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Abstract: The additive hazards model has many applications in high-throughput

genomic data analysis and clinical studies. In this article, we study the weighted

Lasso estimator for the additive hazards model in sparse, high-dimensional settings

where the number of time-dependent covariates is much larger than the sample

size. Based on compatibility, cone invertibility factors, and restricted eigenvalues

of the Hessian matrix, we establish some non-asymptotic oracle inequalities for the

weighted Lasso. Under mild conditions, we show that these quantities are bounded

from below by positive constants, thus the compatibility and cone invertibility fac-

tors can be treated as positive constants in the oracle inequalities. A multistage

adaptive method with weights recursively generated from a concave penalty is pre-

sented. We prove a selection consistency theorem and establish an upper bound for

dimension of the weighted Lasso estimator.

Key words and phrases: High-dimensional covariates, oracle inequalities, sign con-

sistency, survival analysis, variable selection.

1. Introduction

Censored survival data arises in such fields as epidemiological studies and

clinical trials. The additive hazards (AH) model is an important alternative to

the Cox (1972) proportional hazards model for studying the association between

such data and risk factors (Cox and Oakes (1984)). In a traditional biomedical

study, the number of covariates p is usually relatively small compared to the

sample size n. Theoretical properties of the AH model in the fixed p and large n

setting have been well established. For example, Lin and Ying (1994) proposed

a least-squares type estimator of regression parameter in the AH model and

studied its asymptotic properties using martingale techniques; Kulich and Lin

(2000) studied the AH model when covariates are subject to measurement error;

Martinussen and Scheike (2002) proposed an efficient estimation approach in AH

regression with current status data.
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In recent years, advances in experimental technologies have brought in a

wealth of high-throughput and high-dimensional genomic data, where an im-

portant task is to find genetic risk factors related to clinical outcomes, such as

survival and age of disease onset. In such high-dimensional settings, the standard

approach to the AH model is not applicable, since the number of potential genetic

risk factors is typically much larger than the sample size, and regularized methods

that can do variable selection and estimation have been proposed. Examples in-

clude the Lasso (Tibshirani (1996)), SCAD (Fan and Li (2001)) and MCP (Zhang

(2010a)). Much of the work on the theoretical properties of these methods has

focused on linear and generalized linear regression models; see Bühlmann and

van de Geer (2011); Fan and Lv (2010); Zhang and Zhang (2012), and the refer-

ences therein. Several authors have studied these methods for the Cox regression

model in sparse, high-dimensional settings. In particular, oracle inequalities for

the prediction and estimation error of the Lasso in the Cox model (Kong and

Nan (2014); Lemler (2012); Huang et al. (2013)); Bradic, Fan and Jiang (2011)

extended the results of Fan and Li (2002) to a class of concave penalties in the

high-dimensional Cox model under certain sparsity and regularity conditions.

Variable selection for survival data has also been extended to the AH model.

In fixed dimensional settings, Leng and Ma (2007) proposed a weighted Lasso

approach, and Martinussen and Scheik (2009) considered several regularization

methods, including the Lasso and the Dantzig selector. In high-dimensional

settings, Gäıffas and Guilloux (2012) considered a general AH model in a non-

asymptotic setting; Lin and Lv (2013) studied a class of regularization methods

for simultaneous variable selection and estimation in this model. In view of the

important role of the AH model in survival analysis and the basic importance of

the Lasso as a regularization method, it is of interest to understand the properties

of the weighted Lasso for this model in the p� n setting.

In this paper we establish the theoretical properties of the weighted Lasso

in the high-dimensional AH model concerning estimation error bounds, selection

consistency, and sparsity. We obtain some non-asymptotic oracle inequalities for

the weighted Lasso in the high-dimensional AH model, extending the oracle in-

equalities for the Lasso in Cox regression (Huang et al. (2013)) to the AH model.

Under mild conditions, we prove that the compatibility and cone invertibility

factors, and the corresponding restricted eigenvalue are greater than a fixed pos-

itive constant. We provide sufficient conditions under which the weighted Lasso

is sign consistent in the AH model, generalizing the irrepresentable condition for

the sign consistence of the Lasso in linear regression (Zhao and Yu (2006)). The
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sparsity property of the weighted Lasso in AH model is also proved.

The remainder of this article is organized as follows. In Section 2, we describe

the AH model and introduce the weighted Lasso penalty. In Section 3, we estab-

lish some oracle inequalities for the weighted Lasso in the high-dimensional AH

model. The compatibility and cone invertibility factors and the corresponding

restricted eigenvalue of the Hessian matrix are presented. In Section 4, a multi-

stage adaptive method is provided, we give some sufficient conditions for selection

consistency, and provide an upper bound on the dimension of the weighted Lasso

estimator. Section 5 includes some concluding remarks. Proofs are in the Ap-

pendix.

2. AH Model with the Weighted `1 Penalty

We adopt the counting process framework for the AH model (Lin and Ying

(1994)). Consider a set of n independent subjects such that the counting process

{Ni(t); t ≥ 0} is the number of observed events for the ith individual in time

interval [0, t]. Assume that the intensity function for Ni(t) is given by

dΛi(t) = Yi(t){dΛ0(t) + β′0Zi(t)dt}, (2.1)

where β0 = (β01, · · · , β0p)
′ is a p-vector of true regression coefficients, Λ0(t) =∫ t

0 λ0(u)du denotes the cumulative baseline hazard function, Yi(t) ∈ {0, 1} is a

predictable at-risk indicator process for the ith individual, and Z(·) = (Z1(·), · · · ,
Zp(·))′ is a predicable covariate process. In the p � n setting, let S be any set

of indices with S ⊇ {j : β0j 6= 0}, with Sc the complement of S in {1, · · · , p}.
Let d0 = |S| be the number of elements in S. Here we are interested in the case

where d0 is much smaller than the dimension of β0.

Following Lin and Ying (1994), we introduce the pseudoscore estimating

function

U(β) =
1

n

n∑
i=1

∫ τ

0
{Zi(t)− Z̄n(t)}{dNi(t)− Yi(t)β′Zi(t)dt},

where Z̄n(t) =
∑n

j=1 Yj(t)Zj(t)/
∑n

j=1 Yj(t), and τ is the maximum follow-

up time. After some algebra, we can get that U(β) = a − Aβ with a =

n−1
∑n

i=1

∫ τ
0 {Zi(t)− Z̄n(t)}dNi(t) and

A =
1

n

n∑
i=1

∫ τ

0
Yi(t){Zi(t)− Z̄n(t)}⊗2dt, (2.2)

where c⊗2 = cc′ for any vector c. For technical convenience, we rewrite the

estimating function U(β) in terms of a martingale, as suggested by Lin and Ying
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(1994),

U(β) =
1

n

n∑
i=1

∫ τ

0
{Zi(t)− Z̄n(t)}dMi(t),

where Mi(t) = Ni(t) −
∫ t

0 Yi(u){λ0(u) + β′0Zi(u)}du is a martingale. By inte-

grating −U(β) with respective to β, we obtain a least-squares-type loss function

(Martinussen and Scheik (2009)),

L(β) =
1

2
β′Aβ − a′β. (2.3)

The gradient of L(β) is L̇(β) = ∂L(β)/∂β = Aβ − a, and the Hessian matrix

of L(β) is L̈(β) = A. Here A is free of β, which is a major difference with the

theory for Cox model (Huang et al. (2013)).

Since A is singular in the p� n setting, it is difficult to derive the estimator

for β0 by minimizing (2.3) directly, so we employ the regularized approach. Let

ŵ ∈ Rp be a (possibly estimated) weight vector with nonnegative elements ŵj ,

1 ≤ j ≤ p, and Ŵ = diag(ŵ). We consider the weighted `1-penalized least-

squares-type loss criterion

Q(β;λ) = L(β) + λ|Ŵβ|1, (2.4)

where λ ≥ 0 is a penalty parameter. Hereafter, we use the notation |v|q =

{
∑p

i=1 |vj |q}1/q for 1 ≤ q <∞, and |v|∞ = max1≤j≤p |vj | for any v ∈ Rp. For a

given λ, the weighted `1-penalized estimator, or the weighted Lasso estimator is

β̂(λ) = arg min
β
Q(β;λ). (2.5)

The weighted Lasso estimator can be characterized by the Karush-Kuhn-

Tucker (KKT) conditions. Since L(β) is convex, a vector β̂ = (β̂1, · · · , β̂p)′ is a

solution to (2.5) if and only if{
L̇j(β̂) = −λŵjsgn(β̂j), if β̂j 6= 0,

|L̇j(β̂)| ≤ λŵj , if β̂j = 0,
(2.6)

where L̇(β) = (L̇1(β), · · · , L̇p(β))′ = ∂L(β)/∂β is the gradient of L(β). The

(unweighted) Lasso is a special case of (2.5), with the choice ŵj = 1, 1 ≤ j ≤ p.

3. Non-Asymptotic Oracle Inequalities

In this section, we establish some non-asymptotic oracle inequalities for the

estimation error of weighted Lasso in the high-dimensional AH model. Let W =

diag(w) for a possibly unknown vector w ∈ Rp with elements wj ≥ 0. As in
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Huang and Zhang (2012), we define

z∗ = max{|L̇(β0)S |∞, |W−1
Sc L̇(β0)Sc |∞},

Ω0 = {ŵj ≤ wj , ∀j ∈ S} ∩ {wj ≤ ŵj , ∀j ∈ Sc}.

Hereafter, for any p-vector v = (v1, · · · , vp)′ and sets A and C, vA = (vj : j ∈ A)′,

MAC denotes the A× C subblock of a matrix M and MA = MAA.

Lemma 1. Let β̂ be the weighted Lasso estimator, and ê = β̂−β0. Then in the

event Ω0,

(λ− z∗)|WSc êSc |1 ≤ D(β̂,β0) + (λ− z∗)|WSc êSc |1 ≤ (λ|wS |∞ + z∗)|êS |1.

Furthermore, for any ξ > |wS |∞, |WSc êSc |1 ≤ ξ|êS |1 in the event Ω0 ∩ {z∗ ≤
λ(ξ−|wS |∞)/(ξ+1)}, where D(β̂,β) = (β̂−β)′{L̇(β̂)−L̇(β)} = (β̂−β)′A(β̂−β)

is the Bregman divergence (Gäıffas and Guilloux (2012)) and A is defined in (2.2).

It follows from Lemma 1 that in the event Ω0∩{z∗ ≤ λ(ξ−|wS |∞)/(ξ+ 1)},
for any ξ > |wS |∞, the estimation error ê = β̂ − β0 belongs to the cone

Θ(ξ, S) = {b ∈ Rp : |WScbSc |1 ≤ ξ|bS |1}. (3.1)

To establish some useful oracle inequalities, for the cone in (3.1) and the

Hessian matrix A in (2.2), we set

κ(ξ, S;A) = inf
06=b∈Θ(ξ,S)

d
1/2
0 (b′Ab)1/2

|bS |1
as the compatibility factor (van de Geer (2007); van de Geer and Bühlmann

(2009)), and

Fq(ξ, S;A) = inf
06=b∈Θ(ξ,S)

d
1/q
0 b′Ab

|bS |1|b|q
(3.2)

as the weak cone invertibility factor (Ye and Zhang (2010)). The two quanti-

ties are closely related to the restricted eigenvalue (Bickel, Ritov and Tsybakov

(2009); Koltchinskii (2009)), defined as

RE(ξ, S;A) = inf
06=b∈Θ(ξ,S)

(b′Ab)1/2

|b|2
.

According to Ye and Zhang (2010), the compatibility and cone invertibility

factors are greater than the restricted eigenvalue. Therefore, using κ(ξ, S;A) and

Fq(ξ, S;A) can yield shaper oracle inequalities than the restricted eigenvalue.

Theorem 1. If |Zi(t) − Zj(t)|∞ ≤ K uniformly in {t, i, j} for a finite K > 0,

and β̂ be the weighted Lasso estimator as (2.5), in the event Ω0 ∩ {z∗ ≤ λ(ξ −
|wS |∞)/(ξ + 1)},
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D(β̂,β0) ≤ ξ2λ2d0(1 + |wS |∞)2

(ξ + 1)2κ2(ξ, S;A)
, |β̂ − β0|1 ≤

λd0(1 + |wS |∞)(ξ + min{wSc})2

4 min{wSc}κ2(ξ, S;A)(ξ + 1)
,

(3.3)

|β̂ − β0|q ≤
d

1/q
0 (λ|wS |∞ + z∗)

Fq(ξ, S;A)
, q ≥ 1. (3.4)

Remark 1. For wj = 1, 1 ≤ j ≤ p, the established error bounds for the AH

model have the same form as those for the linear model (Huang et al. (2013)),

except for an improved factor of 4ξ/(1 + ξ) ≥ 2 for the `1 oracle inequality as

(3.3).

The oracle inequalities in Theorem 1 hold only in the event Ω0 ∩ {z∗ ≤
λ(ξ− |wS |∞)/(ξ + 1)}, so a probabilistic upper bound for z∗ is needed. We have

Ni(∞) ≤ 1 and L̇(β0) = −n−1
∑n

i=1

∫ τ
0 {Zi(t) − Z̄n(t)}dMi(t). Without loss of

generality, the martingale difference generated by {Mi(t), t > 0} is bounded by

1. Then by martingale version of the Hoeffding inequality (Azuma (1967)) and

Lemma 3.3 of Huang et al. (2013), we can get that P{z∗ > Kx} ≤ 2pe−nx
2/2.

Theorem 2. Suppose the conditions in Theorem 1 hold. Let ξ > |wS |∞ and

λ = {(ξ + 1)/(ξ − |wS |∞)}K
√

(2/n) log(2p/ε) with a small ε > 0. Then in the

event Ω0, for any Cκ > 0 and CF,q > 0, we have

D(β̂,β0) ≤ ξ2λ2d0(1 + |wS |∞)2

(ξ + 1)2C2
κ

, |β̂ − β0|1 ≤
λd0(1 + |wS |∞)(ξ + min{wSc})2

4 min{wSc}C2
κ(ξ + 1)

,

|β̂ − β0|q ≤
ξd

1/q
0 λ(|wS |∞ + 1)

(ξ + 1)CF,q
, q ≥ 1,

all hold with probability at least P{κ(ξ, S;A) ≥ Cκ, Fq(ξ, S;A) ≥ CF,q} − ε.

Remark 2. By Theorem 2, to ensure the error |β̂ − β0|q is small with high

probability, it is required that p = exp{o(n/d1/q
0 )}. If d0 is bounded, then p can

be as large as exp(o(n)).

We have established non-asymptotic oracle inequalities expressed in terms

of compatibility and weak cone invertibility factors. As the Hessian matrix is

based on the cross-products of time-dependent covariates in censored risk sets,

these quantities are random variables. We provide some sufficient conditions

under which they can be treated as constants, and since these factors appear

in the denominator of the error bounds, it suffices to bound them from below.

To simplify the statement of the results, we use Φ(ξ, S;A) to denote any of the

quantities:

Φ(ξ, S;A) = κ2(ξ, S;A), Fq(ξ, S;A), and RE2(ξ, S;A). (3.5)
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If we make a claim about Φ(ξ, S;A), then the claim holds for any quantity in

(3.5).

Lemma 2. Let κ2(ξ, S;A), Fq(ξ, S;A),RE2(ξ, S;A) and Φ(ξ, S;A) be defined in

(3.5). Denote Aij as the elements of A and let B is another nonnegative-definite

matrix with elements Bij, then

(i) for 1 ≤ q ≤ 2,

min{κ2(ξ, S;A), (1 + min{wSc}−1ξ)2/q−1Fq(ξ, S;A)}
≥ RE2(ξ, S;A) ≥ Λmin(A),

where Λmin(·) denotes the smallest eigenvalue,

(ii) Φ(ξ, S;A) ≥ Φ(ξ, S;B)− d0(1 + min{wSc}−1ξ)2 max1≤i≤j≤p |Aij −Bij |,

(iii) if A ≥ B, then Φ(ξ, S;A) ≥ Φ(ξ, S;B), where A ≥ B means A − B is

nonnegative definite.

As in Huang et al. (2013), we can bound the quantities of type Φ(ξ, S;A)

from below in two ways: bound the matrix A from below, or approximate A un-

der the supreme norm for its elements. Here we choose a suitable truncation of

A = L̈(β0) as a lower bound of the matrix. This is done by truncating the max-

imum event time under consideration. Since L̈(β0) = n−1
∑n

i=1

∫ τ
0 Yi(t){Zi(t)−

Z̄n(t)}⊗2dt, then L̈(β0) ≥ Ā(t∗) with Ā(t∗) =
∫ t∗

0 Σ̄n(t)dt, where Σ̄n(t) =

n−1
∑n

i=1 Yi(t){Zi(t) − Z̄n(t)}⊗2, and t∗ > 0. Suppose that {Yi(t),Zi(t), t > 0}
are i.i.d. stochastic processes of {Y (t),Z(t), t > 0}. The population version of

Ā(t∗) is A(t∗) = E(
∫ t∗

0 Σn(t)dt), where Σn(t) = n−1
∑n

i=1 Yi(t){Zi(t)− µ(t)}⊗2

with µ(t) = E{Y (t)Z(t)}/E(Y (t)). Let Fn(t) =
√

(2/n) log t, then we have the

following results.

Theorem 3. Suppose that {Yi(t),Zi(t), t ≥ 0} are i.i.d. processes as {Y (t),Z(t),

t ≥ 0} with supt P{|Zi(t) − Z(t)|∞ ≤ K} = 1. If t∗ be a positive constant and

r∗ = EY (t∗), then

Φ(ξ, S; L̈(β0)) ≥ Φ(ξ, S;A(t∗))− d0(1 + min{wSc}−1ξ)2K2t∗{Fn(
p(p+ 1)

ε
)

+ (
2

r∗
)t2n,p,ε}

with probability at least 1−2ε, where tn,p,ε is the solution of p(p+1) exp{−nt2n,p,ε/
(2 + 2tn,p,ε/3)} = ε/2.221. Furthermore, for 1 ≤ q ≤ 2,

min{κ2(ξ, S;A), (1 + min{wSc}−1ξ)2/q−1Fq(ξ, S;A)}
≥ RE2(ξ, S; L̈(β0))
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≥ Λmin(A(t∗))− d0(1 + min{wSc}−1ξ)2K2t∗{Fn(
p(p+ 1)

ε
) + (

2

r∗
)t2n,p,ε}

with probability greater than 1−2ε, where Λmin(·) denotes the smallest eigenvalue.

Accordingly, the compatibility and cone invertibility factors and the re-

stricted eigenvalue can be treated as constants in the high-dimensional AH model

with time-dependent covariates. Our discussion focuses on the quantities in

Φ(ξ, S;A) for the Hessian matrix A. But, since L̈(β0 + b̃) = L̈(β0) = A, for any

b̃ ∈ Rp, Theorem 3 provides lower bounds for these quantities at any β. This

conclusion is different from those for Cox regression model (Huang et al. (2013)),

which only provide lower bounds for these quantities with β not far from β0 in

terms of `1-distance.

An earlier result on oracle inequalities for the high-dimensional AH model is

due to Gäıffas and Guilloux (2012), who considered a data-driven `1 penalization

and proved oracle inequalities for a more general non-parametric AH model.

They only focused on the time-independent covariates case. Lin and Lv (2013)

studied the properties of a class of concave penalties, including the Lasso for the

AH model. They obtained `∞ error bounds and asymptotic oracle properties

for the regression coefficient under different conditions from what we assumed

here. A key assumption in their results is a strong version of the irrepresentable

condition, which is not required in our results on the error bounds.

4. Multistage Adaptive Method and Selection Consistency

In this section, we consider how to choose the weights ŵj in (2.4), for j =

1, · · · , p. A multistage adaptive approach is proposed with weights recursively

generated from a concave penalty function, e.g. SCAD (Fan and Li (2001)) and

MCP (Zhang (2010a)). Let Pλ(t) be a concave penalty with Ṗλ(0+) = λ. The

maximum concavity of this penalty is

$ = sup
0<t1<t2

|Ṗλ(t2)− Ṗλ(t1)|
t2 − t1

, (4.1)

where Ṗλ(t) = (∂/∂t)Pλ(t).

Theorem 4. If φ > 1, ξ ≥ (φ + 1)/(φ − 1), β̃ is an initial estimator of β0,

and β̂ is the weighted Lasso estimator in (2.5) with weights ŵj = Ṗλ(|β̃j |)/λ, for

j = 1, · · · , p. Then in the event Ω0 ∩ {z∗ ≤ λ/φ},

|β̂ − β0|1 ≤
d0

F1(ξ, S;A)

{
|Ṗλ(|β0S |)|1 +

d0λ

φ
+$|β̃ − β0|1

}
, (4.2)

where Pλ(·) is a concave penalty, and F1(ξ, S;A) is defined in (3.2) with q = 1.
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Thus the weighted Lasso β̂ improves its initial estimator β̃, and we can

repeatedly apply this procedure with the multistage algorithm (Zhang (2010b)),

β̂(k+1) = arg min
β

L(β) +

p∑
j=1

Ṗλ(β̂
(k)
j )|βj |

 , k = 0, 1, · · · ,

where L(β) is defined in (2.3).

Define ‖M‖∞ = max|u|∞≤1 |Mu|∞ as the `∞ to `∞ norm of a matrix M . We

have the following results on selection consistency and sparsity for the weighted

Lasso estimator β̂ in (2.5).

Theorem 5. (i) If B∗0 = {β : βSc = 0} and Sβ = {j : βj 6= 0}, and if

sup
β∈B∗0

|Ŵ−1
Sc AScSβ

A−1
Sβ

ŴSβ
sgn(βSβ

)|∞ ≤ κ0 < 1, (4.3)

sup
β∈B∗0

‖ Ŵ−1
Sc AScSβ

A−1
Sβ
‖∞≤ κ1 (4.4)

hold, then {j : β̂j 6= 0} ⊆ S in the event

Ω1 = Ω0 ∩ {z∗(1 + κ1) < (1− κ0)λ}. (4.5)

(ii) If B0 = {β : sgn(β) = sgn(β0)}, and (4.3) and (4.4) hold with B∗0
replaced by B0, then sgn(β̂) = sgn(β0) in the event

Ω1 ∩

{
sup
β∈B0

‖ A−1
S ‖∞ (|ŵS |∞λ+ z∗) < min

j∈S
|βj0|

}
. (4.6)

By Theorem 5 and the probabilistic upper bound for z∗, we have the follow-

ing.

Corollary 1. (i) If B∗0 = {β : βSc = 0}, Sβ = {j : βj 6= 0}, λ = {(1 + κ1)/(1−
κ0)}K

√
(2/n) log(2p/ε) with a small ε > 0 (e.g. ε = 0.01), and (4.3) and (4.4)

hold, then in the event Ω0, {j : β̂j 6= 0} ⊆ S hold with at least probability 1− ε.
(ii) If B0 = {β : sgn(β) = sgn(β0)}, (4.3) and (4.4) hold with B∗0 replaced

by B0, and min
{

(1 − κ0)/(1 + κ1)λ, (supβ∈B0
‖ A−1

S ‖∞)−1 minj∈S |βj0| −
|ŵS |∞λ

}
= K

√
(2/n) log(2p/ε), then sgn(β̂) = sgn(β0) in the event Ω0 hold

with at least probability 1− ε.

The proof of this corollary is similar to that of Theorem 2, so we omit the

details. These conditions of the Corollary 1 can be regarded as an extension of the

irrepresentable condition for Lasso in the linear regression model (Meinshausen

and Bühlmann (2006); Zhao and Yu (2006)) to the current setting.

We now derive an upper bound for the dimension of β̂. Take
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κ+(m) = sup
|B|=m

{Λmax(W−2
B AB) : B ∩ S = ∅} (4.7)

as a restricted upper eigenvalue, where Λmax(·) denotes the largest eigenvalue,

B ⊆ {1, · · · , p}, AB and WB are the restrictions of the Hessian of (2.3) and the

weight W = diag{w} to RB.

Theorem 6. If β̂ is the weighted Lasso estimator (2.5) and ξ > |wS |∞, then in

the event Ω0 ∩ {z∗ ≤ (ξ − |wS |∞)/(ξ + 1)λ}, we have

#{j : β̂j 6= 0, j /∈ S}<d1= min

{
m≥1 :

m

κ+(m)
>

ξ2λ2d0(1 + |wS |∞)2

(λ− z∗)2(ξ + 1)2κ2(ξ, S;A)

}
.

Corollary 2. If β̂ is the weighted Lasso estimator (2.5), ξ > |wS |∞, and λ =

{(ξ + 1)/(ξ − |wS |∞)}K
√

(2/n) log(2p/ε) with a small ε > 0, then in the event

Ω0, for any Cκ > 0, we have

#{j : β̂j 6= 0, j /∈ S} < d̃1 = min

{
m ≥ 1 :

m

κ+(m)
>
ξ2d0

C2
κ

}
holds with probability no less than P{κ(ξ, S;A) ≥ Cκ} − ε.

A direct consequence of this corollary is that #{j : β̂j 6= 0} ≤ d1 + d0. In

particular, under the condition κ+(m) < k∗+ for all m, we have

#{j : β̂j 6= 0} ≤ (1 +
κ∗+ξ

2

C2
κ

)d0.

This is an upper bound for the number of nonzero components of the weighted

Lasso in the high-dimensional AH model.

5. Concluding Remarks

There exist several directions for research in the future. One reviewer sug-

gests that it would be useful to consider tests for individual coefficients and error

control such as false discovery rate control in the high-dimensional AH model

(Zhong, Hu and Li (2015)); some treatments of this topic with the weighted

Lasso would be interesting, and have practical implications. The established

results assume that the sequence of penalty parameters is fixed, which is not

applicable to the case where the penalty parameters are selected based on data-

driven procedures, such as cross validation. This problem deserves further study,

but is beyond the scope of the current paper. It would be interesting to consider

the more general form of the AH model: dΛi(t) = Yi(t){dΛ0(t) + h(Zi(t))dt},
where h : Rp → R+ is a nonparametric function. A particular case of interest is

when h is an additive function, dΛi(t) = Yi(t){dΛ0(t) +
∑p

j=1 hj(Zj(t))dt}. The
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linear AH model (2.1) is the parametric case with h(x) = x′β. We expect that

our methods would be useful for studying the properties of the weighted Lasso

in these models.
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Appendix

Here we prove Lemmas 1–2, Theorems 1–6, and Corollary 2.

Proof of Lemma 1. Since L(β) is a convex function, andD(β̂,β0) = ê′{L̇(β0+

ê)− L̇(β0)} ≥ 0, the first inequality holds. With êj = β̂j for j ∈ Sc,

ê′{L̇(β0 + ê)− L̇(β0)}

=
∑
j∈Sc

êjL̇(β0 + ê)j +
∑
j∈S

êjL̇(β0 + ê)j + ê′(−L̇(β0))

≤
∑
j∈Sc

β̂j
(
− λŵjsgn(β̂j)

)
+
∑
j∈S
|êj |λŵj + ê′Sc(−L̇(β0)Sc) + ê′S(−L̇(β0)S)

≤ −λ|WSc êSc |1 + λ|WS êS |1 + (WSc êSc)′
(
−W−1

Sc L̇(β0)Sc

)
+ ê′S(−L̇(β0)S)

≤ (z∗ − λ)|WSc êSc |1 + (z∗ + λ|wS |∞)|êS |1.

The first inequality here requires L̇(β0 + ê)j = −λŵjsgn(β̂j) only in the set

Sc ∩ {j : β̂j 6= 0}, since êj = β̂j − β0j = 0 when j ∈ Sc and β̂j = 0. This

completes the proof of Lemma 1.

Proof of Lemma 2. (i) By the Hölder inequality, |b|q ≤ |b|2/q−1
1 |b|2−2/q

2 . It

follows from |b|1 ≤ (1 + min{wSc}−1ξ)|bS |1 in the cone, and |bS |1 ≤ d
1/2
0 |b|2,

that
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|bS |1|b|q
d

1/q
0

≤ (1 + min{wSc}−1ξ)2/q−1 |bS |
2/q
1 |b|

2−2/q
2

d
1/q
0

≤ (1 + min{wSc}−1ξ)2/q−1|b|22.

Then, since |bS |1 ≤ d1/2
0 |b|2, (i) holds.

(ii) From |b′Ab− b′Bb| ≤ |b|21 maxi,j |Aij −Bij | and

|b|1 ≤ (1 + min{wSc}−1ξ)|bS |1 ≤ (1 + min{wSc}−1ξ)d
1/q
0 |b|q,

it is easy to obtain the desired result.

(iii) The conclusion immediately follows from (3.5). This completes the proof

of Lemma 2.

Proof of Theorem 1. Let ê = β̂ − β0 6= 0 and =
¯
ê/|ê|1. Because of the

convexity of L(β),

x−1D(β0 + xb,β0) =
∂

∂x
{L(β0 + xb)− xb′L̇(β0)}

is an increasing function of x. Thus, in the event Ω0∩ z∗ ≤ λ(ξ−|wS |∞)/(ξ+ 1),

by Lemma 1 we have

b′{L̇(β0 + xb)− L̇(β0)}+
λ(1 + |wS |∞)

ξ + 1
|WScbSc |1 ≤

ξλ(1 + |wS |∞)

ξ + 1
|bS |1,

(A.1)

where x ∈ [0, |ê|1], and b ∈ Θ(ξ, S) which is defined in (3.1). Then for all non-

negative x, it follows from xb′{L̇(β0 +xb)− L̇(β0)} = x2b′L̈(β0)b, the definition

of κ(ξ, S;A), and (A.1) that

xκ2(ξ, S;A)|bS |21/d0 ≤ xb′L̈(β0)b

≤ ξλ(1 + |wS |∞)

ξ + 1
|bS |1 −

λ(1 + |wS |∞)

ξ + 1
|WScbSc |1

≤ λ(1 + |wS |∞)(ξ + min{wSc})
ξ + 1

|bS |1 −
λmin{wSc}(1 + |wS |∞)

ξ + 1

≤ λ(1 + |wS |∞)(ξ + min{wSc})2

4 min{wSc}(ξ + 1)
|bS |21.

Therefore, for all x satisfying (A.1), we have

x ≤ λd0(1 + |wS |∞)(ξ + min{wSc})2

4 min{wSc}κ2(ξ, S;A)(ξ + 1)
. (A.2)

Since L is convex, b′{L̇(β0 + xb)− L̇(β0)} is an increasing function of x, the set

of all nonnegative x satisfying(A.1) is a closed interval [0, x̃] for some x̃. Thus,

(A.2) yields
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|ê|1 ≤ |x̃| ≤
λd0(1 + |wS |∞)(ξ + min{wSc})2

4 min{wSc}κ2(ξ, S;A)(ξ + 1)
,

which is the second part of (3.3). Furthermore, by Lemma 1 we have

κ2(ξ, S;A)|êS |21/d0 ≤ ê′L̈(β0)ê = D(β̂,β0) ≤ ξλ(1 + |wS |∞)|êS |1
ξ + 1

.

Thus, the first part of (3.3) holds.

Lastly, from the definition of Fq(ξ, S;A) and Lemma 1, we can derive that

|ê|q ≤
d

1/q
0 ê′Aê

|êS |1Fq(ξ, S;A)
=
d

1/q
0 D(β0 + ê,β0)

|êS |1Fq(ξ, S;A)
≤ d

1/q
0 (λ|wS |∞ + z∗)

Fq(ξ, S;A)
,

so (3.4) holds. This completes the proof of Theorem 1.

Proof of Theorem 2. Let x = λ(ξ − |w|∞)/{K(ξ + 1)} =
√

(2/n) log(2p/ε)

in the probability bound P{z∗ > Kx} ≤ 2pe−nx
2/2, then it can be verified that

the probability of the event z∗ > (ξ − |w|∞)/(ξ + 1)λ is at most ε. Then it

follows from Theorem 1 that the desired results hold. This completes the proof

of Theorem 2.

Proof of Theorem 3. By the definition of Ā(t∗) and Lemma 2 (iii), we have

Φ(ξ, S; L̈(β0)) ≥ Φ(ξ, S; Ā(t∗)). (A.3)

From the definition of Σn(t) and Σ̄n(t), we have

Σn(t) = Σ̄n(t) + n−1
n∑
i=1

Yi(t){Z̄n(t)− µ(t)}⊗2.

Thus,

Ā(t∗) =

∫ t∗

0
Σn(t)dt−

∫ t∗

0
n−1

n∑
i=1

Yi(t){Z̄n(t)− µ(t)}⊗2dt. (A.4)

Take Ȳn(t) = n−1
∑n

i=1 Yi(t) and Γ(t) = Ȳn(t){Z̄n(t)−µ(t)} = n−1
∑n

i=1 Yi(t)

{Zi(t)− µ(t)}. Since Yi(t) is a non-increasing function in t, we have

0 ≤
∫ t∗

0
Ȳn(t){Z̄n(t)− µ(t)}⊗2dt ≤

∫ t∗
0 Γ⊗2(t)dt

Ȳn(t∗)
. (A.5)

Because Ȳn(t∗) is an average of i.i.d. random variables taking values 0 or 1 and

EȲn(t∗) = r∗, by the Hoeffding (1963) inequality, we have

P{Ȳn(t∗) <
r∗
2
} ≤ e−nr2∗/2.

Since Γ(t) is an average of i.i.d. mean-zero random vectors, (n2
∫ t∗

0 Γ⊗2(t)dt)i,j
is a degenerate V-statistic for each (i, j), and the summands of these V-statistic

are all bounded by K2t∗, by Lemma 4.2 of Huang et al. (2013), we have
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P

{
±
(∫ t∗

0
Γ⊗2(t)dt

)
i,j

> (K2t∗)t2

}
≤ 2.221 exp

(
−nt2/2
1 + t/3

)
.

By (A.4), (A.5), the two above probability bounds and Lemma 2 (ii), we can

derive that

Φ(ξ, S; Ā(t∗)) ≥ Φ(ξ, S;

∫ t∗

0
Σn(t)dt)− d0(1 + min{wSc}−1ξ)2K2t∗(2/r∗)t

2
n,p,ε

(A.6)

with at least probability 1− e−nr2∗/2 − ε.
Moreover, since

∫ t∗
0 Σn(t)dt is an average of i.i.d. matrices with mean A(t∗)

and the summands of (
∫ t∗

0 Σn(t)dt)i,j are uniformly bounded by K2t∗, thus by

the Hoeffding (1963) inequality, we get

P

{
max
i,j

(∫ t∗

0
Σn(t)dt−A(t∗)

)
i,j

≥ K2t∗t

}
≤ p(p+ 1)e−nt

2/2.

Then, it follows from (A.3), (A.6), the above inequality with t = Fn(p(p+ 1)/ε),

and Lemma 2 (ii) that

Φ(ξ, S; L̈(β0)) ≥ Φ(ξ, S;

∫ t∗

0
Σn(t)dt)− d0(1 + min{wSc}−1ξ)2K2t∗(

2

r∗
)t2n,p,ε

≥ Φ(ξ, S;A(t∗))− d0(1 + min{wSc}−1ξ)2K2t∗{Fn(
p(p+ 1)

ε
) + (

2

r∗
)t2n,p,ε}

with at least probability 1− e−nr2∗/2 − 2ε.

From Lemma 2 that

Φ(ξ, S;A(t∗) ≥ RE2(ξ, S;A(t∗)) ≥ Λmin(A(t∗)),

and the desired results follow. This completes the proof of Theorem 3.

Proof of Theorem 4. Let ê = β̂ − β0, wj = ŵj . Since |ŵ|∞ ≤ 1, we have

|ŵ|∞λ+ z∗

λ− z∗
≤ λ+ λ/φ

λ− λ/φ
=
φ+ 1

φ− 1
≤ ξ.

Thus, from the KKT condition (2.6) and the proof of Lemma 1, we can show

that ê ∈ Θ(ξ, S) and D(β̂,β0) ≤ |êS |1(|ŵS |1 + |L̇(β0)S |1). By the definition of

F1(ξ, S;A) in (3.2), we get that

d−1
0 F1(ξ, S;A)|êS |1|ê|1 ≤ D(β̂,β0) ≤ |êS |1(|ŵS |1 + |L̇(β0)S |1).

Since |êS |1 = 0 implies ê = 0 for ê ∈ Θ(ξ, S),

d−1
0 F1(ξ, S;A)|ê|1 ≤ |ŵS |1 + |L̇(β0)S |1. (A.7)

It follows from ŵjλ = Ṗλ(|β̃j |) ≤ Ṗλ(|βj0|) +$ · |β̃j − βj0| that
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|ŵS |1λ ≤ |Ṗλ(|β0S |)|1 +$|β̃ − β0|1. (A.8)

From (A.7) and (A.8), |β̂−β0|1 ≤ d0/F1(ξ, S;A){|Ṗλ(|β0S |)|1+|L̇(β0)S |1+$|β̃−
β0|1}. Moreover, |L̇(β0)S |1 ≤ z∗ ≤ φ/λ and |S| = d0 lead to the desired results.

This ends the proof of Theorem 4.

Proof of Theorem 5. (i) Let ã = a−Aβ0 and λ be fixed. Take

β̂(λ, t) = arg min
β

1

2
β′Aβ − β′(tã + Aβ0) + tλ

p∑
j=1

ŵj |β|j : βSc = 0


as an artificial path for 0 ≤ t ≤ 1. Then for each t, the KKT conditions for

β̂(λ, t) are:

gS(λ, t) = tλŴSµS(λ, t), µj(λ, t)

{
= sgn(β̂j(λ, t)), if β̂j(λ, t) 6= 0,

∈ [−1, 1], if β̂j(λ, t) = 0,

where g(λ, t) = −Aβ̂(λ, t) + Aβ0 + tã.

Let St = {j : β̂j(λ, t) 6= 0}. By applying differentiation D = (∂/∂t) to the

KKT conditions, it follows that almost everywhere in t,

(Dg)St
(λ, t) = ãSt

−ASt
{(Dβ̂)St

(λ, t)} = λŴSt
µSt

(λ, t).

Then we have

(Dβ̂)St
(λ, t) = A−1

St
{ãSt

− λŴSt
µSt

(λ, t)}. (A.9)

An application of the chain rule leads to

(Dg)Sc(λ, t) = ãSc −AScSt
A−1
St
{ãSt

− λŴSt
µSt

(λ, t)}.

As g(λ, t) is almost differentiable and β̂(λ, 0+) = β0, we have g(λ, 0+) = 0

and gSc(λ, 1−) =
∫ 1

0 [ãSc − AScSt
A−1
St
{ãSt

− λŴSt
µSt

(λ, t)}]dt. Thus, by (4.3)

and (4.4), |Ŵ−1
Sc gSc(λ, 1−)|∞ ≤ |Ŵ−1

Sc ãSc |∞ + κ1|ãSc |∞ + κ0λ|µSt
(λ, t)|∞, which

is smaller than λ in the event (4.5). Then β̂(λ, 1−) is the unique solution of the

KKT condition (2.6) for β̂. This ends the proof of part (i).

(ii) We note that (4.6) implies that S = {j : βj0 6= 0}. Because β̂(λ, 0+) =

β0, there exists t1 > 0, µS(λ, t) = sgn(β0S) for 0 < t < t1. By (A.9) and (4.6),

for 0 < t < t1 and some ε > 0, we have

|(Dβ̂)S(λ, t)|∞ ≤‖ A−1
St
‖∞ |ãS − λsgn(β0S)ŴS |∞ < min

j∈S
|β0j | − ε.

Due to β̂(λ, 0+), |β̂S(λ, t)−β0S |∞ < minj∈S |β0j | − ε, for all 0 < t < min{t1, 1}.
Furthermore, by the continuity of β̂(λ, t) in t, we know that sgn(β̂(λ, t)) =

sgn(β0) for 0 < t ≤ 1. Then, (4.3) and (4.4) are only needed for the smaller B0

in the proof of (i). Thus, β̂(λ, 1) = β̂. This completes the proof of Theorem 5.
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Proof of Theorem 6. Let ê = β̂ − β0, then it follows from (2.3) that Aê =

L̇(β̂)− L̇(β0). By the KKT conditions (2.6), we have

|(Aê)j | = |(L̇(β̂)− L̇(β0))j | ≥ ŵjλ− |L̇(β0)j | ≥ wj(λ− z∗) > 0, j /∈ S.

If B ⊆ {j /∈ S : β̂j 6= 0} with |B| ≤ d1, (4.7) implies that

max
|u|2=1

|(W−1A1/2u)B|22 = Λmax(W−2
B AB) ≤ κ+(d1).

Thus,

(λ− z∗)2|B| ≤ |(W−1Aê)B|22 ≤ κ+(d1)ê′Aê = κ+(d1)D(β0 + ê,β0).

From the predication bound in Theorem 2, we get

|B| ≤ κ+(d1)D(β0 + ê,β0)

(λ− z∗)2
≤ κ+(d1)ξ2λ2d0(1 + |wS |∞)2

(λ− z∗)2(ξ + 1)2κ2(ξ, S;A)
< d1. (A.10)

All subsets B ⊆ {j /∈ S : β̂j 6= 0} with |B| ≤ d1 satisfy |B| < d1, so #{j /∈ S :

β̂j 6= 0} < d1. This completes the proof of Theorem 6.

Proof of Corollary 2. For B̃ ⊆ {j /∈ S : β̂j 6= 0} with |B̃| ≤ d̃1, since

λ− z∗ ≥ (|wS |∞ + 1)/(ξ + 1)λ, similar to (A.10), we get

|B̃| ≤ κ+(d̃1)D(β0 + ê,β0)

(λ− z∗)2
≤ κ+(d̃1)ξ2λ2d0(1 + |wS |∞)2

(λ− z∗)2(ξ + 1)2κ2(ξ, S;A)

≤ κ+(d̃1)ξ2d0

κ2(ξ, S;A)
< d̃1. (A.11)

Let x = λ(ξ − |w|∞)/{K(ξ + 1)} =
√

(2/n) log(2p/ε). By the probability bound

P{z∗ > Kx} ≤ 2pe−nx
2/2, we see that the probability of the event z∗ > (ξ −

|w|∞)/(ξ+ 1)λ is at most ε. Thus, by replacing κ(ξ, S;A) in (A.11) with Cκ, we

have the desired result. This completes the proof of Corollary 2.
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