z,Z) + c′kl(Z)G(Z,Z) +O(h)]

= −E[2ckl(Z)G(1,0)(Z,Z) + c′kl(Z)G(Z,Z)] +O(h).

Let ‖ · ‖F be the Frobenius norm, that is for any m × n-dimensional matrix A,

‖A‖F =

√
m∑
i=1

n∑
j=1

|aij| =
√
trac(ATA), then

∥∥∥∥∥E[∇2C̃s(β̃0)] + E

[
2Cov(X̃|Z)G(1,0)(Z,Z) +G(Z,Z)

∂Cov(X̃|Z)

∂Z

]∥∥∥∥∥
F

= O(hmn) = o(1). (S5.5)

According to Condition (C∗.3), combining (S5.3)-(S5.5) leads to

IIn2 = −(β∗n − β̃0)
T I(β̃0)(β

∗
n − β̃0) + op(1)‖β∗n − β̃0‖2. (S5.6)

By the Cauchy-Schwarz inequality and Condition (C.4∗),

|IIn3| = |1
6

mn∑
k,l,t

∂3C̃s(β
∗∗)

∂βk∂βl∂βt
(β∗∗k − βk0)(β∗∗l − βl0)(β∗∗t − βt0)|

≤ B3α3
n

n(n− 1)

∣∣∣∣∣∣∣
1

6

n∑
i 6=j

 mn∑
k,l,t

[
∂3C̃

(i,j)
s (β∗∗)

∂βk∂βl∂βt

]21/2
∣∣∣∣∣∣∣

≤ B3Mα3
nOp(m

3
2
n ). (S5.7)

We now consider In2,

In2 = −
s0∑
j=1

[
p′λn(|βj0|)sgn(βj0)(β

∗
j − βj0) + p′′λn(|βj0|)(β∗j − βj0)2(1 + o(1))

]
≡ IIn4 + IIn5.
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The terms IIn4 and IIn5 can be dealt with as follows,

|II4| ≤
s0∑
j=1

|p′λn(|βj0|)sgn(βj0)(β
∗
j − βj0)| ≤

√
s0αnanB, (S5.8)

and

|IIn5| ≤
s0∑
j=1

|p′′λn(|βj0|)(β∗j − βj0)2(1 + o(1))| ≤ α2
n max{|p′′λn(|βj0|)| : βj0 6= 0}snB2.(S5.9)

Since m4
n/n → 0 as n → ∞, αn =

√
mn(n−1/2 + an), according to conditions (P.1),

(P.2) and (S5.2) and (S5.6)-(S5.9), and allowing B to be large enough, all terms IIn1,

IIn3, IIn4 and IIn5 are dominated by II2, which is negative. This proves (S5.1), and

then Theorem 3 follows.

Proof of Theorem 4

To prove Theorem 4, we first show that with probability tending to 1, for any given

β(1) satisfying ‖β(1) − β
(1)
0 ‖ = Op(

√
mn/n) and ‖β(1)‖ = 1, and any constant B,

PCs{

 β(1)

0pn−s0

} = max
‖β(2)

‖≤B(pn/n)1/2

PCs{

 β(1)

β(2)

}. (S5.10)

In fact, let εn = B
√
pn/n, it is sufficient to prove that with probability tending to 1, as

n→∞, for any β(1) satisfying ‖β(1)−β(1)
0 ‖ = Op(

√
mn/n) and for k = s0+1, · · · ,mn,

we have

∂pcs(β̃)

∂βk
< 0 for 0 < βk < ε, (S5.11)

> 0 for − ε < βk < 0. (S5.12)
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By Taylor expansion,

∂PCs(β̃)

∂βk
=

∂PCs(β̃0)

∂βk
+

mn∑
l=1

∂2PCs(β̃0)

∂βk∂βl
(βl − βl0)

+
1

2

mn∑
l,t=1

∂3PCs(β̄)

∂βk∂βl∂βt
(βl − βl0)(βt − βt0)− p′λn(|βk|)sgn(βk)

≡ Mn1 +Mn2 +Mn3 +Mn4,

where β̄ lies between β̃ and β̃0.

By a standard arguments, we have Mn1 = O(1/
√
n). Now, we consider Mn2 and

Mn3.

Mn2 =
mn∑
l=1

{
∂2PCs(β̃0)

∂βk∂βl
−

[
∂2PCs(β̃0)

∂βk∂βl

]}
(βl − βl0)

−
mn∑
l=1

Ik,l(β̃0)(βl − βl0) +O(h)
mn∑
l=1

(βl − βl0). (S5.13)

Since that nh4 → 0 and m4
n/n→ 0 as n→∞, it follows form ‖β̃−β̃0‖ = Op(

√
mn/n)

that the third item on the right-hand side of (S5.13) is op(
√
mn/n). According to

condition (C∗.3), the eigenvalues of Ik,l(β̃0) are bounded, then

mn∑
l=1

Ik,l(β̃0) = O(1),

which yields that the second item on the right-hand side of (S5.13) is Op(
√
mn/n). As

for the first term on the right-hand side of (S5.13), by the Cauchy-Schwarz inequality

and using the calculation of (S5.4), we have

|
mn∑
l=1

{
∂2PCs(β̃0)

∂βk∂βl
−

[
∂2PCs(β̃0)

∂βk∂βl

]}
(βl − βl0)|
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≤ ‖β̃ − β̃0‖

 mn∑
l=1

{
∂2PCs(β̃0)

∂βk∂βl
−

[
∂2PCs(β̃0)

∂βk∂βl

]}2
1/2

= Op(mn/n).

This entails that Mn2 = Op(
√
mn/n). By the same argument of (S5.7) in the proof

of Theorem 3, we can obtain that Mn3 = op(
√
mn/n), and consequently

Mn1 +Mn2 +Mn3 = Op(
√
mn/n). (S5.14)

Since
√
mn/n/λn → 0 and lim infn→∞ infθ→0+ p

′
λn

(θ)/λn > 0, we obtain that

∂PCs(β̃)

∂βk
= λn

[
Op(
√
mn/n/λn)− p′λn(|βk|)/λnsgn(βk)

]
.

That is the sight of ∂PCs(β̃)/∂βk is completely determined by the sign of βk. Hence,

(S5.11) and (S5.12) follow. This prove part (i), that is with probability tending to 1,

β̂ has the form (β̂
(1)T

, 0Tmn−s0)
T .

We now prove part (ii).Note that for βk 6= 0, p′λn(|βk|)sgn(βk) ≈ {p′λn(|βk0|)/|βk0|}βk,

then we can obtain

−∇PCs(β(1)
0 ) = [∇2PCs(β

(1)
0 )− Σλn(β

(1)
0 )](β̂

(1)
− β

(1)
0 )− Σλn(β̇

(1)
)β

(1)
0

+
1

2
(β̂

(1)
− β

(1)
0 )T∇2{∇PCs(β̌

(1)
)}(β̂

(1)
− β

(1)
0 ), (S5.15)

where β̌
(1)

and β̌
(1)

lie between β̂
(1)

and β
(1)
0 By regular arguments we can easily

prove that

1

2
(β̂

(1)
− β

(1)
0 )T∇2{∇PCs(β̌

(1)
)}(β̂

(1)
− β

(1)
0 ) = Op(‖β̂

(1)
− β

(1)
0 ‖2) = op(n

−1/2).
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According to the calculation of IIn2 in the proof of Theorem 3, by Conditions (C.1∗)-

(C.5∗) and Condition (P.4),

‖∇2PCs(β
(1)
0 )− Σλn(β̇

(1)
) + I(β

(1)
0 ) + Σλn(β

(1)
0 )‖F = Op(

√
mn/n) +Op(n

−1/2) +O(h).

Note that since nh4 → 0 and m4
n/n → 0, hmn → 0 as n → ∞ as n → ∞, which

implies that

∇PCs(β(1)
0 ) = [I(β

(1)
0 ) + Σλn(β

(1)
0 )](β̂

(1)
− β

(1)
0 ) + b + op(n

−1/2). (S5.16)

Let µ̃(Z) = E(X̃
(1)|Z), then we can obtain that

E[∇PCs(β(1)
0 )]

= E

{
G(Z1, Z2)φ(

Z1 − Z2

h
)[X̃

(1)
(Z1)− X̃

(1)
(Z2)]/h

}
= E

{
G(Z1, Z2)φ(

Z1 − Z2

h
)[µ̃(Z1)− µ̃(Z2)]/h

}
= h2E

[
G(Z,Z)µ̃′′k(Z)/2 +G(1,0)(Z,Z)µ̃′k(Z)

]
+ oP (h2).

According to the same argument of IIn1 in the proof of Theorem 3, since nh → ∞

and nh4 → 0 as n→∞,

Cov[∇PCs(β(1)
0 )]

=
1

n
E

[
G2(Z,Z)Cov(X̃

(1)|Z) + oP (1)

]
=

1

n
I∗(β

(1)
0 ) + o(n−1).

Thus, by the central limit theory of U-statistic (Lee, 1990), we have

√
n∇PCs(β(1)

0 )
L→ N(0s0 , I

∗(β
(1)
0 )).



28 YUNBEI MA, YI LI, HUAZHEN LIN AND YI LI

Based on the Slutsky’s theorem, it follows from (S5.16) that

√
n[I(β

(1)
0 ) + Σλn(β

(1)
0 )]

(
β̂

(1)
− β

(1)
0 + [I(β

(1)
0 ) + Σλn(β

(1)
0 )]−1b

)
L→ N(0s0 , I

∗(β
(1)
0 )).
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