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Abstract: The C-statistic, measuring the rank concordance between predictors and

outcomes, has become a standard metric of predictive accuracy and is therefore a

natural criterion for variable screening and selection. However, as the C-statistic

is a step function, its optimization requires brute-force search, prohibiting its di-

rect usage in the presence of high-dimensional predictors. We propose a smoothed

C-statistic sure screening (C-SS) method for screening ultrahigh-dimensional data,

and a penalized C-statistic (PSC) variable selection method for regularized mod-

eling based on the screening results. We show that these procedures form an inte-

grated framework for screening and variable selection: the C-SS possesses the sure

screening property, and the PSC possesses the oracle property. Our simulations

reveal that, compared to existing procedures, our proposal is more robust and effi-

cient. Our procedure has been applied to analyze a multiple myeloma study, and

has identified several novel genes that can predict patients response to treatment.

Key words and phrases: C-statistic, false positive rates, sparsity, ultra-high dimen-

sional predictors, variable selection, variable screening.

1. Introduction

Modern technologies yield abundant data with ultrahigh-dimensional risk

predictors from diverse scientific fields. Developing sound risk score systems

that can function as accurate diagnostic tools in this environment has become

a requirement. For example, in microarray-based risk prediction studies, arrays

usually number in the tens, while the potential predictors can be tens of thou-

sands of gene expressions.

Traditional variable selection methods include Bridge regression in Frank

and Friedman (1993), Lasso in Tibshirani (1996), SCAD in Fan and Li (2001),

the Elastic net in Zou and Hastie (2005), and the Dantzig selector in Candes and

Tao (2007). When the number of covariates far exceeds the sample size, these

traditional methods incur difficulties in speed, stability, and accuracy (Fan and

Lv (2008)). Sure independence screening methods, e.g. those proposed by Fan

and Lv (2008) and Fan, Samworth and Wu (2009), have emerged as a powerful
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means to effectively eliminate unimportant covariates.

As successful as they are, the validity of these proposals hinges upon the

proximity of the working models to the truth. To relax such restrictions, Hall

and Miller (2009) extended the Pearson correlation learning by considering poly-

nomial transformations of predictors. Fan, Feng and Song (2011) considered

nonparametric independence screening in sparse ultrahigh-dimensional additive

models, and Li et al. (2012) proposed a robust screening method by Kendall τ

rank correlation (RRCS) and its iterative version (IRRCS) for transformation

models. Within a fully nonparametric model framework, Li, Zhong and Zhu

(2012) developed a sure independence screening procedure based on the distance

correlation (DC-SIS). Other screening methods for ultrahigh dimensional dis-

criminant analysis can be found in Mai and Zou (2013), among many others.

In summary, parametric methods are stable but rely heavily on assump-

tions, and have potentially high bias, while nonparametric methods can adapt

to various situations, but estimators depend heavily on a handful of input obser-

vations, and are unstable. As a compromise between fully parametric and fully

nonparametric modeling, we consider feature screening and variable selection in

a semiparametric framework. A typical semiparametric model is an index model

in which the response is associated with predictors through an unknown function

of linear combinations. Zhu et al. (2011) and Zhong et al. (2012), among many

others, have developed methods to simultaneously perform dimension reduction

and variable selection for index models. These shrinkage-based variable-selection

methods often perform poorly on the index model when p is large.

We propose to conduct variable screening and selection based on the C-

statistic. The C-statistic (Harrell and Davis (1982)), measuring the rank concor-

dance between predictors and outcomes, has become a standard measure of pre-

dictive accuracy. However, as a step function, its optimization requires a brute-

force search. We employ a smoothed C-statistic screening (C-SS) for ultrahigh-

dimensional data, followed by a penalized smoothing C-statistic (PSC) based on

the screening results to further select and estimate the regression coefficients.

We show that these procedures form an integrated framework for screening and

variable selection: the C-SS possesses the sure screening property of Fan and

Lv (2008), and the PSC possesses the oracle property of Fan and Li (2001) un-

der a sparse assumption. We prove that the PSC achieves oracle properties if

mn = o(n1/4), where mn is the cardinality of the set of predictors captured by the

C-SS. Compared with existing procedures, our procedure has practical appeal.

Being semiparametic, while the link function relating the outcomes to the covari-
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ates can be unspecified, while the existing SIS for the linear regression model (Fan

and Lv (2008)) and the ISIS for the generalized linear model (Fan, Samworth and

Wu (2009)) typically assume a linear link for continuous outcomes, and a logit

or log link for ordinal outcomes. Such parametric assumptions can result in im-

proper feature screening and estimation (Hettmansperger and McKean (2010)).

Nonparametric screening methods, such as SIRS (Zhu et al. (2011)), RRCS (Li et

al. (2012)) and DC-SIS (Li, Zhong and Zhu (2012)), can be unstable, especially

with ultrahigh-dimensional data, while our C-SS method is stable and applicable

to various types of data (continuous, count, ordinal and categorical). Further,

our procedure leads to a selection of significant risk predictors without calling

for additional modelling as required by nonparametric approaches. Finally, our

method does not require a linearity condition on the predictors and does not

require calculation of the p× p covariance matrix and its inverse.

This article is organized as follows. In Section 2, we develop the C-SS for

feature screening by ranking a semi-robust measure of marginal utility. The

sure screening property and model selection consistency under certain technical

conditions are established. In Section 3, the PSC for selection and estimation

of the regression coefficients is proposed; it allows the dimension of variables

after screening to diverge to infinity. Development of iterative procedures, PC-

SS and GC-SS, is discussed in Section 4. In Section 5, report on numerical

studies conducted to evaluate the performance of our methods. We describs in

Section 6 an analysis of a multiple myeloma study using the proposed methods.

Concluding remarks are in Section 7. Proofs are in the online supplementary

materials.

2. Screening Method Based on Smoothed C-Statistic

Consider a study with n independent subjects, where Yi denotes the re-

sponse variable (continuous, binary, ordinal or count) and Xi = (Xi1, · · · , Xip)
T

is a length p covariate vector containing, for example, all gene expressions for

individual i. We assume that each component of Xi has been standardized

such that E(Xij) = 0, V ar(Xij) = 1 for j = 1, . . . , p. We seek a feature

XT
i β that predicts the response Yi, as accurately as possible, through the use

of the C-statistic, C(β) = Pr(XT
i β > XT

j β|Yi > Yj), that can be estimated

by Ĉ(β) = (
∑

i,j I(Yi > Yj)I(XT
i β > XT

j β))/(
∑

i,j I(Yi > Yj)), where I(·) is the

indicator function. An estimator of β can be obtained by maximizing Ĉ(β) or
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Cn(β) =
1

n(n− 1)

∑
i 6=j

I(Yi > Yj)I(XT
i β > XT

j β). (2.1)

Here Cn(β) is the maximum rank correlation (MRC) defined in Han (1987).

For a binary response, Cn(β) is the Wilcoxon-Mann-Whitney statistic, and is

identical to the area under a receiver operating characteristic curve for comparing

predictions in the two groups. As β is only identifiable up to a constant multiplier,

we take ‖β‖ = 1.

2.1. Smoothed C-statistic

The indictor I(XT
i β > XT

j β) at (2.1) is discrete, presenting computational

as well as theoretical challenges; see Han (1987) and Sherman (1993). The opti-

mization requires a search that grows at the order of np and becomes impossible

for ultra-high p. If Φ(·) denotes the distribution function of the standard normal,

we use Φ
{

(XT
i β −XT

j β)/h
}

as a smooth approximation to the indicator func-

tion I(XT
i β > XT

j β), where the bandwidth h converges to zero as the sample

size increases. A smoothed Cn(β) is thus

Cs(β) =
1

n(n− 1)

∑
i 6=j

I(Yi > Yj)Φ

{
(XT

i β −XT
j β)

h

}
. (2.2)

When p is finite, it can be shown that when h is small enough the difference

between Cs(β) and Cn(β) can be ignored. Hence the maximizer of Cs(β) agrees

well with those of Cn(β). Because Cs(β) is a smoothing function of β, the com-

putation of the maximizer of Cs(β) is straightforward and can be accomplished

through Newton-Raphson iteration. Other approximation methods, including the

sigmoid approximation proposed by Ma and Huang (2005), can also be used to

approximate the indicator function I(XT
i β > XT

j β).

Under some regular conditions for the binary response (Lin et al. (2011)), the

estimator based on maximizing (2.2) is consistent when p is finite. Li et al. (2012)

considered a penalized version of Cs(β) when p goes to infinity, and proposed

RRCS (Robust Rank Correlation Screening) to deal with ultra-high dimensional

problems. The former lacks speed and stability while the later may not work

well for discrete data. This has been confirmed by our simulation studies.

2.2. Screening method based on the smoothed C-statistic

Assume that the parameter β is sparse, and let M0 = {k : βk 6= 0} be the

true sparse model with size s0 = |M0|, where s0 is small or grows slowly with n.

We allow p to grow with n and denote it by pn whenever necessary.
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We estimate β by maximizing (2.2), or solving

∂Cs(β)

∂β
=

1

n(n− 1)

∑
i 6=j

I(Yi > Yj)φ

{
(XT

i β −XT
j β)

h

}
(Xi −Xj)

h
= 0,

where φ(·) is the standard normal density function. If ĝk(β) is the kth com-

ponent of h
√

2π∂Cs(β)/∂β, ĝk(β) = h
√

2π∂Cs(β)/∂βk for k = 1, · · · , pn, then

(ĝ1(β), · · · , ĝpn(β)) = 0 are estimating equations for β.

For the k-th covariate, we construct an estimating equation for βk, assum-

ing a marginal model that has all other covariates unrelated to the outcome:

Uk(βk) = ĝk(0, . . . , βk, . . . , 0) = 0. Then each |Uk(0)| ≡ |ĝk(0p)|, where 0p is a

p-dimensional zero vector, is the numerator of the score statistic for a hypothesis:

βk = 0 under the k-th marginal model and can be a sensible screening statistic.

The general theory for such score-test based screening statistics has been given

by Zhao and Li (2014).

For a given thresholding value γn, we screen the covariates as

M̂γn = {1 ≤ k ≤ p : |ĝk(0p)| ≥ γn}.

If gk(β) = E[ĝk(β)], then ĝk(0p) = 1/n(n− 1)
∑n

i 6=j I(Yi > Yj)(Xik − Xjk)

and gk(0p) = E[I(Y1 > Y2)(X1k − X2k)]. Hence, gk(0p), then ĝk(0p), can be

regarded as a surrogate measure of the nonparametric rank correlation between

the response Y and the kth covariate Xk. For example, independence between

Y and Xk implies gk(0p) = 0. Under some regularity conditions, the smoothed

C-statistic sure screening (C-SS) procedure reduces the full model of size p to

a submodel M̂γn with size less than n. The procedure only requires a single

evaluation of the smoothed C-statistic at β = 0 instead of p separate models as

is commonly used by the existing screening methods. Compared to the existing

model-free sure screening methods such as SIRS (Zhu et al. (2011)), RRCS (Li

et al. (2012)) and DC-SIS (Li, Zhong and Zhu (2012)), the method utilizes the

linear structure of the predictors, X′β, and hence is more efficient.

2.3. Sure screening properties

For the sure screening properties, we need some conditions.

(C.1) For all 1≤k≤p, there exists a positive constant K1 and r1≥1, such that

Pr(|Xk| > t) ≤ exp(1− (
t

K1
)r1), for any t ≥ 0. (2.3)

(C.2) For all k ∈ M0, there exist positive constants δ and κ < 1, such that

|E[I(Y1 > Y2)(X1k −X2k)]| > δn−κ.
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(C.3) If β0 is the true value of β, there exists a monotonic increasing function

m(·) such that

E(Y |X) = m(XTβ0). (2.4)

Condition (C.2) guarantees that the marginal signal of the active components

{gk(0p)}k∈M0
does not vanish as the sample size grows. Condition (C.3) supports

the idea of using ĝk(0p) to screen covariates based on the C-statistic C(β) =

Pr(XT
i β > XT

j β|Yi > Yj).

Theorem 1. Suppose (C.1) and (C.3) hold.

(1) If 0 < κ < 1/2, then for any c1 > 0, there exist positive c2 and c3 such that

P

(
max

1≤k≤pn
|ĝk(0)− Eĝk(0)| > c1n

−κ
)
≤ 4pn exp

{
− c2

1n
1−2κ

2(2c2 + c1c3n−κ)

}
.

(2.5)

(2) If (C.2) also holds, then with γn = δn−κ/2,

P
(
M0 ⊂ M̂γn

)
≥ 1− 4s0 exp

{
− δ2n1−2κ

4(4c2 + δc3n−κ)

}
.

The sure screening property then holds for the non-polynomial (NP) di-

mensionality of covariates with log pn = o(n1−2κ); this is the rate for the linear

regression model in Fan and Lv (2008).

Theorem 1(1) reveals that the signal level of the important effectors is of

the same rate as that of their approximations, i.e., O(n−κ). The ideal case for a

vanishing false-positive rate is when E[I(Y1 > Y2)(X1k −X2k)] = o(n−κ) for k /∈
M0, so that there is a natural separation between important and unimportant

variables. When pn exp{−c2
1n

1−2κ/4(4c2 + c1c3n
−κ)} tends to zero, we have, with

probability going to 1, that maxk/∈M0
|ĝk(0p)| ≤ cn−κ, for any c > 0. Thus, by

choosing γn as in Theorem 1(2), the proposed screening method can achieve

model selection consistency, P (M0 = M̂γn) = 1− o(1).

Theorem 2. Under the conditions of Theorem 1, for γn = c4n
−κ, there exist

positive constants c2 and c3 such that

Pr

{
‖M̂γn‖0 ≤ O(nκ

p∑
k=1

|E[I(Y1 > Y2)(X1k −X2k)]|)

}

≥ 1− 4p exp

{
− c2

4n
1−2κ

4(4c2 + c4c3n−κ)

}
.

Where ‖ · ‖0 denotes the cardinality of a set.
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Thus, as long as
∑p

k=1 |E[I(Y1 > Y2)(X1k − X2k)| is of a polynomial order

of sample size, the number of selected variables is also of polynomial order of

sample size, and a variable selection procedure is conducted for parameters of a

polynomial order.

3. Variable Selection and Parameter Estimation Based on the Penal-

ized Smoothed C-Statistic

For variable selection with finite covariates, penalization methods such as

LASSO, SCAD, and adaptive LASSO, among others, have routinely been used.

Fan and Peng (2004) extended the SCAD penalized likelihood estimation to the

situation where the number of parameters is of the order o(n1/5).

Without loss of generality, we suppose that the first mn variables are kept

after screening: X̃ = (X1, · · · , Xmn
)T with coefficients β̃ = (β1, · · · , βmn

)T . We

then further assume that the first s0 variables of X̃ are the important selectors:

X̃
(1)

= (X1, · · · , Xs0)
T with coefficients β(1) = (β1, · · · , βs0)T .

3.1. Penalized smoothed C-statistic

We rewrite the smoothed C-statistic after screening as

C̃s(β̃) =
1

n(n− 1)

∑
i 6=j

[
I(Yi > Yj)Φ

{
(X̃

T
i β̃ − X̃

T
j β̃)

h

}]
, (3.1)

and estimate β̃ by

β̂ = arg max
˜β∈Ω,‖ ˜β‖=1

{C̃s(β̃)−
mn∑
j=1

pλn
(|βj |)},

where pλn
(·) is a prespecified penalty function with a regularization parameter

λn.

As the SCAD penalty satisfies all three properties of unbiasedness, sparsity

and continuity (Fan and Li (2001)), we choose SCAD as the penalty function: for

some a > 0 and β > 0, it satisfies p′λn
(β) = λn{I{β ≤ λn}+(aλn − β)+/(a− 1)λn

I{β > λn}}, with p′λn
(0) = 0.

3.2. Oracle property

We establish the asymptotic theory for the penalized smoothed estimation of

β̃ when mn diverges. Let β̃0 = (β
(1)T
0 ,β

(2)T
0 )T be the true values of coefficients.

Then β
(2)
0 = 0mn−s0 . We consider a generalized nonconcave penalty function, and

let an = max{p′λn
(|βj0|) : βj0 6= 0} and bn = max{p′′λn

(|βj0|) : βj0 6= 0}.
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Theorem 3. (Consistency) Under Conditions (C.1∗)-(C.4∗) in the supplemen-

tary materials, if the penalty function pλn
(·) satisfies conditions (P.1) and (P.2)

there, and if nh → ∞, nh4 → 0, m4
n/n → 0 as n → ∞, then there exists a

maximizer β̂ of PCs(β̃) satisfying ‖β̂‖ = 1 and

‖β̂ − β̃0‖ = Op{
√
mn(n−1/2 + an)}.

Thus if an = O(n−1/2), the penalized smoothed estimator is root-(n/mn)

consistent. This rate is the same as for the M-estimator with diverging param-

eters in Huber (1973). For the SCAD penalty, by (C.5∗) in the supplementary

materials, an = 0 when n is large enough. Hence, there exists a root-(n/mn)-

consistent penalized smoothed estimator with probability tending to 1, and no

requirements for the convergence rate of λn.

Let G(Z1, Z2) =
∫∞
−∞

∫∞
y∗ dF (y|Z1)dF (y∗|Z2), I∗(β

(1)
0 ) = E[G2(Z,Z)

Cov(X̃
(1)|Z)], Σλn

(β
(1)
0 ) = diag{p′′λn

(|β10|), · · · , p′′λn
(|βs00|)}, and b = (p′λn

(|βj0|)
sgn(βj0), j = 1, · · · , s0)T .

Theorem 4. (Oracle property). If (C.1∗)-(C.5∗) and (P.1)-(P.4) in the supple-

mentary materials hold, and if λn → 0,
√
n/mnλn →∞, nh→∞, nh4 → 0 and

m4
n/n→ 0 as n→∞, then with probability tending to 1, the

√
n/mn-consistent

local maximizer β̂ = (β̂
(1)T

, β̂
(2)T

)T in Theorem 3 satisfies:

(i) (Sparsity) β̂
(2)

= 0, and

(ii) (Asymptotic normality)
√
n[I(β

(1)
0 ) + Σλn

(β
(1)
0 )]

(
β̂

(1)
− β

(1)
0 + [I(β

(1)
0 ) + Σλn

(β
(1)
0 )]−1b

)
L→ N(0s0 , I

∗(β
(1)
0 )).

Sparsity and asymptotic normality then are still valid when the number of

parameters after screening diverges. For the SCAD penalty, Condition (C.5∗)

implies that Σλn
= 0 and b = 0 for large enough n. Then Theorem 4(ii) be-

comes
√
nI(β

(1)
0 )(β̂

(1)
− β

(1)
0 )

L→ N(0s0 , I
∗(β

(1)
0 )), which implies that the penal-

ized smoothed estimator of β(1) performs as well as a maximized rank correla-

tion estimator when β
(2)
0 = 0 is known. This demonstrates that the penalized

smoothed estimator with diverging mn parameters possesses the oracle property.

4. Iterative Algorithm and Relative Issues

To reduce false negatives and false positives, we adopt an iterative framework

to enhance model performance by repeatedly applying our variable screening
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and variable selection. These result in a conditional random permutation C-SS

(PC-SS) method that performs conditional random permutation in the screening

step to determine the threshold, and a Greedy C-SS (GC-SS) method that is a

greedy version of the iterative screening-SCAD procedure. These algorithms are

similar to the INIS procedure of Fan, Ma and Dai (2014), the details are in the

supplementary materials.

We need to select the tuning parameters, (λn, a) for the SCAD penalty func-

tion, and h for smoothing function C̃s(β̃). To reduce the computational burden

in our simulation studies and examples, we took a = 2
√

3, as recommend by Fan

and Li (2001). The selection of λn is governed by the bic-criterion - we chose

λn as the maximizer of BICλn
= log{C̃s(β̂)} − 1/2dfλn

log n/n, where dfλn
is the

number of nonzero coefficient estimates. We chose h = n−1/3 in the same way as

in Lin et al. (2011).

5. Simulation Studies

We examined the finite sample performance of the proposed method. We

investigated the screening capacity by comparing it with the parametric methods

of SIS (Fan and Lv (2008)) for linear regression models and GLM-SIS (Fan,

Samworth and Wu (2009)) for generalized linear models, nonparametric methods

including RRCS (Li et al. (2012)), SIRS (Zhu et al. (2011)) and DC-SIS (Li,

Zhong and Zhu (2012)), and the robust screening methods QaSIS (He, Wang and

Hong (2013))and DC-RoSIS (Zhong et al. (2016)). We compared the estimation

accuracy of the proposed selection method with that of SIS-SCAD (Fan and Lv

(2008)) for linear models, and that of vanilla-SIS-SCAD and permutation-SIS-

SCAD (Fan, Samworth and Wu (2009)) for generalized linear models.

5.1. Comparison of screening methods

Screening was assessed according to the minimum model size (MMS) needed

to include all the true variables. The response variable Y was generated from

either a linear regression model Y = X ′β + ε with a normal error (Model 1), or

a nonlinear regression model Y = exp(X ′β) + ε with a normal error (Model 2).

The variance of the error in Models 1 and 2 was taken to make the SNR between

8 and 10. To check the effect of misspecification of link functions in generalized

linear models, we generated ordinal responses via a 3-class ordinal model P (Y <

j) = g−1(cj + X ′β) (j = 1, 2) with g(x) = − log(− log(x)) and cut-off points

c1 = −3 and c2 = 2 (Model 3). In addition, we considered the case with discrete

covariates; configuration was based on Model 1 but with binary covariates I(X >
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0), where each component of X was an original continuous covariate (Model 4).

Finally, we conducted a simulation study with a weak variable or signal, similar to

the setting of Example III of Fan and Lv (2008). This simulation setup was based

on Model 1 except that the last two nonzero coefficients were the same value as

the standard deviation of the error to investigate the performance of the proposed

method in the case of a weak signal (Model 5). The predictors were set as follows

for all of the models: Xij = (tUi + εij)/
√

1 + t2, i = 1, . . . , n, j = 1, . . . , p, where

the Ui and εij were independent standard normal variables, and t was chosen

to control the correlation among predictors with 0 as the independent case. We

chose n = 100, 200, p = 1, 000, 4, 000, and the size s of the true models to be

4 and 8. The non-zero components of the p-vectors β were randomly chosen as

follows. We set a = 4 log(n)/n1/2 and picked non-zero coefficients of the form

(−1)u(a+ |z|) for each model, where u was a Bernoulli with parameter 0.4 and z

was standard normal. For each model, we simulated 200 data sets. The boxplots

of the minimum number of selected variables that required to include the true

model are reported in Fig. 1-Fig. 5, with Fig. 4 and Fig. 5 in the supplementary

materials. We estimated the generalized linear model with the correct link as

well as the mis-specified probit link.

Our findings are as follows.

(1) The proposed C-SS performed slightly worse than the SIS when the

estimators were implemented under the linear regression model; see Fig. 1, Fig. 4

and Fig. 5. This is not surprising as the SIS was carried out under the true model.

However, if the true model was not a linear regression model, the SIS performed

the worst among all the competing methods as shown by Fig. 2. The comparison

of Fig. 1 and Fig. 5 suggests that the relative performance of various methods is

similar in the cases of weak and strong signal.

(2) The RRCS failed for Models 3 and 4 (see Fig. 3 and Fig. 4) because the

response or the covariates were discrete. Our method performed better than the

QaSIS for all the simulations.

(3) The DC-SS and DC-RoSIS performed worse than the C-SS for all the

simulations, worse than the SIS for the linear regression model and the GLM-SIS

for the generalized linear regression model (see Fig. 1, Fig. 3 and Fig. 5). This

is not surprising as the DC-SS and DC-RoSIS were designed to accommodate

fully nonparametric settings, while the other methods were designed under the

semiparametric or parametric settings. Fig. 1-Fig. 5 also illustrate that our

method was superior to SIRS under the linear regression, and was slightly better

than SIRS under the generalized linear model and the nonlinear regression model.
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Figure 1. Boxplot of the minimum number of selected variables required to include the
true linear regression model (Model 1) by using SIS, proposed C-SS method, RRCS, DC-
SIS, SIRS, QaSIS and DC-RoSIS when (a) n = 100, p = 1, 000, s = 4, Cor(Xj , Xk) = 0,
(j 6= k); (b) n = 200, p = 4, 000, s = 8, Cor(Xj , Xk) = 0, (j 6= k); (c) n = 100,
p = 1, 000, s = 4 Cor(Xj , Xk) = 0.2, (j 6= k) and (d) n = 200, p = 4, 000, s = 8,
Cor(Xj , Xk) = 0.2, (j 6= k). The number in brackets is the median of distribution for
the minimum number of selected variables.
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Figure 2. Boxplot of the minimum number of selected variables required to include the
true nonlinear regression model (Model 2) by using SIS, proposed C-SS method, RRCS,
DC-SIS, SIRS, QaSIS and DC-RoSIS with outliers excluded when (a) n = 100, p = 1, 000,
s = 4, Cor(Xj , Xk) = 0, (j 6= k); (b) n = 200, p = 4, 000, s = 8, Cor(Xj , Xk) = 0,
(j 6= k); (c) n = 100, p = 1, 000, s = 4 Cor(Xj , Xk) = 0.15, (j 6= k) and (d) n = 200,
p = 4, 000, s = 8, Cor(Xj , Xk) = 0.5, (j 6= k). The number in brackets is the median of
distribution for the minimum number of selected variables.
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Figure 3. Boxplot of the minimum number of selected variables required to include the
true ordinal model (Model 3) by using proposed C-SS method, RRCS, DC-SIS, SIRS,
DC-RoSIS, GLM-SIS with correct link function (named GLM1 in the graph) and GLM-
SIS with link function misspecified to probit link (named GLM2 in the graph) when (a)
n = 100, p = 1, 000, s = 4, Cor(Xj , Xk) = 0, (j 6= k), (b) n = 200, p = 4, 000, s = 8,
Cor(Xj , Xk) = 0, (j 6= k), (c) n = 100, p = 1, 000, s = 4, Cor(Xj , Xk) = 0.2, (j 6= k)
and (d) n = 200, p = 4, 000, s = 8, Cor(Xj , Xk) = 0.2, (j 6= k). The number in brackets
is the median of distribution for the minimum number of selected variables.

(4) Fig. 3 shows that the C-SS performed similarly to the GLM-SIS when

the link function was correctly specified, and outperformed the GLM-SIS when

the link function was misspecified.

We compared the computing time of the various methods. For example, for

Model 1 with n = 100, p = 1, 000 and s = 4, the average computing time of SIS,

C-SS, SIRS, DC-SIS, RRCS, QaSIS, and DC-RoSIS per simulation is 1.38s, 1.95s,

1.75s, 2.75s, 1.73s, 2.22s and 2.78s, respectively. It appears that our method is

on a par with these methods in terms of computing time.

5.2. Comparison of estimation accuracy for the variable selection

We used s = 5 as the size of the true models that, without loss of generality,

are β1, · · · , β5. The non-zero components of the p-vectors β were randomly

chosen as in Section 5.1. To let β have a unit norm, we took the final non-zero

parameters as β/‖β‖. To generate covariates, we randomly generated an s × s
symmetric positive definite matrix A with a condition number n1/2/ log(n), and

took s predictors X1, · · · , Xs ∼ N(0, A). Then, by letting r = 1− 4 log(n)p, we

generated Zs+1, · · · , Zp from N(0, Ip−s) and defined the predictors Xs+1, · · · , Xp

as Xi = Zi+rtXi−s, i = s+1, · · · , 2s, and Xi = Zi+(1−r)tX1, i = 2s+1, · · · , p,
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Figure 4. Boxplot of the minimum number of selected variables required to include the
true model with discrete covariates (Model 4) by using SIS, the proposed C-SS method,
RRCS, DC-SIS, SIRS, QaSIS and DC-RoSIS when (a) n = 100, p = 1, 000, s = 4,
Cor(Xj , Xk) = 0, (j 6= k), (b) n = 200, p = 4, 000, s = 8, Cor(Xj , Xk) = 0, (j 6= k),
(c) n = 100, p = 1, 000, s = 4 Cor(Xj , Xk) = 0.2, (j 6= k) and (d) n = 200, p = 4, 000,
s = 8, Cor(Xj , Xk) = 0.2, (j 6= k). The number in brackets is the median of distribution
for the minimum number of selected variables.

with t = 0 for independent predictors, and t = 1 for correlated predictors. If

not otherwise stated, the common parameters for the following simulations were

sample size n = 200, number of covariates p = 1, 000, and Monte Carlo repetitions

N = 100.

We considered the regression model, Y = β1X1+β2X2+β3X3+β4X4+β5X5+

e, where the noise e was generated as N(0, σ2), X2
1 ·N(0, σ2) with σ = 0.5, or 0.1 ·

t(1). Here t(1) is the t distribution with degree of freedom 1. Four methods were

compared, including conditional permutation screening-SCAD methods based on

a smoothed C-statistic (PC-SS) as in Section 1.1 of the supplementary materials

with K = 0, M0 = ∅, Greedy screening-SCAD methods based on a smoothed

C-statistic (GC-SS) as in Section 1.2 of the supplementary materials with p0 = 1,

Permutation-SIS-SCAD (PSIS) as in Fan and Lv (2008), and Vanilla-SIS-SCAD

(VSIS) as in Fan, Samworth and Wu (2009). Several performance measures are

reported in Table 1. The med.‖β̂oracle − β‖ is also presented. In Table 1, β and

β̂ had been normalized to have unit 1 norm.

Table 1 reveals that the proposed PC-SS and GC-SS methods yielded re-

sults similar to PSIS and VSIS under the normal noise of the same distribution.

However, when the noise was heteroskedastic, PSIS had a low true-positive rate

and missed important predictors, while VSIS had a high false-positive rate and
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Figure 5. Boxplot of the minimum number of selected variables required to include
the true model with weak signal (Model 5) by using SIS, the proposed C-SS method,
RRCS, DC-SIS, SIRS, QaSIS and DC-RoSIS when (a) n = 100, p = 1, 000, s = 4,
Cor(Xj , Xk) = 0, (j 6= k), (b) n = 200, p = 4, 000, s = 8, Cor(Xj , Xk) = 0, (j 6= k),
(c) n = 100, p = 1, 000, s = 4 Cor(Xj , Xk) = 0.2, (j 6= k) and (d) n = 200, p = 4, 000,
s = 8, Cor(Xj , Xk) = 0.2, (j 6= k). The number in brackets is the median of distribution
for the minimum number of selected variables.

identified a large number of unimportant predictors, and failed when the noise

was fat-tailed. Our method had a high true-positive rate, a low false-positive

rate, and a small prediction error for either heteroskedasticity or fat-tailed noise.

Note the closeness of med.‖β̂ − β‖ and med.‖β̂oracle − β‖.
We have conducted more simulation studies on several generalized linear

models, including a non-linear regression model, a poisson regression model and

an ordinal regression model, with comparable results. For more details, see the

supplementary materials.

6. A Study of the Intergroupe Francophone du Myelome

Multiple myeloma is a progressive blood cancer often diagnosed through the

presence of an excessive numbers of abnormal plasma cells in the bone marrow,

and overproduction of intact monoclonal immunoglobulin. Myeloma patients are

typically characterized with wide clinical and pathophysiologic heterogeneities,

and exhibit various levels of response to the same treatments. Extensive studies

have revealed that the achievement of complete or partial response to treatment

will substantially prolong progression-free and overall survival. Gene expressions

of patients have been offered as effective prognostic tool for treatment response,

and have informed the design of appropriate gene therapies. Further identifying
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Table 1. Simulation results for linear regression model.

e ∼ N(0, σ2), med.‖β̂oracle − β‖ = 0.074
t = 0 t = 1

PC-SS GC-SS PSIS VSIS PC-SS GC-SS PSIS VSIS
perc.incl.true 0.96 0.93 1.00 1.00 0.96 0.90 1.00 1.00
med. model size 5 5 5 5 5 5 5 5
aver. model size 5.02 4.81 5.30 5.17 4.99 4.99 5.18 5.14

med.‖β̂ − β‖ 0.082 0.078 0.087 0.145 0.083 0.084 0.081 0.135

e ∼ 0.1 · t(1), med.‖β̂oracle − β‖ = 0.031
t = 0 t = 1

PC-SS GC-SS PSIS VSIS PC-SS GC-SS PSIS VSIS
perc.incl.true 1.00 0.95 0.23 0.48 0.99 0.97 0.27 0.40
med. model size 5 5 3 37 5 5 4 37
aver. model size 5.01 4.81 3.69 29.23 4.99 4.90 4.20 28.92

med.‖β̂ − β‖ 0.031 0.033 0.556 2.905 0.032 0.030 0.666 2.840

e ∼ X2
1N(0, σ2), med.‖β̂oracle − β‖ = 0.060

t = 0 t = 1
PC-SS GC-SS PSIS VSIS PC-SS GC-SS PSIS VSIS

perc.incl.true 0.97 0.93 0.84 0.94 0.96 0.93 0.76 0.87
med. model size 5 5 5 7 5 5 5 7
aver. model size 4.95 4.80 5.44 10.76 4.89 4.80 5.43 11.77

med.‖β̂ − β‖ 0.060 0.058 0.289 0.788 0.056 0.063 0.280 0.788

genes that predict treatment efficacy can boost our capabilities for personalized

medicine.

For previously untreated multiple myeloma patients, high-dose therapy with

autologous stem cell transplantation (HDT-ASCT) is the standard of care. Borte-

zomib-based therapy has recently emerged as a useful induction treatment prior

to HD-ASCT. A recent trial by the Intergroupe Francophone du Myelome in-

vestigated the efficacy of receiving bortezomib therapy before HDT-ASCT. A

total of 136 newly-diagnosed patients were enrolled and, for each patient, gene

expression files with 44,280 probes were obtained. The goal of the study was to

identify genes that were predictive of the response to treatment (coded values of

0 = no response, 1 = partial response, 2 = complete response were assigned).

We applied the proposed PC-SS and GC-SS methods to analyze the data and

obtained similar results; we only report the results for GC-SS. For comparison,

we also applied the Vanilla-SIS-SCAD (VSIS-G) method proposed by Fan, Sam-

worth and Wu (2009) for generalized linear models. The selected genes and their

descriptions are presented in Table 2. It appears that GC-SS selected several

novel genes that were predictive of response to treatment, such as CD74, ma-
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Table 2. Gene selection for the Intergroupe Francophone du Myelome Study.

GC-SS
Probeset Gene name
228093 at Zinc finger protein 599
243695 at Transcribed locus
1567628 at CD74 molecule, major histocompatibility complex, class II

invariant chain
206094 x at UDP glucuronosyltransferase 1 family, polypeptide A1 A3-10
208306 x at Major histocompatibility complex, class II, DR beta 1, 3, 4
205004 at NFKB repressing factor
217389 s at Activating transcription factor 5
1554161 at Solute carrier family 25, member 27
230499 at Baculoviral IAP repeat containing 3
206408 at Leucine rich repeat transmembrane neuronal 2

VSIS-G
Probeset Gene name
205549 at Purkinje cell protein 4
222285 at Immunoglobulin heavy constant delta
241226 at Transcribed locus
229941 at Family with sequence similarity 166, member B
206094 x at UDP glucuronosyltransferase 1 family, polypeptide A1 A3-10
220622 at Leucine rich repeat containing 31
206679 at Amyloid beta (A4) precursor protein-binding, family A, member 1
228093 at Zinc finger protein 599
217389 s at Activating transcription factor 5
214608 s at Eyes absent homolog 1 (Drosophila)

jor histocompatibility complex/class II, and NFkB, which have all been known

to regulate the proliferation of multiple myeloma cells; see Burton et al. (2004)

and Demchenko and Kuehl (2010). These important genes were missed by the

VSIS-G method.

To study the predictive performance of selected genes, we applied a K-fold

cross-validation method to compare the estimated predictive accuracy, the es-

timated C-statistic. Our approach was similar to that of Tian et al. (2007)

that assessed model performance based on absolute prediction error. We ran-

domly split the data into K disjoint subsets of equal sizes and labeled them

Ik, k = 1, . . . ,K. For each k, we used all the observations, excluding Ik, to ob-

tain an estimate β̂(−k) for the final set of genes shown in Table 2, by maximizing

the smoothed C-statistic (3.1). We then computed the estimated C-statistic

Ĉ(k)(β̂(−k)) via (2.1) based on observations in Ik. An average C-statistic could

be computed as Ĉ = K−1
∑K

k=1 Ĉ(k)(β̂(−k)). Taking K = 32, we obtained the
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averaged C-statistics ĈGC−SS = 0.84 and ĈV SIS−G = 0.81, based on the GC-SS

and VSIS-G methods, respectively. Both sets of genes gave very high predictive

power, though our proposed method showed even higher predictive accuracy.

7. Discussion

We have proposed an integrated framework that combines screening and

variable selection based on the smoothed C-statistic, a rank concordance mea-

sure between predictors and outcomes, and have established the sure screening

properties and model consistency property of the proposed method. Future re-

search lies in extending the results to encompass censored outcome data, with

applications in identifying novel biomarkers that can predict disease progression

or risk of death. We will report the results elsewhere.

Supplementary Materials

The supplementary materials consist of: (i) some details of the iterative

screening-SCAD procedure; (ii) further simulation studies; (iii) some technical

lemmas used in the proofs of Theorem 1 and 2; (iv) the proofs of Theorems 1

and 2; (v) the conditions and the proof for the oracle property.
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