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Abstract: Matrix completion algorithms recover a low rank matrix from a small

fraction of the entries, each entry contaminated with additive errors. In practice,

the singular vectors and singular values of the low rank matrix play a pivotal role

for statistical analyses and inferences. This paper proposes estimators of these

quantities and studies their asymptotic behavior. Under the setting where the di-

mensions of the matrix increase to infinity and the probability of observing each

entry is identical, Theorem 1 gives the rate of convergence for the estimated singu-

lar vectors; Theorem 3 gives a multivariate central limit theorem for the estimated

singular values. Even though the estimators use only a partially observed matrix,

they achieve the same rates of convergence as the fully observed case. These esti-

mators combine to form a consistent estimator of the full low rank matrix that is

computed with a non-iterative algorithm. In the cases studied in this paper, this

estimator achieves the minimax lower bound in Koltchinskii, Lounici and Tsybakov

(2011). The numerical experiments corroborate our theoretical results.
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1. Introduction

The matrix completion problem arises in several different machine learning

and engineering applications, ranging from collaborative filtering (Rennie and

Srebro (2005)), to computer vision (Weinberger and Saul (2006)), to positioning

(Montanari and Oh (2010)), and to recommender systems (Bennett and Lanning

(2007)). The literature has established a sizable body of algorithmic research

(Keshavan, Montanari and Oh (2009); Cai, Candès and Shen (2010); Mazumder,

Hastie and Tibshirani (2010); Hastie et al. (2014); Rennie and Srebro (2005); Cho,

Kim and Rohe (2016)) and theoretical results (Fazel (2002); Srebro, Rennie and

Jaakkola (2004); Candès and Recht (2009); Candès and Plan (2010); Keshavan,

Montanari and Oh (2010); Candès and Plan (2011); Gross (2011); Koltchinskii
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(2011); Koltchinskii, Lounici and Tsybakov (2011); Negahban and Wainwright

(2011); Recht (2011); Rohde and Tsybakov (2011); Negahban and Wainwright

(2012); Cai and Zhou (2013); Chatterjee (2014); Davenport et al. (2014)). This

extant literature is primarily focused on estimating the unobserved entries of the

matrix. In several of these previous estimation techniques, the algorithms first

estimate the singular vectors and singular values of the low rank matrix. Also,

based upon classical multivariate statistics, these singular vectors and singular

values can serve various types of statistical analyses and inferences. For example,

the overarching aim in the Netflix problem was to predict the unobserved film

ratings and the previous algorithms and theories served this purpose. However,

if one wishes to interpret the resulting model predictions, then the estimated

singular vectors and singular values can provide insights on (i) the main latent

factors of film preferences and (ii) their relative strengths, respectively. In the

Netflix example,

“The first factor has on one side lowbrow comedies and horror movies,

aimed at a male or adolescent audience (Half Baked, Freddy vs. Ja-

son), while the other side contains drama or comedy with serious

undertones and strong female leads (Sophie’s Choice, Moonstruck).

The second factor has independent, critically acclaimed, quirky films

(Punch-Drunk Love, I Heart Huckabees) on one side, and mainstream

formulaic films (Armageddon, Runaway Bride) on the other side.”

(Koren, Bell and Volinsky (2009))

This inference is based upon the leading singular vectors of the estimated matrix.

To the best of our knowledge, no previous research has studied the statistical

properties of the estimated singular vectors and singular values.

This paper proposes estimators of the singular vectors and singular values of

the low rank matrix as well as an estimator of the low rank matrix itself. First,

Lemma 1 studies the singular vectors and singular values of a partially observed

matrix that simply substitutes zeros for the unobserved entries; the resulting esti-

mators are biased. The proposed estimators adjust for this bias. Theorem 1 finds

the convergence rate for the bias-adjusted singular vector estimators and The-

orem 3 gives a multivariate central limit theorem for the bias-adjusted singular

value estimators. Despite the fact that the proposed estimators are built upon a

partially observed matrix, they converge at the same rate as the standard estima-

tors built from a fully observed matrix up to a constant factor which depends on

the probability of observing each entry. Combining the proposed singular vector
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and value estimators, Section 4.2 gives a one-step consistent estimator of the low

rank matrix which does not iterate over several singular value decompositions or

eigenvalue decompositions. The mean squared error of this estimator achieves

the minimax lower bound in Theorems 5-7 (Koltchinskii, Lounici and Tsybakov

(2011)).

The rest of this paper is organized as follows. Section 2 describes the model

setup. Section 3 shows that the singular vectors and singular values of a partially

observed matrix are biased and suggests a bias-adjusted alternative. Section

4.1 finds (1) the convergence rates of the estimated singular vectors and (2) the

asymptotic distribution of the estimated singular values. Section 4.2 proposes and

studies a one-step consistent estimator of the full matrix. Section 5 corroborates

the theoretical findings with numerical experiments. The Appendix A provides

the proofs of our main theoretical results. The proofs of all other results are

collected in the Supplement.

2. Model Setup

The underlying matrix that we wish to estimate is an n× d matrix M0 with

rank r. By singular value decomposition (SVD),

M0 = UΛV T , (2.1)

for orthonormal matrices U = (U1, . . . , Ur) ∈ Rn×r and V = (V1, . . . , Vr) ∈
Rd×r containing the left and right singular vectors, and a diagonal matrix Λ =

diag(λ1, . . . , λr) ∈ Rr×r containing the singular values. M0 is corrupted by noise

ε ∈ Rn×d, where the entries of ε are i.i.d. sub-Gaussian random variables with

mean zero and variance σ2. Let y ∈ {0, 1}n×d be such that ykh = 1 if the (k, h)-

th entry of M0 + ε is observed and ykh = 0 otherwise. The entries of y are

i.i.d. Bernoulli(p) and independent of the entries of ε. Thus, the total number of

observed entries in M0 + ε is a Binomial(nd, p) random variable. We observe y

and the partially observed matrix M ∈ Rn×d, where

Mkh =
[
y · (M0 + ε)

]
kh

=

{
M0kh + εkh if observed (ykh = 1),

0 otherwise (ykh = 0),

for 1 ≤ k ≤ n and 1 ≤ h ≤ d. Throughout the paper, it is presumed that

r � d ≤ n. Moreover, the entries of M0 are bounded in absolute value by a

constant  L > 0.

Remark 1. Depending on the case, the noise ε can be related to the measurement

system so that assuming that there exist errors for unobserved entries does not
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make sense. Hence, assume a hierarchical model as follows;

εij |yij = 0 = 0 a.s.,

εij |yij = 1 ∼ subgaussian, and

yij ∼ i.i.d. Bernoulli(p).

In this setting, the results obtained in this paper would still hold although it

may require more techniques or minor changes in the proof. For simplicity of the

paper, we only focus on the original setting.

3. Estimation of Singular Values and Vectors of M0

The vast majority of previous estimators of M0 have been initialized with

M , in effect imputing the missing values with zero. In this section, we study

the properties of singular vectors and values of M . This suggests alternative

estimators of the singular vectors and values of M0.

3.1. Properties of singular values and vectors of M

Define

Σ̂ := MTM and Σ̂t := MMT .

Then, the eigenvectors of Σ̂ and Σ̂t are the same as the right and left singular

vectors of M , respectively, and the squared root of eigenvalues of Σ̂ are the same

as the singular values of M . The following lemma shows that Σ̂ and Σ̂t are biased

estimators of MT
0 M0 and M0M

T
0 , respectively.

Lemma 1. Under the model setup in Section 2, we have

E Σ̂ = p2MT
0 M0 + p(1− p) diag(MT

0 M0) + npσ2Id, (3.1)

and similarly,

E Σ̂t = p2M0M
T
0 + p(1− p) diag(M0M

T
0 ) + dpσ2In, (3.2)

where Id and In are d× d and n× n identity matrices, respectively.

The right-hand side of (3.1) contains terms beyond p2MT
0 M0 and they make

the singular vectors and singular values of M biased estimators of the singular

vectors and values of M0. While the bias coming from npσ2Id is manageable

since it does not change the singular vectors of E Σ̂, the bias coming from p(1−
p) diag(MT

0 M0) is not. The same applies to Σ̂t in (3.2).

To get rid of the terms producing unmanageable biases, we define Σ̂p and

Σ̂pt and their eigenvectors and eigenvalues as follows,
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Σ̂p :=Σ̂− (1− p) diag(Σ̂)

=(Vp, Vpc) diag(λ2
p1
, . . . , λ2

pd
)(Vp, Vpc)

T , and

Σ̂pt :=Σ̂t − (1− p) diag(Σ̂t)

=(Up, Upc) diag(λ2
pt1
, . . . , λ2

ptn
)(Up, Upc)

T ,

(3.3)

where

Vp = (Vp1, . . . , Vpr) ∈ Rd×r, Vpc = (Vpr+1, . . . , Vpdd) ∈ Rd×(d−r),

Up = (Up1, . . . , Upr) ∈ Rn×r, Upc = (Upr+1, . . . , Upn) ∈ Rn×(n−r).

The following proposition shows that Σ̂p and Σ̂pt adjust the bias.

Proposition 1. Under the model setup in Section 2, we have by eigendecompo-

sition,

E Σ̂p = p2MT
0 M0 + np2σ2Id = (V, Vc)Λ̈

2
p(V, Vc)

T and

E Σ̂pt = p2M0M
T
0 + dp2σ2In = (U,Uc)Λ̈

2
pt(U,Uc)

T ,

where V and U are as defined in (2.1), Vc ∈ Rd×(d−r), Uc ∈ Rn×(n−r),

Λ̈2
p = diag(λ̈p

2

1, . . . , λ̈p
2

d)

= diag(p2[λ2
1 + nσ2], . . . , p2[λ2

r + nσ2], p2nσ2, . . . , p2nσ2) ∈ Rd×d, and

Λ̈2
pt = diag(p2[λ2

1 + dσ2], . . . , p2[λ2
r + dσ2], p2dσ2, . . . , p2dσ2) ∈ Rn×n.

The proof of this proposition easily follows from Lemma 1 and (3.3).

Proposition 1 shows that the top r eigenvectors of E Σ̂p and E Σ̂pt are the

same as the right and left singular vectors of M0, respectively. Also, the top

r eigenvalues of E Σ̂p are easily adjusted to match the singular values of M0 as

follows,

λ2
i =

1

p2
λ̈p

2

i − nσ
2, for i = 1, . . . , r.

3.2. Estimators of singular values and vectors of M0

The results in Proposition 1 suggest plug-in estimators using the leading

eigenvectors and eigenvalues of Σ̂p and the leading eigenvectors of Σ̂pt as esti-

mators of V , Λ, and U , respectively. However, since p is an unknown parameter

in practice, the proposed estimators use instead of p the proportion of observed

entries in M , p̂, which is defined as

p̂ =

∑n
k=1

∑d
h=1 ykh

nd
. (3.4)

Using p̂, define Σ̂p̂ and Σ̂p̂t as
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Σ̂p̂ := Σ̂− (1− p̂) diag(Σ̂) and Σ̂p̂t := Σ̂t − (1− p̂) diag(Σ̂t). (3.5)

By eigendecomposition,

Σ̂p̂ = (V̂ , V̂c) Λ2
p̂ (V̂ , V̂c)

T and Σ̂p̂t = (Û , Ûc) Λ2
p̂t (Û , Ûc)

T , (3.6)

where V̂ ∈ Rd×r, V̂c ∈ Rd×(d−r), Λ2
p̂ = diag(λ2

p̂1, . . . , λ
2
p̂d) ∈ Rd×d, Û ∈ Rn×r,

Ûc ∈ Rn×(n−r), and Λ2
p̂t = diag(λ2

p̂t1, . . . , λ
2
p̂tn) ∈ Rn×n. Then, estimate the left

and right singular vectors, U and V , of M0 by Û and V̂ , respectively. Also,

estimate the singular values, λi, i = 1, . . . , r, of M0 by

λ̂i =

√
1

p̂2

(
λ2
p̂i
− τ̂p̂

)
for i = 1, . . . , r, (3.7)

where τ̂p̂ = 1/(d− r)tr(V̂ T
c Σ̂p̂V̂c).

For any A ∈ Rn×d, let the i-th left singular vector of A be denoted by ui(A),

the i-th right singular vector of A by vi(A), and the top i-th singular value of A

by λi(A) for i = 1, . . . , d. Then, Algorithm 1 summarizes the steps to compute

the proposed estimators of the singular values and vectors of M0.

Algorithm 1 Estimators of Ui, Vi, and λi for i = 1, . . . , r

Require: M , y, and r

p̂← 1/nd
∑n

k=1

∑d
h=1 ykh

Σ̂p̂ ←MTM − (1− p̂)diag(MTM)

Σ̂tp̂ ←MMT − (1− p̂)diag(MMT )

V̂i ← vi(Σ̂p̂), ∀i ∈ {1, . . . , r}
Ûi ← ui(Σ̂p̂t), ∀i ∈ {1, . . . , r}
τ̂p̂ ← 1/(d− r)

∑d
i=r+1 λi(Σ̂p̂)

λ̂i ← 1/p̂
√
λi(Σ̂p̂)− τ̂p̂, ∀i ∈ {1, . . . , r}

return V̂i, Ûi, and λ̂i for i = 1, . . . , r

4. Asymptotic Theory

This section investigates the statistical properties of the estimators proposed

in (3.6) and (3.7).

4.1. Convergence rate of the estimated singular vectors and asymp-

totic distribution of the estimated singular values

Let x = (x1, . . . , xn)T be a n-dimensional vector and A = (Akh) a n × d

matrix. Then, the `p-norm is defined as follows,
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‖x‖p =

(
p∑
i=1

|xi|p
)1/p

, and ‖A‖p = sup{‖Ax‖p , ‖x‖p = 1}, p = 1, 2,∞.

The spectral norm ‖A‖2 is a square root of the largest eigenvalue of AAT ,

‖A‖1 = max
1≤h≤d

n∑
k=1

|Akh|, and ‖A‖∞ = max
1≤k≤n

d∑
h=1

|Akh|.

The squared Frobenius norm is defined by ‖A‖2F = tr
(
ATA

)
, the trace of ATA.

We denote by c > 0 and C > 0 generic constants that are free of n, d, and p, and

different from appearance to appearance.

To measure how close the proposed estimator V̂ is to V (or, Û to U), we

introduce a classical notion of distance between subspaces. Let R(Z1) denote a

column space spanned by Z1 ∈ Rd×r and R(Z2) by Z2 ∈ Rd×r. Then, to measure

the dissimilarity between R(Z1) and R(Z2), consider the following loss function

‖ sin(Z1, Z2)‖2F = ‖ sin Θ(R(Z1),R(Z2))‖2F ,

where sin Θ(R(Z1),R(Z2)) is a diagonal matrix of singular values (canonical

angles) of P1P
⊥
2 with orthogonal projections P1 and P2 of Z1 and Z2, respectively.

Here P⊥ = I − P . The canonical angles generalize the notion of angles between

lines and are often used to define the distance between subspaces. If the columns

of Z1 and Z2 are singular vectors, R(Z1) and R(Z2) have projections P1 =

Z1Z
T
1 and P2 = Z2Z

T
2 , respectively, and ‖ sin(Z1, Ẑ2)‖2F = ‖Z1Z

T
1 (Z2Z

T
2 )⊥‖2F =

1/2‖Z1Z
T
1 −Z2Z

T
2 ‖2F . Proposition 2.2 in Vu and Lei (2013) relates this subspace

distance to the Frobenius distance
1

2
inf
O∈Vr,r

‖Z1 − Z2O‖2F ≤ ‖sin(Z1, Z2)‖2F ≤ inf
Ø∈Vr,r

‖Z1 − Z2O‖2F , (4.1)

where Vr,r = {O ∈ Rr×r : OTO = Ir and OOT = Ir} denotes the Stiefel manifold

of r×r orthonormal matrices. In other words, the distance between two subspaces

corresponds to the minimal distance between their orthonormal bases.

Assumption 1.

(1) λi = bi
√
nd, i = 1, . . . , r, where 1/c ≤ bi ≤ c for a constant c > 0;

(2) there exists a constant m ∈ {1, . . . , r} such that bm > bm+1, where br+1 = 0;

(3) d ≤ n ≤ edα for a constant α < 1 free of n, d, and p.

Remark 2. To motivate Assumption 1 (1), suppose that a non-vanishing pro-

portion of entries of M0 contains non-vanishing signals (i.e. M0
2
kh ≥ c0 for some

constant c0 > 0) and that the rank of M0 is fixed. Then,
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n∑
k=1

d∑
h=1

M0
2
kh = ‖M0‖2F ≥ cnd

for some constant c > 0. Because the squared Frobenius norm is also the sum of

the squared singular values of M0, the order of the singular values of M0 should

be
√
nd (see also Fan, Liao and Mincheva (2013)). Assumption 1(1) may seem

uncommon in the matrix completion literature, but consider the widely-used

assumption (II.2) in Candès and Plan (2010),

max
1≤k≤n

|Uik| ≤
√
C

n
and max

1≤h≤d
|Vih| ≤

√
C

d

for i = 1, . . . , r and a constant C ≥ 1, which prevents spiky singular vectors.

Under the model setup in Section 2 where the entries of M0 are bounded in

absolute value by a constant  L > 0, this implies Assumption 1(1).

The following theorem shows the convergence of V̂ to V and Û to U .

Theorem 1. Under the model setup in Section 2 and Assumption 1, let V̂ (m)

and Û (m) be the first m columns of V̂ and Û defined in (3.6), respectively, and let

V (m) and U (m) be the first m columns of V and U defined in (2.1), respectively.

Then, for large n and d,

E
∥∥∥sin

(
V̂ (m), V (m)

)∥∥∥2

F
≤ C1 n

−1

p (b2m − b2m+1)2
(4.2)

and

E
∥∥∥sin

(
Û (m), U (m)

)∥∥∥2

F
≤ C2 d

−1

p (b2m − b2m+1)2
, (4.3)

where C1 and C2 are generic constants free of n, d, and p.

Remark 3. As long as p d/log n→∞, the convergence rates in Theorem 1 will

hold. Hence, even though p goes to zero, if d/ log n diverges fast enough that

p d/log n→∞, we can still obtain the same results.

Remark 4. Despite the fact that V̂ (m) is built on a partially observed matrix M ,

Theorem 1 gives the convergence rate n−1/2/(b2m − b2m+1) which is the standard

convergence rate for eigenvectors (Anderson et al. (1958)). The effect of the

partial observations appears in the denominator of the right-hand side of (4.2)

as p. A similar discussion applies to Û (m) in (4.3).

The next theorem shows the asymptotic distribution of λ̂2
i centered around

λ2
i .
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Theorem 2. Suppose nd−1 → ∞. Then, under the model setup in Section 2

and Assumption 1, we have∑m
i=1 λ̂

2
i −

∑m
i=1 λ

2
i√

ndσλ
→ N (0, 1) in distribution, as n and d→∞,

where

σ2
λ =

4(1− p)
p

{
n∑
k=1

d∑
h=1

M0
2
kh

( m∑
i=1

biUikVih

)2

−
( m∑
i=1

b2i

)2
}

+
4σ2

p

m∑
i=1

b2i ,

Uik is the k-th entry of Ui, and Vih is the h-th entry of Vi.

Remark 5. As long as p d/log n→∞ and pnd−1 →∞, the asymptotic normal-

ity result in Theorem 2 will hold. Hence, even though p goes to zero, if d/ log n

and n/d diverge fast enough that p d/log n → ∞ and pn/d → ∞, we can still

obtain the same results.

Remark 6. Theorem 2 shows that the convergence rate of
∑m

i=1 λ̂
2
i is

√
nd.

Considering Assumption 1(1), it is an optimal rate. However, since the results

are based on partially observed entries, the asymptotic variance, σ2
λ, increases

with the rate p−1. For example, when we have a fully-observed matrix, σ2
λ simply

becomes 4σ2
∑m

i=1 b
2
i which is a lower bound for σ2

λ.

One of the main purposes of this paper is to investigate asymptotic behaviors

of the estimators of the singular values of M0. An application of the proof of

Theorem 2 and the delta method provides a multivariate central limit theorem

for λ̂1, . . . , λ̂r.

Theorem 3. Suppose that

bi > bi+1 for all i ∈ {1, . . . , r} and nd−1 →∞.

Then, under the model setup in Section 2 and Assumption 1, we have

Υ−1/2

λ̂1 − λ1

...

λ̂r − λr

 → N (0, Ir) in distribution, as n and d→∞,

where Υ = ΥT ∈ Rr×r consists of

Υij =


(1− p)
p

(
n∑
k=1

d∑
h=1

M0
2
khU

2
ikV

2
ih − b2i

)
+
σ2

p
if i = j,

(1− p)
p

(
n∑
k=1

d∑
h=1

M0
2
khUikVihUjkVjh − bibj

)
if i 6= j.

(4.4)
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Thus, |λ̂i − λi| = Op
(
1/
√
p
)
.

Remark 7. As long as p d/log n → ∞ and pnd−1 → ∞, the asymptotic nor-

mality result in Theorem 3 will hold. Note that Theorems 2 and 3 require an

additional condition, pnd−1 → ∞, to the condition required for Theorem 1,

p d/log n → ∞. Under the setting where p is a constant, this additional condi-

tion implies that d/n has to go to zero. The rationale behind this is as follows.

In Theorems 2 and 3, we find the limiting distribution on the singular values of

M0 from a d×d matrix Σ̂p̂, while the total number of observations is nd. That is,

the size of our parameter space is d2 and the total amount of information we can

use to find asymptotic properties on the parameters is nd. Since our observations

are even noisy, we need an enough number of observations to achieve our goal.

When d/n→ 0, we can make the approximation errors in the singular values of

Σ̂p̂ negligible and find the limiting distribution on the singular values of M0.

Remark 8. The results of Theorems 2 and 3 help us to make statistical inference

on the singular values of M0. For example, they open up possibilities for us to

evaluate how many factors are significant or how influential each factor is, by

providing the distribution of the singular values.

Theorems 1-3 show that the proposed estimators for U, V, and λi’s are asymp-

totically unbiased and have optimal convergence rates. With these well-developed

estimators for the singular values and vectors of M0, the following section pro-

poses a consistent estimator of M0.

4.2. A consistent estimator of M0

Suppose that bi > bi+1 for all i = 1, . . . , r. Theorem 1 and (4.1) imply

that V̂i and Ûi can estimate Vi and Ui up to constant factors sign(〈V̂i, Vi〉) and

sign(〈Ûi, Ui〉), respectively. Let s0 = (s01, . . . , s0r) ∈ {−1, 1}r be

s0i = sign(〈V̂i, Vi〉) sign(〈Ûi, Ui〉) for i ∈ {1, . . . , r}. (4.5)

Then, M̂(s0) =
∑r

i=1 s0i λ̂iÛiV̂
T
i becomes a consistent estimator of M0. However,

since s0 is an unknown parameter in practice, we employ ŝ = (ŝ1, . . . , ŝr) ∈
{−1, 1}r as an estimator of s0;

ŝ = arg min
s∈{−1,1}r

‖PΩ

(
M̂(s)

)
− PΩ

(
M
)
‖2F , (4.6)

where Ω contains indices of the observed entries, ykh = 1 ⇔ (k, h) ∈ Ω, and

PΩ(A) for any A ∈ Rn×d denotes the projection of A onto Ω,
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PΩ(A)kh =

{
Akh if (k, h) ∈ Ω

0 if (k, h) /∈ Ω
for 1 ≤ k ≤ n and 1 ≤ h ≤ d.

Hence, the proposed estimator of M0 is

M̂(ŝ) =

r∑
i=1

ŝi λ̂iÛiV̂
T
i . (4.7)

Remark 9. Finding ŝ as in (4.6) requires 2r computations. Hence, it can be

a computational bottleneck or even impossible for a large r. In such cases, we

suggest an alternate way to find ŝ as follows;

ŝ alternatei = sign(〈V̂i,vi(M)〉) sign(〈Ûi,ui(M)〉) for i = 1, . . . , r.

Note that if we use Vi and Ui instead of vi(M) and ui(M), this gives us the true

sign s0 in (4.5).

In the following we show that M̂(ŝ) is a consistent estimator of M0 under cer-

tain conditions. The steps to compute M̂(ŝ) using {V̂i, Ûi, λ̂i}ri=1 from Algorithm

1 are summarized in Algorithm 2.

Algorithm 2 Estimator of M0

Require: V̂i, Ûi, and λ̂i for i = 1, . . . , r

ŝ← arg mins∈{−1,1}r
∥∥∥PΩ

(∑r
i=1 siλ̂iÛiV̂

T
i

)
− PΩ

(
M
)∥∥∥2

F

M̂(ŝ)←
∑r

i=1 ŝiλ̂iÛiV̂
T
i

return M̂(ŝ)

Assumption 2.

(1) limn→∞,d→∞ P
(

mins∈{−1,1}r ‖PΩ

(
M̂(s)

)
− PΩ

(
M
)
‖2F

< ‖PΩ

(
M̂(s0)

)
− PΩ

(
M
)
‖2F
)

= 0;

(2) bi > bi+1 for all i = 1, . . . , r.

Remark 10. When the rank r is 1, it is more straightforward to understand

Assumption 2(1). Assuming that s0 = 1, it means that

lim
n→∞,d→∞

P
(
‖PΩ

(
− λ̂Û V̂ T

)
− PΩ

(
M
)
‖2F < ‖PΩ

(
λ̂Û V̂ T

)
− PΩ

(
M
)
‖2F

)
= 0.

That is, the probability that ŝ picks a different sign than the true sign s0 = 1

goes to zero with the dimensionality. Given the asymptotic properties of our

estimators λ̂, Û , and V̂ , this is not an unreasonable assumption to make.
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Theorem 4. Under the model setup in Section 2 and Assumptions 1-2, for any

given η > 0, there exists a constant Cη > 0 such that for sufficiently large n,

P
(
p b4r
n

∥∥∥M̂(ŝ)−M0

∥∥∥2

F
≥ Cη

)
≤ η.

Or alternatively,

‖M̂(ŝ)−M0‖2F =
1

p b4r
op (hnn) ,

where hn can be anything that diverges very slowly with the dimensionality, for

example, log(log d).

Remark 11. As long as p d/log n→∞, the convergence rates in Theorem 4 will

hold. If we let p = N/nd so that N represents the number of observed entries in

the population sense, this condition implies that N/(n log n) → ∞. Therefore,

for M̂(ŝ) to be consistent, the number of observed entries should increase at a

faster rate than n log n. This is a comparable result to Theorem 1 in Candès and

Plan (2010).

Remark 12. The additional condition, pnd−1 → ∞, required for Theorems 2

and 3 (see Remarks 5 and 7), is not needed for Theorems 1 and 4. It means that

if p is a constant, even though d/n→ c for some 0 < c ≤ 1 or d ≤ n, the results

in Theorems 1 and 4 will still hold, but the results in Theorems 2 and 3 will not.

Remark 13. Theorem 4 shows that 1/nd‖M̂(ŝ)−M0‖2F is bounded by Cp−1d−1

for some constant C > 0. Under the setting where the rank of M0 is fixed

as in this paper, this is matched to the minimax lower bound in Theorems 5-

7 (Koltchinskii, Lounici and Tsybakov (2011)). The previous estimators that

obtain the minimax rate are computed via semidefinite programs that require

iterating over several SVDs. However, the proposed estimator is a non-iterative

algorithm.

Remark 14. Chatterjee (2014) established the minimax error rate for estimators

of a general class of noisy incomplete matrices which extend beyond low rank

matrix completion. In the regime studied herein, the convergence rate of our

estimator of M0 is faster than the convergence rate in Theorem 2.1 (Chatterjee

(2014)). This is likely because we consider a smaller class of matrices, where the

singular values of a low rank matrix have the divergence rate
√
nd (Assumption

1(1)). Remark 2 justifies this assumption in the setting of low rank matrix

completion.

Throughout this paper, we have assumed that the rank, r, of M0 is known.
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However, it is an unknown parameter and needs to be estimated. The following

lemma proposes an estimator of r and shows its consistency.

Lemma 2. Let Cd > 0 such that Cd/d → 0 and Cd → ∞, for example, Cd =

c log d for any c > 0. Also, let r̂ =
∣∣{i ∈ {1, . . . , d} | λ2

p̂i ≥ p2nCd}
∣∣ where λ2

p̂i is

defined in (3.6). Then, for any given δ > 0, we have

P(r̂ = r) = 1−O(n−δ).

Remark 15. Empirically to find Cd and r̂ in Lemma 2, we suggest using a scree

plot of the singular values of Σ̂p̂ in (3.5).

Remark 16. As long as Cd satisfies σ2p2n < p2nCd ≤ (σ2+b2rd) p2n, consistency

of r̂ in Lemma 2 will hold. However, in the finite sample case, if the noise level σ2

is larger than b2rd, it can be difficult to observe a singular-value gap and determine

r̂ using the scree plot of the singular values of Σ̂p̂.

5. Numerical Experiments

5.1. Simulations

This section studies the performance of the proposed estimators using several

values of the dimension n and the probability p.

To simulate M0, generate A ∈ [−5, 5]n×2, B ∈ [−5, 5]d×2 to contain i.i.d.

Uniform[−5, 5] random variables and define

M0 = ABT ∈ Rn×d.

Each entry of M0 is observed with probability p and unobserved with probability

1− p. The observed entries of M0 are corrupted by noise ε as defined in Section

2, where εkh are i.i.d. N (0, 1). The dimension n varies from 100 to 1,000 and p

from 0.1 to 1, while d = 2
√
n. Each simulation was repeated 500 times and the

errors were averaged.

Figures 1 and 2 summarize the resulting mean squared errors calculated by

1/nd‖M̂(ŝ)−M0‖2F , ‖diag(λ̂1, λ̂2)−Λ‖2F , ‖V̂ −V ‖2F , and ‖Û −U‖2F , when n and

p increase along the x-axis, respectively. The MSE for V̂ decreases more rapidly

than the MSE for Û and both MSEs decrease when p increases; this is consistent

with the results in Theorem 1. The MSE of M̂ decreases with the increase of n

and p. The MSE of λ̂ stays stable over the changes of n since it is measured on

λ̂i instead of λ̂2
i (see Theorem 3), but decreases with the increase of p.

We further studied the asymptotic normality of
∑2

i=1 λ̂i in Theorem 3. Fig-

ure 3 graphs the QQ plot of
∑2

i=1 λ̂i −
∑2

i=1 λi, where the dimension n is fixed
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Figure 1. The mean squared errors for six different values of p when n increases. Each
point on the plots correspond to an average over 500 replicates.

at 1,000 and p varies from 0.1 to 1. This shows that the asymptotic normality

holds across various values of p.

5.2. A data example

To illustrate the proposed estimation methods, this section analyzes the

MovieLens 100k data (GroupLens (2015)). The data set consists of 100,000

ratings from 943 users and 1,682 movies and each user has rated at least 20

movies. Taking this partially observed data matrix as M , we computed Σ̂p̂ as

in (3.5) and plotted the scree plot of the singular values of Σ̂p̂ to determine r̂.

Figure 4 shows the result. Since there exists a singular value gap between the

3rd and 4th singular values, we chose r̂ = 3. Then, we computed the estimators

of the singular vectors and values and the estimator of the full low rank matrix
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Figure 2. The same mean squared errors as the ones in Figure 1 plotted for four different
values of n when p increases. Each point on the plots correspond to an average over 500
replicates.

as illustrated in Algorithms 1 and 2.

The estimated singular vectors help us understand what the main factors of

movie preferences are. Table 1 shows lists of movies that characterize the top 3

singular vectors (factors of movie preferences). Particularly, it presents 5 movies

that correspond to the largest values in each singular vector and 5 movies that

correspond to the smallest values. The 1st factor has well-known and top-rated

movies on one side and unknown and poorly-rated movies on the other side. The

2nd factor has box-office hit movies in 1990’s on one side and memorable classic

movies in 1940’s-1960’s on the other side. The 3rd factor has action and thriller

movies on one side and quieter and drama movies on the other side.

The estimated singular values help us see how influential the main factors
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Figure 3. Asymptotic normality of
∑2

i=1 λ̂i −
∑2

i=1 λi as p varies from 0.1 to 1. Across
the plots, we fixed n to be 1,000.
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Figure 4. The singular values of Σ̂p̂ computed by taking the MovieLens 100k data matrix
as M . From this scree plot, we choose r̂ to be 3.

of movie preferences are. Particularly, Figure 5 shows the estimated singular

values and their 95% confidence intervals. For the standard deviation used in

the confidence intervals, we used Υ
−1/2
ii from (4.4) in Theorem 4. Computing

Υ
−1/2
ii requires information on the values of the parameters M0, U, V, λi, p, and
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Table 1. Lists of movies that characterize each of the top 3 singular vectors.

1st
singular
vector

One side
(well-known, top-rated)

Silence of the Lambs, Fargo, Star Wars,
Return of the Jedi, Raiders of the Lost Ark

The other side
(unknown, pooly-rated)

A Further Gesture, Mat i syn,
A Very Natural Thing, Hush, Office Killer

2nd
singular
vector

One side
(box-office hit in 90’s)

Scream, Air Force One, The Rock,
Contact, Liar Liar

The other side
(classic in 40’s-60’s)

Citizen Kane, The Graduate, Casablanca,
The African Queen, Dr. Strangelove

3rd
singular
vector

One side
(action, thriller)

Jurassic Park, Top Gun, Speed, True Lies,
Batman

The other side
(drama)

Il Postino, Secrets & Lies, English Patient,
Full Monty, L.A. Confidential

1,
00

0
1,

50
0

2,
00

0
2,

50
0

95% confidence intervals for 
  the top 3 singular values

1st S−value 2nd S−value 3rd S−value

Figure 5. The 3 estimated singular values and their 95% confidence intervals.

σ2, but we replaced these with the estimated values M̂(ŝ), Û , V̂ , λ̂i, p̂, and τ̂p̂/np̂
2.

From Figure 5, we observe that all 3 factors of movie preferences are significant.

To find the RMSE of our estimator of the full low rank matrix, M̂(ŝ), we

used 5 training and 5 test data sets from 5-fold cross validation which is publicly

provided in GroupLens (2015). The RMSE was computed by√
‖PΩtest(M̂(ŝ))− PΩtest(M)‖2F

|Ωtest|
,

where Ωtest contains indices of observed entries that belong to the test set, PΩtest

for a matrix A ∈ Rn×d denotes the projection of A onto Ωtest, and |Ωtest| denotes
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the cardinality of Ωtest. The average of the resulting RMSEs was 1.656.

Supplementary Materials

The proofs for all other results than the main theoretical results are collected

in the Supplement.
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Appendix

A.1. Proofs for Theorem 1

Proposition 2. Under the model setup in Section 2 and Assumption 1, we have

for large n and d,

E
∥∥∥sin

(
V (m)
p , V (m)

)∥∥∥2

F
≤ C1 n

−1

p (b2m − b2m+1)2
, and (A.1)

E
∥∥∥sin

(
U (m)
p , U (m)

)∥∥∥2

F
≤ C2 d

−1

p (b2m − b2m+1)2
,

where Vp and Up are defined in (3.3) and C1 and C2 are generic constants free

of n, d, and p.

Lemma 3. Under the model setup in Section 2 and Assumption 1, for any given

µ1 > 0, there exists a large constant Cµ1
> 0 such that

1

nd

∥∥∥Σ̂p − EΣ̂p

∥∥∥
2
≤ Cµ1

max

{
p

log n

d
, p3/2

√
log n

n

}
(A.2)

with probability at least 1−O (n−µ1), where Σ̂p is defined in (3.3). Similarly, for

any given µ2 > 0, there exists a large constant Cµ2
> 0 such that

1

nd

∥∥∥Σ̂pt − E
(

Σ̂pt

)∥∥∥
2
≤ Cµ2

max

{
p

log n

d
, p3/2

√
log n

d

}
with probability at least 1−O (n−µ2), where Σ̂pt is defined in (3.3).
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Lemma 4. Under the model setup in Section 2 and Assumption 1, for any given

ν1 > 0, there exists a large constant Cν1 > 0 such that

1

nd

∥∥∥Σ̂p̂ − Σ̂p

∥∥∥
2
≤ Cν1 p3/2

√
log n

nd

1

d
(A.3)

with probability at least 1− O (n−ν1), where Σ̂p̂ and Σ̂p are defined in (3.5) and

(3.3), respectively. Similarly, for any given ν2 > 0, there exists a large constant

Cν2 > 0 such that

1

nd

∥∥∥Σ̂p̂t − Σ̂pt

∥∥∥
2
≤ Cν2 p3/2

√
log n

nd

1

n

with probability at least 1−O (n−ν2), where Σ̂p̂t and Σ̂pt are defined in (3.5) and

(3.3), respectively.

Lemma 5. Under the model setup in Section 2 and Assumption 1, we have for

large n and d,

E
∥∥∥∥ 1

nd

(
Σ̂p̂ − Σ̂p

)
V (m)
p

∥∥∥∥2

F

≤ C1 max

{
p3(1− p)
nd3

,
p2(1− p)
n2d5/2

}
(A.4)

and

E
∥∥∥∥ 1

nd

(
Σ̂p̂t − Σ̂pt

)
U (m)
p

∥∥∥∥2

F

≤ C2 max

{
p3(1− p)
dn3

,
p2(1− p)
d2n5/2

}
,

where Σ̂p̂ and Σ̂p̂t are defined in (3.5), Σ̂p, Σ̂pt, Vp, and Up are defined in (3.3),

and C1 and C2 are generic constants free of n, d, and p.

Proof of Theorem 1. We only prove (4.2) because (4.3) can be proved similarly.

By triangle inequality and Proposition 2, we have

E‖sin
(
V̂ (m), V (m)

)
‖2F

≤ 4E‖sin
(
V̂ (m), V (m)

p

)
‖2F + 4E‖sin

(
V (m)
p , V (m)

)
‖2F

≤ 4E‖sin
(
V̂ (m), V (m)

p

)
‖2F +

C n−1

p (b2m − b2m+1)2
. (A.5)

Now, consider E‖sin
(
V̂ (m), V

(m)
p

)
‖2F . Let

E1 =

{
max
1≤i≤d

1

nd

∣∣λ2
pi
− λ̈p

2

i

∣∣ < t1

}
,

where t1 = C ′1 plog n/d+ C ′′1 p
3/2
√

log n/n, and

E2 =

{
1

nd
|λ2
pm+1

− λ2
p̂m+1

| < t2

}
.

where t2 = C2 p
3/2
√

log n/nd1/d. Then, by Weyl’s theorem (Li (1998a)), Lemma
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3, and Lemma 4, we have for large constants C ′1, C
′′
1 , and C2,

P(Ec1) ≤ P
(

1

nd

∥∥∥Σ̂p − EΣ̂p

∥∥∥
2
≥ t1

)
= O

(
n−4

)
and

P(Ec2) ≤ P
(

1

nd

∥∥∥Σ̂p̂ − Σ̂p

∥∥∥
2
≥ t2

)
= O

(
n−4

)
.

Thus, for large n and d,

E‖sin
(
V̂ (m), V (m)

p

)
‖2F

= E
{
‖sin

(
V̂ (m), V (m)

p

)
‖2F 1(E1∩E2)c

}
+ E

{
‖sin

(
V̂ (m), V (m)

p

)
‖2F 1E1∩E2

}

≤ m
{
E
(
1Ec2

)
+ E

(
1Ec1

)}
+ E


∥∥∥(1/nd)

(
Σ̂p̂ − Σ̂p

)
V

(m)
p

∥∥∥2

F(
(1/nd)|λ2

pm
− λ2

p̂m+1
|
)2 1E1∩E2


≤ cn−4 + E


∥∥∥(1/nd)

(
Σ̂p̂ − Σ̂p

)
V

(m)
p

∥∥∥2

F
1E1∩E2(

(1/nd)|λ̈p
2

m − λ̈p
2

m+1| − t2 − 2t1

)2


≤ cn−4 + E

{∥∥∥(1/nd)
(

Σ̂p̂ − Σ̂p

)
V

(m)
p

∥∥∥2

F(
(1/2nd)|λ̈p

2

m − λ̈p
2

m+1|
)2

}

≤ cn−4 +
C(1− p)

(b2m − b2m+1)2
max

{
1

pnd3
,

1

p2n2d5/2

}
, (A.6)

where 1E is an indicator function of an event E, the first inequality holds by the

fact that ‖ sin(V̂ (m), V
(m)
p )‖2F ≤ m and Davis-Kahan sin θ theorem (Theorem 3.1

in Li (1998b)), and the last inequality is due to Lemma 5.

By (A.5) and (A.6), the result (4.2) follows.

A.2. Proofs for Theorem 2

Proposition 3. Under the assumptions in Theorem 2, we have

√
ndΓ

−1/2
nd




1

nd p2

m∑
i=1

λ2
pi

p2

nd

m∑
i=1

(λ2
i + nσ2) p̂

−


1

nd

m∑
i=1

[
λ2
i + nσ2

]
p3

nd

m∑
i=1

(λ2
i + nσ2)




→ N (0, I2) in distribution, as n, d→∞,

where λpi, λi, and p̂ are defined in (3.3), (2.1), and (3.4), respectively, and

Γnd = ΓTnd ∈ R2×2 consists of
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(Γnd)11 =
4(1− p)

p

n∑
k=1

d∑
h=1

M0
2
kh

{
m∑
i=1

biUikVih

}2

+
4σ2

p

m∑
i=1

b2i ,

(Γnd)12 = 2p2(1− p)

(
m∑
i=1

b2i

)2

, and (Γnd)22 = p5(1− p)

(
m∑
i=1

b2i

)2

.

Proposition 4. Under the model setup in Section 2 and Assumption 1, let

τ̂p =
1

d− r
tr
(
V T
pcΣ̂pVpc

)
,

where Σ̂p and Vpc are defined in (3.3). Then, we have τ̂p − np2σ2 = Op (p
√
n).

Proof of Theorem 2. We have

1√
nd

{
m∑
i=1

λ̂2
i −

m∑
i=1

λ2
i

}

=
1√
nd

{(
p̂−2

m∑
i=1

λ2
p̂i
−

m∑
i=1

[
λ2
i + nσ2

])
+m

(
nσ2 − 1

p̂2
τ̂p̂

)}

=
1√
nd
{(a) +m (b)} .

First, consider the term (a). We have

(a) =
1

p̂2
tr
(
V̂ (m)T Σ̂p̂V̂

(m)
)
−

m∑
i=1

[
λ2
i + nσ2

]
=

{
1

p2
tr
(
V̂ (m)T Σ̂pV̂

(m)
)
−

m∑
i=1

[
λ2
i + nσ2

]}
+

{
1

p2
tr
(
V̂ (m)T Σ̂p̂V̂

(m)
)
− 1

p2
tr
(
V̂ (m)T Σ̂pV̂

(m)
)}

+

{
1

p̂2
tr
(
V̂ (m)T Σ̂p̂V̂

(m)
)
− 1

p2
tr
(
V̂ (m)T Σ̂p̂V̂

(m)
)}

= (i) + (ii) + (iii). (A.7)

By (4.1), there is O ∈ Vm,m such that

‖V̂ (m) − V (m)
p O‖2F ≤ 2‖sin(V̂ (m), V (m)

p )‖2F and OTi V (m)T
p Σ̂pV

(m)
p Oi = λ2

pi,

where Oi is the i-th column of O. Then, the term (i) is

(i) =
1

p2
tr
(
OTV (m)T

p Σ̂pV
(m)
p O

)
−

m∑
i=1

[
λ2
i + nσ2

]
+

1

p2
tr
(
V̂ (m)T Σ̂pV̂

(m) −OTV (m)T
p Σ̂pV

(m)
p O

)



1942 JUHEE CHO, DONGGYU KIM AND KARL ROHE

=
1

p2
tr
(
V (m)T
p Σ̂pV

(m)
p

)
−

m∑
i=1

[
λ2
i + nσ2

]
+

1

p2

m∑
i=1

(
V̂ T
i Σ̂pV̂i −OTi VpT Σ̂pVpOi

)
=

1

p2

m∑
i=1

λ2
pi
−

m∑
i=1

[
λ2
i + nσ2

]
+Op

(
1

pd2

)
, (A.8)

where the last equality holds by the fact that∣∣∣∣∣
m∑
i=1

(
V̂ T
i Σ̂pV̂i −OTi V (m)T

p Σ̂pV
(m)
p Oi

)∣∣∣∣∣
=

∣∣∣∣∣
m∑
i=1

[
(V̂i − V (m)

p Oi)T Σ̂p(V̂i − V (m)
p Oi) + 2λ2

piOTi V (m)T
p V̂i − 2λ2

pi

]∣∣∣∣∣
=

∣∣∣∣∣
m∑
i=1

[
(V̂i − V (m)

p Oi)T Σ̂p(V̂i − V (m)
p Oi)− λ2

pi

∥∥∥V̂i − V (m)
p Oi

∥∥∥2

2

]∣∣∣∣∣
≤ 2λ2

p1

m∑
i=1

∥∥∥V̂i − V (m)
p Oi

∥∥∥2

2

= 2λ2
p1

∥∥∥V̂ (m) − V (m)
p O

∥∥∥2

F

= Op

( p
d2

)
, (A.9)

where the last equality is due to (4.1), (A.6), and (A.10) below; by the application

of Weyl’s theorem (Li (1998a)) and Lemma 3, we can show

λ2
p1 = Op(p

2nd). (A.10)

The term (ii) is

E |(ii)| = E
∣∣∣∣ 1

p2
(p̂− p) tr

(
V̂ (m)Tdiag(Σ̂)V̂ (m)

)∣∣∣∣
≤ m

p2
E
∣∣∣∣(p̂− p) max

1≤i≤m
V̂ T
i diag(Σ̂)V̂i

∣∣∣∣
≤ m

p2

{
E(p̂− p)2

}1/2{
E
[

max
1≤i≤m

V̂ T
i diag(Σ̂)V̂i

]2
}1/2

≤ m

p2

{
E(p̂− p)2

}1/2{
E
[ ∥∥∥diag(Σ̂)

∥∥∥2

2

]}1/2

=
m

p2

√
p(1− p)
nd

{
E
[ ∥∥∥diag(Σ̂)

∥∥∥2

2

]}1/2
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= O

(
max

{
1

p
,

√
n

pd

})
, (A.11)

where the second inequality is due to Hölder’s inequality and the last equality

holds by the fact that

E
[
‖diag(Σ̂)‖22

]
≤ 4E

[
‖diag(Σ̂)− pdiag(MT

0 M0)− npσ2Id‖22 + ‖p diag(MT
0 M0) + npσ2Id‖22

]
= 4E

[
max

1≤h≤d

∣∣∣ n∑
k=1

(
M2
kh − pM0

2
kh − pσ2

)∣∣∣2]+ 4
{

max
1≤h≤d

p

n∑
k=1

M0
2
kh + npσ2

}2

≤ 4

d∑
h=1

E

{∣∣∣∣ n∑
k=1

[
M2
kh − p(M0

2
kh + σ2)

]∣∣∣∣2
}

+ 4
{
np( L2 + σ2)

}2

= 4

d∑
h=1

n∑
k=1

E
[
M2
kh − p(M0

2
kh + σ2)

]2
+ 4

{
np( L2 + σ2)

}2

= O
(
max{pnd, p2n2}

)
.

The term (iii) in (A.7) is

(iii) =

(
1

p̂2
− 1

p2

)[
tr
(
V̂ (m)T Σ̂p̂V̂

(m)
)
− p2

m∑
i=1

(
λ2
i + nσ2

)]

+

(
1

p̂2
− 1

p2

)
p2

m∑
i=1

(
λ2
i + nσ2

)
=

(
1

p̂2
− 1

p2

)[
tr
(
V̂ (m)T Σ̂p̂V̂

(m)
)
− tr

(
V̂ (m)T Σ̂pV̂

(m)
)

+tr
(
V̂ (m)T Σ̂pV̂

(m)
)
− tr

(
OTV (m)T

p Σ̂pV
(m)
p O

)
+tr

(
OTV (m)T

p Σ̂pV
(m)
p O

)
− p2

m∑
i=1

(
λ2
i + nσ2

) ]

+

(
1

p̂2
− 1

p2

)
p2

m∑
i=1

(
λ2
i + nσ2

)
= Op

(
1√
p5nd

) [
Op

(
max

{
p,

√
p3n

d

})
+Op

( p
d2

)
+Op

(√
p3nd

)]

+

(
1

p̂2
− 1

p2

)
p2

m∑
i=1

(
λ2
i + nσ2

)
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= Op

(
1

p

)
+

(
1

p̂2
− 1

p2

)
p2

m∑
i=1

(
λ2
i + nσ2

)
, (A.12)

where the third equality is due to (A.11), (A.9), Proposition 3, and the fact that

√
nd

(
1

p̂2
− 1

p2

)
→ N

(
0,

4(1− p)
p5

)
in distribution, as n, d→∞, (A.13)

by CLT and Delta method. From (A.8), (A.11), and (A.12), we have

(a) =
1

p2

m∑
i=1

λ2
pi
−

m∑
i=1

[
λ2
i + nσ2

]
+

(
1

p̂2
− 1

p2

)
p2

m∑
i=1

(
λ2
i + nσ2

)
+ op

(√
nd

p

)
.

(A.14)

Second, the term (b) is

(b) = nσ2 − 1

p̂2
τ̂p̂

=

(
nσ2 − 1

p2
τ̂p

)
+

(
1

p2
− 1

p̂2

)
τ̂p̂ +

1

p2
(τ̂p − τ̂p̂)

= Op

(√
n

p

)
+Op

(√
n

pd

)
+

1

p2
(τ̂p − τ̂p̂)

= op

(√
nd

p

)
, (A.15)

where the third equality is due to Proposition 4 and (A.13), and the last equality

holds by the fact that there is Õ ∈ Vd−r,d−r by (4.1) such that

‖V̂ (m)
c − V (m)

pc Õ‖
2
F ≤ 2‖sin(V̂ (m)

c , V (m)
pc )‖2F and ÕTi V T

pcΣ̂pVpcÕi = λ2
p r+i,

where Õi is the i-th column of Õ, and that

|τ̂p − τ̂p̂|

=
1

(d− r)

∣∣∣tr(ÕTV T
pcΣ̂pVpcÕ

)
− tr

(
V̂ T
c Σ̂pV̂c

)
+tr

(
V̂ T
c Σ̂pV̂c

)
− tr

(
V̂ T
c Σ̂p̂V̂c

) ∣∣∣
≤ 1

(d− r)

∣∣∣tr(ÕTV T
pcΣ̂pVpcÕ

)
− tr

(
V̂ T
c Σ̂pV̂c

)∣∣∣
+

1

(d− r)

∣∣∣tr(V̂ T
c Σ̂pV̂c

)
− tr

(
V̂ T
c Σ̂p̂V̂c

)∣∣∣
≤ 1

(d− r)
4λ2

p1

∥∥∥sin(Vpc, V̂c)
∥∥∥2

F
+

1

(d− r)

∣∣∣(p̂− p)tr(V̂ T
c diag(Σ̂)V̂c

)∣∣∣
=

1

(d− r)
4λ2

p1

∥∥∥sin(Vp, V̂ )
∥∥∥2

F
+Op

(
max

{
p, p3/2

√
n

d

})
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= Op

( p
d3

)
+Op

(
max

{
p, p3/2

√
n

d

})
,

where the second inequality can be derived similarly to (A.9), the second equality

holds similarly to (A.11), and the last equality is due to (A.6) and (A.10).

Combining the results in (A.14) and (A.15), we have

1√
nd

{
m∑
i=1

λ̂2
i −

m∑
i=1

λ2
i

}
=

1√
nd
{(a) +m (b)}

=
1√
nd

{
1

p2

m∑
i=1

λ2
pi
−

m∑
i=1

[
λ2
i + nσ2

]
+

(
1

p̂2
− 1

p2

)
p2

m∑
i=1

(
λ2
i + nσ2

)}
+ op(1).

Thus, by Proposition 3, Delta method and Slutsky’s theorem, we have

1√
ndσλ

{
m∑
i=1

λ̂2
i −

m∑
i=1

λ2
i

}
→ N (0, 1) in distribution, as n, d→∞,

where σ2
λ =

(
1 − 2p−3

)
Γnd

(
1

−2p−3

)
.

A.3. Proofs for Theorem 4

Proposition 5. Under the model setup in Section 2, Assumption 1, and As-

sumption 2(2), we have ∥∥∥M̂(s0)−M0

∥∥∥2

F
=

1

p b4r
Op (n) ,

where M̂(s0) are defined in (4.5) and (4.7) and M0 is defined in (2.1).

Proof of Theorem 4. For any given η > 0, we have for a large n,

P
(

min
s∈{−1,1}r

‖PΩ(M̂(s))− PΩ(M)‖2F < ‖PΩ(M̂(s0))− PΩ(M)‖2F

)
≤ η

2

by Assumption 2(1). Also, for any given η > 0, we can find Cη > 0, free of n, d,

and p, such that for large n,

P
(
p b4r
n

∥∥∥M̂(s0)−M0

∥∥∥2

F
≥ Cη

)
≤ η

2

by Proposition 5. Therefore, for any given η > 0, we can find Cη > 0 such that

P
(
p b4r
n

∥∥∥M̂(ŝ)−M0

∥∥∥2

F
≥ Cη

)
= P

(
p b4r
n

∥∥∥M̂(s0)−M0

∥∥∥2

F
≥ Cη, s0 = ŝ

)
+P
(
p b4r
n

∥∥∥M̂(ŝ)−M0

∥∥∥2

F
≥ Cη, s0 6= ŝ

)
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≤ P
(
p b4r
n

∥∥∥M̂(s0)−M0

∥∥∥2

F
≥ Cη

)
+P
(

min
s∈{−1,1}r

‖PΩ(M̂(s))− PΩ(M)‖2F < ‖PΩ(M̂(s0))− PΩ(M)‖2F

)
≤ η

2
+
η

2
= η.

Or, for any given η > 0 and ζ > 0, there exists Nζ > 0 such that for all

n ≥ Nζ ,

P
(
p b4r
hnn

∥∥∥M̂(ŝ)−M0

∥∥∥2

F
> η

)
= P

(
p b4r
hnn

∥∥∥M̂(s0)−M0

∥∥∥2

F
> η, s0 = ŝ

)
+P
(
p b4r
hnn

∥∥∥M̂(ŝ)−M0

∥∥∥2

F
> η, s0 6= ŝ

)
≤ P

(
p b4r
hnn

∥∥∥M̂(s0)−M0

∥∥∥2

F
≥ η
)

+P
(

min
s∈{−1,1}r

‖PΩ(M̂(s))− PΩ(M)‖2F < ‖PΩ(M̂(s0))− PΩ(M)‖2F

)
≤ ζ

2
+
ζ

2
= ζ,

where the second inequality holds due to Assumption 2(1) and Proposition 5.
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