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S.1 Commonly Used Link Functions for Cumulative Link Models

Link function g(γ) g−1(η) (g−1)′(η)

logit log
(

γ
1−γ

)
eη

1+eη
eη

(1+eη)2

probit Φ−1(γ) Φ(η) φ(η)
log-log − log[− log(γ)] exp{−e−η} exp{−η − e−η}
c-log-log log[− log(1− γ)] 1− exp{−eη} exp{η − eη}
cauchit tan[π(γ − 1

2
)] 1

π
arctan(η) + 1

2
1

π(1+η2)

where Φ−1(·) is the cumulative distribution function of N(0, 1), φ(·) is the
probability density function of N(0, 1), and “c-log-log” stands for comple-
mentary log-log.
Example 1 (continued) For logit link g, g−1(η) = eη/(1+eη) and (g−1)′ =
g−1(1 − g−1). Thus gij = (g−1)′(θj − xTi β) = γij(1 − γij). With J = 3, we
have πi1 + πi2 + πi3 = 1 for i = 1, . . . ,m. Then for i = 1, . . . ,m, gi1 =
πi1(πi2 + πi3), gi2 = (πi1 + πi2)πi3, bi2 = πi1πi3π

−1
i2 (πi1 + πi2)(πi2 + πi3), ui1 =

πi1π
−1
i2 (πi1+πi2)(πi2+πi3)

2, ui2 = πi3π
−1
i2 (πi1+πi2)

2(πi2+πi3), ci1 = πi1(πi1+
πi2)(πi2+πi3), ci2 = πi3(πi1+πi2)(πi2+πi3), ei = (πi1+πi2)(πi1+πi3)(πi2+πi3).
�

S.2 Additional Lemmas

For Section 2: Since (Yi1, . . . , YiJ), i = 1, . . . ,m are m independent ran-
dom vectors, the log-likelihood function (up to a constant) of the cumulative
link model is

l(β1, . . . , βd, θ1, . . . , θJ−1) =
m∑
i=1

J∑
j=1

Yij log(πij)
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where πij = γij − γi,j−1 with γij = g−1(θj − xTi β) for j = 1, . . . , J − 1 and
γi0 = 0, γiJ = 1, i = 1, . . . ,m. For s = 1, . . . , d, t = 1, . . . , J − 1,

∂l

∂βs
=

m∑
i=1

(−xis) ·
{
Yi1
πi1
· (g−1)′(θ1 − xTi β)

+
Yi2
πi2
·
[
(g−1)′(θ2 − xTi β)− (g−1)′(θ1 − xTi β)

]
+ · · · +YiJ

πiJ

[
−(g−1)′(θJ−1 − xTi β)

]}
∂l

∂θt
=

m∑
i=1

(g−1)′(θt − xTi β)

(
Yit
πit
− Yi,t+1

πi,t+1

)
Since Yij’s come from multinomial distributions, we know E(Yij) =

niπij , E(Y 2
ij) = ni(ni−1)π2

ij +niπij , and E(YisYit) = ni(ni−1)πisπit when
s 6= t. Then we have the following lemma:

Lemma S.1. Let F = (Fst) be the (d+J−1)×(d+J−1) Fisher information
matrix.

(i) For 1 ≤ s ≤ d, 1 ≤ t ≤ d,

Fst = E

(
∂l

∂βs

∂l

∂βt

)
=

m∑
i=1

nixisxit

J∑
j=1

(gij − gi,j−1)2

πij

where gij = (g−1)′(θj−xTi β) > 0 for j = 1, . . . , J−1 and gi0 = giJ = 0.

(ii) For 1 ≤ s ≤ d, 1 ≤ t ≤ J − 1,

Fs,d+t = E

(
∂l

∂βs

∂l

∂θt

)
=

m∑
i=1

ni(−xis)git
(
git − gi,t−1

πit
− gi,t+1 − git

πi,t+1

)
(iii) For 1 ≤ s ≤ J − 1, 1 ≤ t ≤ d,

Fd+s,t = E

(
∂l

∂θs

∂l

∂βt

)
=

m∑
i=1

ni(−xit)gis
(
gis − gi,s−1

πis
− gi,s+1 − gis

πi,s+1

)
(iv) For 1 ≤ s ≤ J − 1, 1 ≤ t ≤ J − 1,

Fd+s,d+t = E

(
∂l

∂θs

∂l

∂θt

)
=


∑m

i=1 nig
2
is(π

−1
is + π−1i,s+1), if s = t∑m

i=1 nigisgit(−π
−1
i,s∨t), if |s− t| = 1

0, if |s− t| ≥ 2

where s ∨ t = max{s, t}.
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Perevozskaya et al. (2003) obtained a detailed form of Fisher informa-
tion matrix for logit link and one predictor. Our expressions here are good
for fairly general link and d predictors. To simplify the notations, we denote
for i = 1, . . . ,m,

ei =
J∑
j=1

(gij − gi,j−1)2

πij
> 0 (S.1)

cit = git

(
git − gi,t−1

πit
− gi,t+1 − git

πi,t+1

)
, t = 1, . . . , J − 1 (S.2)

uit = g2it(π
−1
it + π−1i,t+1) > 0, t = 1, . . . , J − 1 (S.3)

bit = gi,t−1gitπ
−1
it > 0, t = 2, . . . , J − 1 (if J ≥ 3) (S.4)

Note that gij is defined in Lemma S.1 (i). Then we obtain the following
lemma which plays a key role in calculating |F|.
Lemma S.2. cit = uit − bit − bi,t+1, i = 1, . . . ,m; t = 1, . . . , J − 1; ei =∑J−1

t=1 cit =
∑J−1

t=1 (uit − 2bit), i = 1, . . . ,m, where bi1 = biJ = 0 for i =
1, . . . ,m.

Lemma S.3. Rank((Ai1Ai2)) ≤ 1 where “=” is true if and only if xi 6= 0.

Based on Lemmas 1 and S.3, we obtain the two lemmas below on
cα1,...,αm which significantly simplify the structure of |F| as a polynomial
of (n1, . . . , nm).

Lemma S.4. If max1≤i≤m αi ≥ J , then |Aτ | = 0 for any τ ∈ (α1, . . . , αm)
and thus cα1,...,αm = 0.

Proof of Lemma S.4: Without any loss of generality, we assume α1 ≥
α2 ≥ · · · ≥ αm . Then max1≤i≤m αi ≥ J implies α1 ≥ J . In this case, for
any τ ∈ (α1, . . . , αm), τ−1(1) := {i | τ(i) = 1} ⊂ {1, . . . , d + J − 1} and
|τ−1(1)| = α1 . If |τ−1(1)∩{1, . . . , d}| ≥ 2, then |Aτ | = 0 due to Lemma S.3;
otherwise {d+1, . . . , d+J−1} ⊂ τ−1(1) and thus |Aτ | = 0 due to Lemma 1.
Thus cα1,...,αm = 0 according to (2.3) provided in Theorem 2. �

Lemma S.5. If #{i : αi ≥ 1} ≤ d, then |Aτ | = 0 for any τ ∈ (α1, . . . , αm)
and thus cα1,...,αm = 0.

Proof of Lemma S.5: Without any loss of generality, we assume α1 ≥
α2 ≥ · · · ≥ αm . Then #{i : αi ≥ 1} ≤ d indicates αd+1 = · · · = αm = 0.
Let τ : {1, 2, . . . , d + J − 1} → {1, . . . ,m} satisfy τ ∈ (α1, . . . , αm). Then
the (d+ J − 1)× (d+ J − 1) matrix Aτ can be written as(

Aτ1 Aτ2
Aτ3 Aτ4

)
S3
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=

(
(eτ(s)xτ(s)sxτ(s)t)s=1,...d;t=1,...,d (−xτ(s)scτ(s)t)s=1,...,d;t=1,...,J−1

(−cτ(d+s)sxτ(d+s)t)s=1,...,J−1;t=1,...,d Aτ4

)
where the (J−1)×(J−1) matrix Aτ4 is either a single entry uτ(d+1)1 (if J =
2) or symmetric tri-diagonal with diagonal entries uτ(d+1)1, . . . , uτ(d+J−1),J−1,
upper off-diagonal entries−bτ(d+1)2, . . . ,−bτ(d+J−2),J−1, and lower off-diagonal
entries −bτ(d+2)2, . . . , −bτ(d+J−1),J−1 . Note that Aτ is asymmetric in gen-
eral.

If #{i : αi ≥ 1} ≤ d−1, then there exists an i0 such that 1 ≤ i0 ≤ d and
|τ−1(i0) ∩ {1, . . . , d}| ≥ 2. In this case, |Aτ | = 0 according to Lemma S.3.

If #{i : αi ≥ 1} = d, we may assume |τ−1(i) ∩ {1, . . . , d}| = 1
for i = 1, . . . , d (otherwise |Aτ | = 0 according to Lemma S.3). Suppose
α1 ≥ α2 ≥ · · · ≥ αk ≥ 2 > αk+1 . Then {d+ 1, . . . , d+ J − 1} ⊂ ∪ki=1τ

−1(i)

and
∑k

i=1(αi − 1) = J − 1. In order to show |Aτ | = 0, we first replace

Aτ1 with A
(1)
τ1 = (eτ(s)xτ(s)t)s=1,...d; t=1,...,d and replace Aτ2 with A

(1)
τ2 =

(−cτ(s)t)s=1,...,d; t=1,...,J−1. It changes Aτ into a new matrix A
(1)
τ . Note that

|Aτ | =
∏d

s=1 xτ(s)s · |A
(1)
τ |. According to Lemma S.2, the sum of the columns

of A
(1)
τ2 is (−eτ(1), . . . ,−eτ(d))T , and the elementwise sum of the columns of

Aτ4 is (cτ(d+1)1, cτ(d+2)2, . . . , cτ(d+J−1),J−1)
T . Secondly, for t = 1, . . . , d, we

add x1t(−eτ(1), . . . ,−eτ(d), cτ(d+1)1, . . . , cτ(d+J−1),J−1)
T to the tth column of

A
(1)
τ . We denote the resulting matrix by A

(2)
τ . Note that |A(1)

τ | = |A(2)
τ |. We

consider the sub-matrix A
(2)
τd which consists of the first d columns of A

(2)
τ .

For s ∈ τ−1(1), the sth row of A
(2)
τd is simply 0. For i = 2, . . . , k, the jth row

of A
(2)
τd is proportional to (xi1 − x11, xi2 − x12, . . . , xid − x1d) if j ∈ τ−1(i).

Therefore, Rank(A
(2)
τd ) ≤ (d + J − 1) − α1 −

∑k
i=2(αi − 1) = d − 1, which

leads to |A(2)
τ | = 0 and thus |A(1)

τ | = 0, |Aτ | = 0. According to (2.3) in
Theorem 2, cα1,...,αm = 0. �

Lemma S.6. F = F(p) is always positive semi-definite. It is positive
definite if and only if p ∈ S+ . Furthermore, log f(p) is concave on S.

For Section 5.2: The procedure seeking for analytic solutions here follows
Tong, Volkmer, and Yang (2014). As a direct conclusion of the Karush-
Kuhn-Tucker conditions (see also Theorem 10), a necessary condition for
(p1, p2, p3) to maximize f(p1, p2, p3) in (5.5) is (5.6), which are equivalent
to ∂f/∂p1 = ∂f/∂p3 and ∂f/∂p2 = ∂f/∂p3 . In terms of pi, wi’s, they are

(p3 − p1)(p1w1 + p2w2 + p3w3) = (w3 − w1)p1p3 (S.5)

(p3 − p2)(p1w1 + p2w2 + p3w3) = (w3 − w2)p2p3 (S.6)
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Denote y1 = p1/p3 > 0 and y2 = p2/p3 > 0. Since p1 + p2 + p3 = 1, it
implies p3 = 1/(y1 +y2 +1), p1 = y1/(y1 +y2 +1), and p2 = y2/(y1 +y2 +1).
In terms of y1, y2, (S.5) and (S.6) are equivalent to

(1− y1)(y1w1 + y2w2 + w3) = (w3 − w1)y1 (S.7)

(1− y2)(y1w1 + y2w2 + w3) = (w3 − w2)y2 (S.8)

Lemma S.7. Suppose 0 < w3 < w2 < w1 . If (p1, p2, p3) maximizes
f(p1, p2, p3) in (5.5) under the constrains p1, p2, p3 ≥ 0 and p1 +p2 +p3 = 1,
then 0 < p3 ≤ p2 ≤ p1 < 1.

The proof of the lemma above is straightforward, because otherwise one
could exchange pi, pj to strictly improve f(p1, p2, p3) . Now we are ready to
get solutions to equations (S.7) and (S.8) case by case.

(i) w1 = w3 . In that case, (S.7) implies y1 = 1. After plugging it into
(S.8), the only positive solution is

y2 = (−3w1 + 2w2 +
√

9w2
1 − 4w1w2 + 4w2

2)/(2w2) .

(ii) w2 = w3 . In that case, (S.8) implies y2 = 1. After plugging it into
(S.7), the only positive solution is

y1 = (2w1 − 3w2 +
√

4w2
1 − 4w1w2 + 9w2

2)/(2w1) .

(iii) w1 = w2 but w1 6= w3 . The ratio of (S.7) and (S.8) leads to y1 = y2 .
After plugging it into (S.7), the only positive solution is y1 = (3w1 −
2w3 +

√
9w2

1 − 4w1w3 + 4w2
3)/(4w1) .

(iv) w1, w2, w3 are distinct. Without any loss of generality, we assume 0 <
w3 < w2 < w1, because otherwise the previous elimination procedure
in the order of p3, p2, p1 could be easily changed accordingly. Based on
Lemma S.7, if (p1, p2, p3) maximizes f4, then 0 < p3 ≤ p2 ≤ p1 < 1 and
thus y1 ≥ y2 ≥ 1. The ratio of (S.7) and (S.8) leads to (1 − y1)/(1 −
y2) = (w3 − w1)/(w3 − w2) · y1/y2, which implies

y2 =
(w1 − w3)y1

(w2 − w3) + (w1 − w2)y1
. (S.9)

Note that (w2−w3)+(w1−w2)y1 ≥ w1−w3 > 0. After plugging (S.9)
into (S.7), we get

c0 + c1y1 + c2y
2
1 + c3y

3
1 = 0 (S.10)

where c0 = w3(w2 − w3) > 0, c1 = 3w1w2 − w1w3 − 4w2w3 + 2w2
3 > 0,

c2 = 2w2
1 − 4w1w2 − w1w3 + 3w2w3, c3 = w1(w2 − w1) < 0.
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Lemma S.8. Suppose 0 < w3 < w2 < w1 . Then equation (S.10) has one
and only one solution y∗1 ≥ 1. Furthermore, y∗1 > 1.

Proof of Lemma S.8: In order to locate the roots of equation (S.10),
we let f1(y1) = c0 + c1y1 + c2y

2
1 + c3y

3
1. Then f1(1) = c0 + c1 + c2 + c3 =

(w1 − w3)
2 > 0.

On the other hand, the first derivative of f1 is f ′1(y1) = a0+a1y1+a2y
2
1 ,

where a0 = 3w1w2−w1w3− 4w2w3 + 2w2
3 = w1(w2−w3) + 2(w1−w2)w2 +

2(w2−w3)
2 > 0, a1 = 2(2w2

1− 4w1w2−w1w3 + 3w2w3), and a2 = 3w1(w2−
w1) < 0. Therefore, a21−4a0a2 > a21 ≥ 0 and f ′1(y1) = a2(y1−y11)(y1−y12),
where

y11 =
−a1 +

√
a21 − 4a0a2

2a2
< 0, y12 =

−a1 −
√
a21 − 4a0a2

2a2
> y11

It can be verified that y12 < 1 if and only if w1 < 2(w2 + w3). There are
two cases: Case (i): If y12 < 1, then f ′1(y1) < 0 for all y1 > 1. That is,
f1(y1) strictly decreases after y1 = 1. Since f1(1) > 0 and f1(∞) = −∞,
then there is one and only one solution in (1,∞); Case (ii): If y12 ≥ 1, then
f ′1(y1) ≥ 0 for y1 ∈ [1, y12] and f ′1(y1) < 0 for y1 ∈ (y12,∞). That is, f1(y1)
increases in [1, y12] and then strictly decreases in (y12,∞). Again, due to
f1(1) > 0 and f1(∞) = −∞, there is one and only one solution in (1,∞).
In either case, the conclusion is justified. �

S.3 Additional Proofs

Proof of Theorem 1 It is a direct conclusion of Lemmas S.1 and S.2. �
Examples of Ai3 in Theorem 1 include (ui1),

(
ui1 −bi2
−bi2 ui2

)
,

 ui1 −bi2 0
−bi2 ui2 −bi3

0 −bi3 ui3

 ,


ui1 −bi2 0 0
−bi2 ui2 −bi3 0

0 −bi3 ui3 −bi4
0 0 −bi4 ui4


for J = 2, 3, 4, or 5 respectively.

Proof of Theorem 2 To study the structure of |F| as a polynomial

function of (n1, . . . , nm), we denote the (k, l)th entry of Ai by a
(i)
kl . Given a

row map τ : {1, 2, . . . , d + J − 1} → {1, . . . ,m}, we define a (d + J − 1)×
(d+J − 1) matrix Aτ =

(
a
(τ(k))
kl

)
whose kth row is given by the kth row of
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Aτ(k) . For a power index (α1, . . . , αm) with αi ∈ {0, 1, . . . , d+ J − 1} and∑m
i=1 αi = d+ J − 1, we denote

τ ∈ (α1, . . . , αm)

if αi = #{j : τ(j) = i} for each i = 1, . . . ,m. In terms of the construction
of Aτ , it says that αi rows of Aτ are from the matrix Ai .

According to the Leibniz formula for the determinant,

|F| =

∣∣∣∣∣
m∑
i=1

niAi

∣∣∣∣∣ =
∑

σ∈Sd+J−1

(−1)sgn(σ)
d+J−1∏
k=1

m∑
i=1

nia
(i)
k,σ(k)

where σ is a permutation of {1, 2, . . . , d+ J − 1}, and sgn(σ) is the sign or
signature of σ. Therefore,

cα1,...,αm =
∑

σ∈Sd+J−1

(−1)sgn(σ)
∑

τ∈(α1,...,αm)

d+J−1∏
k=1

a
(τ(k))
k,σ(k)

=
∑

τ∈(α1,...,αm)

∑
σ∈Sd+J−1

(−1)sgn(σ)
d+J−1∏
k=1

a
(τ(k))
k,σ(k)

=
∑

τ∈(α1,...,αm)

|Aτ |

�

Proof of Lemma 2 To simplify the notations, we let is = s + 1, s =
0, . . . , d. That is, α1 = J − 1, α2 = · · · = αd+1 = 1. There are only two
types of τ ∈ (α1, . . . , αm), such that, |Aτ | may not be 0.

τ of type I: There exist 1 ≤ k ≤ d, 2 ≤ l ≤ d + 1, and 1 ≤ q ≤ J − 1,
such that, τ(k) = 1 and τ(d + q) = l. Following a similar procedure as in
the proof of Lemma S.5, we obtain

|Aτ | =
d+1∏
i=2

ei · |A13| · (−1)d|X1[1, 2, . . . , d+ 1]| · (−1)sgn(τ)
d∏
s=1

xτ(s)s ·
clq
el

τ of type II: τ(d+ 1) = · · · = τ(d+ J − 1) = 1 and {τ(1), . . . , τ(d)} =
{2, . . . , d+ 1}. It can be verified that

|Aτ | =
d+1∏
i=2

ei · |A13| · (−1)d|X1[1, 2, . . . , d+ 1]| · (−1)sgn(τ)
d∏
s=1

xτ(s)s

S7
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According to Theorem 2,

cα1,...,αm =
∑

τ of type I

|Aτ |+
∑

τ of type II

|Aτ |

=
d+1∏
i=2

ei · |A13| · (−1)d|X1[1, 2, . . . , d+ 1]| ·

 d∑
k=1

d+1∑
l=2

∑
τ∈Sd+1:τ(k)=1,τ(d+1)=l

(−1)sgn(τ)
d∏
s=1

xτ(s)s

J−1∑
q=1

clq
el

+
∑

τ∈Sd+1:τ(d+1)=1

(−1)sgn(τ)
d∏
s=1

xτ(s)s


=

d+1∏
i=2

ei · |A13| · (−1)d|X1[1, 2, . . . , d+ 1]| ·
∑

τ∈Sd+1

(−1)sgn(τ)
d∏
s=1

xτ(s)s

=
d+1∏
i=2

ei · |A13| · (−1)d|X1[1, 2, . . . , d+ 1]| · (−1)d|X1[1, 2, . . . , d+ 1]|

=
d+1∏
i=2

ei · |A13| · |X1[1, 2, . . . , d+ 1]|2

where Sd+1 is the set of permutations of {1, . . . , d + 1}. The general case
with i0, i1, . . . , id can be obtained similarly. �

Proof of Theorem 4 Suppose Rank(X1) = d + 1. Then there exist
i0, . . . , id ∈ {1, . . . ,m}, such that, |X1[i0, i1, . . . , id]| 6= 0. According to
Lemma S.4, f(p) can be regarded as an order-(J − 1) polynomial of pi0 .
Let pi0 = x ∈ (0, 1) and pi = (1−x)/(m−1) for i 6= i0 . Based on Lemma 2,
f(p) can be written as

fi0(x) = aJ−1x
J−1
(

1− x
m− 1

)d
+ aJ−2x

J−2
(

1− x
m− 1

)d+1

+ · · ·+ a1x

(
1− x
m− 1

)d+J−2
+ a0

(
1− x
m− 1

)d+J−1
, where

aJ−1 = |Ai03|
∑

{i′1,...,i′d}⊂{1,...,m}\{i0}

d∏
s=1

ei′s |X1[i0, i
′
1, . . . , i

′
d]|2 > 0

Therefore, limx→1−(1 − x)−dx1−Jfi0(x) = (m − 1)−daJ−1 > 0. That is,
f(p) > 0 for pi0 = x close enough to 1 and pi = (1− x)/(m− 1) for i 6= i0 .
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In order to justify that the condition Rank(X1) = d+1 is also necessary,
we only need to show that f(p) ≡ 0 if Rank(X1) ≤ d. Actually, for any

τ : {1, . . . , d + J − 1} → {1, . . . ,m}, we construct A
(1)
τ as in the proof

of Lemma S.5. Then |Aτ | =
∏d

s=1 xτ(s)s · |A
(1)
τ |. Similar as in the proof

of Lemma S.5, for t = 1, . . . , d, we add xτ(1)t(−eτ(1), . . . ,−eτ(d), cτ(d+1)1,

. . . , cτ(d+J−1),J−1)
T to the tth column of A

(1)
τ . We denote the resulting

matrix by A
(3)
τ . Note that |A(1)

τ | = |A(3)
τ |. We consider the sub-matrix

A
(3)
τd which consists of the first d columns of A

(3)
τ . For s ∈ τ−1(τ(1)),

the sth row of A
(3)
τd is simply 0. For s = 2, . . . , k, the sth row of A

(3)
τd is

eτ(s)(xτ(s)1 − xτ(1)1, . . . , xτ(s)d − xτ(1)d). For s = 1, . . . , J − 1, the (d + s)th

row of A
(3)
τd is −cτ(d+s)s(xτ(d+s)1 − xτ(1)1, . . . , xτ(d+s)d − xτ(1)d). We claim

that Rank(A
(3)
τd ) ≤ d − 1. Otherwise, if Rank(A

(3)
τd ) = d, then there exist

i1, . . . , id ∈ {2, . . . , d + J − 1}, such that, the sub-matrix consisting of the

i1th, . . . , idth rows of A
(3)
τd is nonsingular. Then the sub-matrix consisting

of the τ(1)th, τ(i1)th, . . . , τ(id)th rows of X1 is nonsingular, which implies

Rank(X1) = d + 1. The contradiction implies Rank(A
(3)
τd ) ≤ d − 1. Then

|A(3)
τ | = 0 and thus |Aτ | = 0 for each τ . Based on Theorem 2, |F| ≡ 0 and

thus f(p) ≡ 0. �

Proof of Theorem 5 Combining Theorem 1 and Theorem 4, it is straight-
forward that f(p) = 0 if Rank( X1[{i | pi > 0}]) ≤ d. We only need to
show that f(p) > 0 if Rank(X1[{i | pi > 0}]) = d + 1. Due to Theorem 1,
we only need to verify the case pi > 0, i = 1, . . . ,m, because otherwise we
may simply remove all support points with pi = 0.

Suppose pi > 0, i = 1, . . . ,m and Rank(X1) = d + 1. Then there exist
i0, . . . , id ∈ {1, . . . ,m}, such that, |X1[i0, . . . , id]| 6= 0. According to the
proof of Theorem 4, for each i ∈ {i0, . . . , id}, there exists an εi ∈ (0, 1),
such that, f(p) > 0 as long as pi = x ∈ (1− εi, 1) and pj = (1− x)/(m− 1)
for j 6= i. On the other hand, for each i /∈ {i0, . . . , id}, if we denote the
jth row of X1 by αj, j = 1, . . . ,m, then αi = a0αi0 + · · · + adαid for some
real numbers a0, . . . , ad . Since αi 6= 0, then at least one ai 6= 0. Without
any loss of generality, we assume a0 6= 0. Then it can be verified that
|X1[i, i1, . . . , id]| 6= 0 too. Following the proof of Theorem 4 again, for such
an i /∈ {i0, . . . , id}, there also exists an εi ∈ (0, 1), such that, f(p) > 0
as long as pi = x ∈ (1 − εi, 1) and pj = (1 − x)/(m − 1) for j 6= i. Let
ε∗ = min{mini εi, (m − 1) mini pi, 1 − 1/m}/2. For i = 1, . . . ,m, denote
δi = (δi1, . . . , δim)T ∈ S with δii = 1− ε∗ and δij = ε∗/(m− 1) for j 6= i. It
can be verified that p = a1δ1 + · · ·+ amδm with ai = (pi− ε∗/(m− 1))/(1−

S9
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mε∗/(m − 1)). By the choice of ε∗, f(δi) > 0, ai > 0, i = 1, . . . ,m, and∑
i ai = 1. Then f(p) > 0 according to Lemma S.6. �

Proof of Corollary 3 In order to check when a minimally supported
design supported only on {x1, x2} is D-optimal, we add one more support
point, that is, x3 . According to Theorem 2, Lemmas S.4, S.5, and 2, the
objective function for a D-optimal approximate design on {x1, x2, x3} is
f(p1, p2, p3) = p1p2(c210p1 + c120p2) + p1p3(c201p1 + c102p3) + p2p3(c021p2 +
c012p3) + c111p1p2p3, where

c210 = e2g
2
11g

2
12(π11π12π13)

−1(x1 − x2)2 > 0

c120 = e1g
2
21g

2
22(π21π22π23)

−1(x1 − x2)2 > 0

c201 = e3g
2
11g

2
12(π11π12π13)

−1(x1 − x3)2 > 0

c102 = e1g
2
31g

2
32(π31π32π33)

−1(x1 − x3)2 > 0

c021 = e3g
2
21g

2
22(π21π22π23)

−1(x2 − x3)2 > 0

c012 = e2g
2
31g

2
32(π31π32π33)

−1(x2 − x3)2 > 0

c111 = e1(u22u31 + u21u32 − 2b22b32)(x1 − x2)(x1 − x3) +

e2(u12u31 + u11u32 − 2b12b32)(x2 − x1)(x2 − x3) +

e3(u12u21 + u11u22 − 2b12b22)(x3 − x1)(x3 − x2)

Based on Theorem 10, the design p = (p∗1, p
∗
2, 0)T is D-optimal if and only

if
∂f(p)/∂f(p1) = ∂f(p)/∂f(p2) ≥ ∂f(p)/∂f(p3)

Similar conclusions could be justified for x4, . . . , xm if m ≥ 4. �

Proof of Theorem 12 According to the solutions provided by the soft-
ware Mathematica, the largest root of equation (S.10) after simplification
is

y1 = −b2
3
− 21/3(3b1 − b22)

3A1/3
+

A1/3

3× 21/3
(S.11)

where A = −27b0 +9b1b2−2b32 +33/2(27b20 +4b31−18b0b1b2−b21b22 +4b0b
3
2)

1/2,
and bi = ci/c3, i = 0, 1, 2. Note that the calculation of A and thus y1 should
be regarded as operations among complex numbers since the expression
under square root could be negative. Nevertheless, y1 at the end would be
a real number. Thus we are able to provide the analytic solution maximizing
f(p1, p2, p3). �

Proof of Corollary 5 In order to check when a minimally supported
design is D-optimal, we first add the four design points, that is, we consider

S10
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four design points (xi1, xi2), i = 1, 2, 3, 4 and check when the D-optimal
design could be constructed on the first three design points. Let X1 be
defined as in Lemma 2. In this case, X1 is a 4 × 3 matrix. Following
Theorem 2, Lemmas S.4, S.5, and 2, the objective function for a minimally
supported design at (d, J,m) = (2, 3, 4) is

f(p1, p2, p3, p4) = c1111p1p2p3p4

+ |X1[1, 2, 3]|2e1e2e3 · p1p2p3(w1p1 + w2p2 + w3p3)

+ |X1[1, 2, 4]|2e1e2e4 · p1p2p4(w1p1 + w2p2 + w4p4)

+ |X1[1, 3, 4]|2e1e3e4 · p1p3p4(w1p1 + w3p3 + w4p4)

+ |X1[2, 3, 4]|2e2e3e4 · p2p3p4(w2p2 + w3p3 + w4p4)

where ei = ui1 + ui2 − 2bi2, wi = e−1i g2i1g
2
i2(πi1πi2πi3)

−1, i = 1, 2, 3, 4, and

c1111 =
∑

1≤i<j≤4

eiej(uk1ul2 +uk2ul1−2bk2bl2) · |X1[i, j, k]| · |X1[i, j, l]| (S.12)

with {i, j, k, l} = {1, 2, 3, 4} given 1 ≤ i < j ≤ 4.
According to Theorem 10, a minimally supported design p = (p∗1, p

∗
2, p
∗
3,

0)T in this case is D-optimal if and only if ∂f/∂p1 = ∂f/∂p2 = ∂f/∂p3 ≥
∂f/∂p4 at p. Then ∂f/∂p1 = ∂f/∂p2 = ∂f/∂p3 at p is equivalent to (1) of
Corollary 5, and ∂f/∂p4 ≤ ∂f/∂p1 at p leads to (2) of Corollary 5 since the
forms of ∂f/∂pi at p, i = 1, 2, 3 will not change if more than four design
points (i.e., m > 4) are added into consideration. Note that
|X1[1, 2, 3]|2e1e2e3p∗2p∗3(2w1p

∗
1 + w2p

∗
2 + w3p

∗
3) in (2) of Corollary 5 is equal

to ∂f/∂p1 at p. It could be replaced with |X1[1, 2, 3]|2e1e2e3p∗1p∗3(w1p
∗
1 +

2w2p
∗
2+w3p

∗
3) (i.e., ∂f/∂p2), or |X1[1, 2, 3]|2e1e2e3p∗1p∗2(w1p

∗
1+w2p

∗
2+2w3p

∗
3)

(i.e., ∂f/∂p3), since these three are all equal. �

S.4 Maximization of fi(z) in Section 3

According to Theorem 6, fi(z) is an order-(d + J − 1) polynomial of z.
In other to determine its coefficients a0, a1, . . . , aJ−1 as in (3.2), we need
to calculate fi(0), fi(1/2), fi(1/3), . . . , fi(1/J), which are J determinants
defined in (3.1).

Note that B−1J−1 is a matrix determined by J − 1 only. For example,

B−11 = 1 for J = 2,

B−12 =

(
2 −1
−1 1

)
, B−13 =

 3 −3 1
−5

2
4 −3

2
1
2
−1 1

2

 ,

S11
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B−14 =


4 −6 4 −1

−13
3

19
2
−7 11

6
3
2
−4 7

2
−1

−1
6

1
2
−1

2
1
6


for J = 3, 4, or 5 respectively.

Once a0, . . . , aJ−1 in (3.2) are determined, the maximization of fi(z)
on z ∈ [0, 1] is numerically straightforward since it is a polynomial and its
derivative f ′i(z) is given by

(1−z)d
J−1∑
j=1

jajz
j−1(1−z)J−1−j−(1−z)d−1

J−1∑
j=0

(d+J−1−j)ajzj(1−z)J−1−j

(S.13)

S.5 Exchange algorithm for D-optimal exact allocation in Sec-
tion 4

Exchange algorithm for D-optimal allocation (n1, . . . , nm)T given n > 0:

1◦ Start with an initial design n = (n1, . . . , nm)T such that f(n) > 0.

2◦ Set up a random order of (i, j) going through all pairs {(1, 2), (1, 3),
. . . , (1,m), (2, 3), . . . , (m− 1,m)}.

3◦ For each (i, j), let c = ni + nj . If c = 0, let n∗ij = n. Otherwise, there
are two cases. Case one: 0 < c ≤ J , we calculate fij(z) as defined in
(4.1) for z = 0, 1, . . . , c directly and find z∗ which maximizes fij(z).
Case two: c > J , we first calculate fij(z) for z = 0, 1, . . . , J ; sec-
ondly determine c0, c1, . . . , cJ in (4.2) according to Theorem 9; thirdly
calculate fij(z) for z = J + 1, . . . , c based on (4.2); fourthly find z∗

maximizing fij(z) for z = 0, . . . , c. For both cases, we define

n∗ij = (n1, . . . , ni−1, z
∗, ni+1, . . . , nj−1, c− z∗, nj+1, . . . , nm)T

Note that f(n∗ij) = fij(z
∗) ≥ f(n) > 0. If f(n∗ij) > f(n), replace n

with n∗ij , and f(n) with f(n∗ij).

4◦ Repeat 2◦ ∼ 3◦ until convergence, that is, f(n∗ij) = f(n) in step 3◦ for
any (i, j).
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S.6 More on Example 6: Polysilicon Deposition Study

Table S.1 shows the list of experimental settings for the polysilicon deposi-
tion study. The factors are decomposition temperature(A), decomposition
pressure(B), nitrogen flow (C), silane flow(D), setting time(E),
cleaning method(F ). Column 1 provides original indices of experimental
settings out of 729 distinct ones. For each experimental setting labelled “1”
in a design, 9 responses are collected (Phadke (1989)) and assumed to be
independent.

Table S.1: Polysilicon Deposition Study: Experimental Settings for the Original,
Rounded Approximate, and D-optimal Exact Designs

Index A B C D E F Original Rounded D-optimal

1 1 1 1 1 1 1 1 0 0
76 1 1 3 3 2 1 1 0 0
89 1 2 1 1 3 2 1 0 0
98 1 2 1 2 3 2 0 0 1

111 1 2 2 1 1 3 0 0 1
116 1 2 2 1 3 2 0 1 0
122 1 2 2 2 2 2 1 0 0
130 1 2 2 3 2 1 0 0 1
167 1 3 1 1 2 2 0 0 1
181 1 3 1 3 1 1 0 1 0
199 1 3 2 2 1 1 0 1 1
201 1 3 2 2 1 3 1 0 0
243 1 3 3 3 3 3 1 0 1
258 2 1 1 2 2 3 1 0 0
286 2 1 2 2 3 1 0 1 0
290 2 1 2 3 1 2 1 0 0
291 2 1 2 3 1 3 0 1 0
294 2 1 2 3 2 3 0 0 1
299 2 1 3 1 1 2 0 0 1
301 2 1 3 1 2 1 0 1 0
313 2 1 3 2 3 1 0 0 1
331 2 2 1 1 3 1 0 1 1
336 2 2 1 2 1 3 0 1 1
339 2 2 1 2 2 3 0 1 0
350 2 2 1 3 3 2 0 1 0
365 2 2 2 2 2 2 0 0 1
376 2 2 2 3 3 1 1 0 0
384 2 2 3 1 2 3 1 0 0
394 2 2 3 2 3 1 0 1 0
399 2 2 3 3 1 3 0 1 0
407 2 3 1 1 1 2 0 0 1
421 2 3 1 2 3 1 1 0 0
461 2 3 3 1 1 2 1 1 0
464 2 3 3 1 2 2 0 1 0
495 3 1 1 1 3 3 0 1 0
501 3 1 1 2 2 3 0 0 1
505 3 1 1 3 1 1 0 0 1
521 3 1 2 1 3 2 0 0 1
522 3 1 2 1 3 3 1 0 0
536 3 1 2 3 2 2 0 1 0
557 3 1 3 2 3 2 1 0 0
558 3 1 3 2 3 3 0 1 0
569 3 2 1 1 1 2 0 1 0
588 3 2 1 3 1 3 1 0 0
625 3 2 3 1 2 1 0 0 1
631 3 2 3 2 1 1 1 0 0
641 3 2 3 3 1 2 0 0 1
671 3 3 1 3 2 2 1 0 0
679 3 3 2 1 2 1 1 0 0

Table S.2 shows the model matrix for the D-optimal design no found
for the polysilicon deposition study. In this table, each 3-level factor is
represented by its linear component and quadratic component. Thus there
are level combinations of 12 predictors.
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Table S.2: Polysilicon Deposition Study: Model Matrix for the D-optimal Design

Index A1 A2 B1 B2 C1 C2 D1 D2 E1 E2 F1 F2

98 −1 1 0 −2 −1 1 0 −2 1 1 0 −2
111 −1 1 0 −2 0 −2 −1 1 −1 1 1 1
130 −1 1 0 −2 0 −2 1 1 0 −2 −1 1
167 −1 1 1 1 −1 1 −1 1 0 −2 0 −2
199 −1 1 1 1 0 −2 0 −2 −1 1 −1 1
243 −1 1 1 1 1 1 1 1 1 1 1 1
294 0 −2 −1 1 0 −2 1 1 0 −2 1 1
299 0 −2 −1 1 1 1 −1 1 −1 1 0 −2
313 0 −2 −1 1 1 1 0 −2 1 1 −1 1
331 0 −2 0 −2 −1 1 −1 1 1 1 −1 1
336 0 −2 0 −2 −1 1 0 −2 −1 1 1 1
365 0 −2 0 −2 0 −2 0 −2 0 −2 0 −2
407 0 −2 1 1 −1 1 −1 1 −1 1 0 −2
501 1 1 −1 1 −1 1 0 −2 0 −2 1 1
505 1 1 −1 1 −1 1 1 1 −1 1 −1 1
521 1 1 −1 1 0 −2 −1 1 1 1 0 −2
625 1 1 0 −2 1 1 −1 1 0 −2 −1 1
641 1 1 0 −2 1 1 1 1 −1 1 0 −2
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