D-OPTIMAL DESIGNS WITH

 ORDERED CATEGORICAL DATAJie Yang ${ }^{1}$, Liping Tong ${ }^{2}$ and Abhyuday Mandal ${ }^{3}$
${ }^{1}$ University of Illinois at Chicago, ${ }^{2}$ Advocate Health Care and ${ }^{3}$ University of Georgia

Supplementary Materials

S. 1 Commonly Used Link Functions for Cumulative Link Models

Link function	$g(\gamma)$	$g^{-1}(\eta)$	$\left(g^{-1}\right)^{\prime}(\eta)$
logit	$\log \left(\frac{\gamma}{1-\gamma}\right)$	$\frac{e^{\eta}}{1+e^{\eta}}$	$\frac{e^{\eta}}{\left(1+e^{\eta}\right)^{2}}$
probit	$\Phi^{-1}(\gamma)$	$\Phi(\eta)$	$\phi(\eta)$
$\log -\log$	$-\log [-\log (\gamma)]$	$\exp \left\{-e^{-\eta}\right\}$	$\exp \left\{-\eta-e^{-\eta}\right\}$
c-log-log	$\log [-\log (1-\gamma)]$	$1-\exp \left\{-e^{\eta}\right\}$	$\exp \left\{\eta-e^{\eta}\right\}$
cauchit	$\tan \left[\pi\left(\gamma-\frac{1}{2}\right)\right]$	$\frac{1}{\pi} \arctan (\eta)+\frac{1}{2}$	$\frac{1}{\pi\left(1+\eta^{2}\right)}$

where $\Phi^{-1}(\cdot)$ is the cumulative distribution function of $N(0,1), \phi(\cdot)$ is the probability density function of $N(0,1)$, and "c-log-log" stands for complementary log-log.
Example 1 (continued) For logit link $g, g^{-1}(\eta)=e^{\eta} /\left(1+e^{\eta}\right)$ and $\left(g^{-1}\right)^{\prime}=$ $g^{-1}\left(1-g^{-1}\right)$. Thus $g_{i j}=\left(g^{-1}\right)^{\prime}\left(\theta_{j}-\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right)=\gamma_{i j}\left(1-\gamma_{i j}\right)$. With $J=3$, we have $\pi_{i 1}+\pi_{i 2}+\pi_{i 3}=1$ for $i=1, \ldots, m$. Then for $i=1, \ldots, m, g_{i 1}=$ $\pi_{i 1}\left(\pi_{i 2}+\pi_{i 3}\right), g_{i 2}=\left(\pi_{i 1}+\pi_{i 2}\right) \pi_{i 3}, b_{i 2}=\pi_{i 1} \pi_{i 3} \pi_{i 2}^{-1}\left(\pi_{i 1}+\pi_{i 2}\right)\left(\pi_{i 2}+\pi_{i 3}\right), u_{i 1}=$ $\pi_{i 1} \pi_{i 2}^{-1}\left(\pi_{i 1}+\pi_{i 2}\right)\left(\pi_{i 2}+\pi_{i 3}\right)^{2}, u_{i 2}=\pi_{i 3} \pi_{i 2}^{-1}\left(\pi_{i 1}+\pi_{i 2}\right)^{2}\left(\pi_{i 2}+\pi_{i 3}\right), c_{i 1}=\pi_{i 1}\left(\pi_{i 1}+\right.$ $\left.\pi_{i 2}\right)\left(\pi_{i 2}+\pi_{i 3}\right), c_{i 2}=\pi_{i 3}\left(\pi_{i 1}+\pi_{i 2}\right)\left(\pi_{i 2}+\pi_{i 3}\right), e_{i}=\left(\pi_{i 1}+\pi_{i 2}\right)\left(\pi_{i 1}+\pi_{i 3}\right)\left(\pi_{i 2}+\pi_{i 3}\right)$.

S. 2 Additional Lemmas

For Section 2: Since $\left(Y_{i 1}, \ldots, Y_{i J}\right), i=1, \ldots, m$ are m independent random vectors, the log-likelihood function (up to a constant) of the cumulative link model is

$$
l\left(\beta_{1}, \ldots, \beta_{d}, \theta_{1}, \ldots, \theta_{J-1}\right)=\sum_{i=1}^{m} \sum_{j=1}^{J} Y_{i j} \log \left(\pi_{i j}\right)
$$

where $\pi_{i j}=\gamma_{i j}-\gamma_{i, j-1}$ with $\gamma_{i j}=g^{-1}\left(\theta_{j}-\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right)$ for $j=1, \ldots, J-1$ and $\gamma_{i 0}=0, \gamma_{i J}=1, i=1, \ldots, m$. For $s=1, \ldots, d, t=1, \ldots, J-1$,

$$
\begin{aligned}
\frac{\partial l}{\partial \beta_{s}}= & \sum_{i=1}^{m}\left(-x_{i s}\right) \cdot\left\{\frac{Y_{i 1}}{\pi_{i 1}} \cdot\left(g^{-1}\right)^{\prime}\left(\theta_{1}-\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right)\right. \\
& +\frac{Y_{i 2}}{\pi_{i 2}} \cdot\left[\left(g^{-1}\right)^{\prime}\left(\theta_{2}-\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right)-\left(g^{-1}\right)^{\prime}\left(\theta_{1}-\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right)\right] \\
& \left.+\cdots+\frac{Y_{i J}}{\pi_{i J}}\left[-\left(g^{-1}\right)^{\prime}\left(\theta_{J-1}-\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right)\right]\right\} \\
\frac{\partial l}{\partial \theta_{t}}= & \sum_{i=1}^{m}\left(g^{-1}\right)^{\prime}\left(\theta_{t}-\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right)\left(\frac{Y_{i t}}{\pi_{i t}}-\frac{Y_{i, t+1}}{\pi_{i, t+1}}\right)
\end{aligned}
$$

Since $Y_{i j}$'s come from multinomial distributions, we know $E\left(Y_{i j}\right)=$ $n_{i} \pi_{i j}, E\left(Y_{i j}^{2}\right)=n_{i}\left(n_{i}-1\right) \pi_{i j}^{2}+n_{i} \pi_{i j}$, and $E\left(Y_{i s} Y_{i t}\right)=n_{i}\left(n_{i}-1\right) \pi_{i s} \pi_{i t}$ when $s \neq t$. Then we have the following lemma:
Lemma S.1. Let $\mathbf{F}=\left(F_{s t}\right)$ be the $(d+J-1) \times(d+J-1)$ Fisher information matrix.
(i) For $1 \leq s \leq d, 1 \leq t \leq d$,

$$
F_{s t}=E\left(\frac{\partial l}{\partial \beta_{s}} \frac{\partial l}{\partial \beta_{t}}\right)=\sum_{i=1}^{m} n_{i} x_{i s} x_{i t} \sum_{j=1}^{J} \frac{\left(g_{i j}-g_{i, j-1}\right)^{2}}{\pi_{i j}}
$$

where $g_{i j}=\left(g^{-1}\right)^{\prime}\left(\theta_{j}-\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right)>0$ for $j=1, \ldots, J-1$ and $g_{i 0}=g_{i J}=0$.
(ii) For $1 \leq s \leq d, 1 \leq t \leq J-1$,

$$
F_{s, d+t}=E\left(\frac{\partial l}{\partial \beta_{s}} \frac{\partial l}{\partial \theta_{t}}\right)=\sum_{i=1}^{m} n_{i}\left(-x_{i s}\right) g_{i t}\left(\frac{g_{i t}-g_{i, t-1}}{\pi_{i t}}-\frac{g_{i, t+1}-g_{i t}}{\pi_{i, t+1}}\right)
$$

(iii) For $1 \leq s \leq J-1,1 \leq t \leq d$,

$$
F_{d+s, t}=E\left(\frac{\partial l}{\partial \theta_{s}} \frac{\partial l}{\partial \beta_{t}}\right)=\sum_{i=1}^{m} n_{i}\left(-x_{i t}\right) g_{i s}\left(\frac{g_{i s}-g_{i, s-1}}{\pi_{i s}}-\frac{g_{i, s+1}-g_{i s}}{\pi_{i, s+1}}\right)
$$

(iv) For $1 \leq s \leq J-1,1 \leq t \leq J-1$,

$$
F_{d+s, d+t}=E\left(\frac{\partial l}{\partial \theta_{s}} \frac{\partial l}{\partial \theta_{t}}\right)= \begin{cases}\sum_{i=1}^{m} n_{i} g_{i s}^{2}\left(\pi_{i s}^{-1}+\pi_{i, s+1}^{-1}\right), & \text { if } s=t \\ \sum_{i=1}^{m} n_{i} g_{i s} g_{i t}\left(-\pi_{i, s \vee t}^{-1},\right. & \text { if }|s-t|=1 \\ 0, & \text { if }|s-t| \geq 2\end{cases}
$$

where $s \vee t=\max \{s, t\}$.

Perevozskaya et al. (2003) obtained a detailed form of Fisher information matrix for logit link and one predictor. Our expressions here are good for fairly general link and d predictors. To simplify the notations, we denote for $i=1, \ldots, m$,

$$
\begin{align*}
e_{i} & =\sum_{j=1}^{J} \frac{\left(g_{i j}-g_{i, j-1}\right)^{2}}{\pi_{i j}}>0 \tag{S.1}\\
c_{i t} & =g_{i t}\left(\frac{g_{i t}-g_{i, t-1}}{\pi_{i t}}-\frac{g_{i, t+1}-g_{i t}}{\pi_{i, t+1}}\right), \quad t=1, \ldots, J-1 \tag{S.2}\\
u_{i t} & =g_{i t}^{2}\left(\pi_{i t}^{-1}+\pi_{i, t+1}^{-1}\right)>0, \quad t=1, \ldots, J-1 \tag{S.3}\\
b_{i t} & =g_{i, t-1} g_{i t} \pi_{i t}^{-1}>0, \quad t=2, \ldots, J-1(\text { if } J \geq 3) \tag{S.4}
\end{align*}
$$

Note that $g_{i j}$ is defined in Lemma S. 1 (i). Then we obtain the following lemma which plays a key role in calculating $|\mathbf{F}|$.
Lemma S.2. $c_{i t}=u_{i t}-b_{i t}-b_{i, t+1}, i=1, \ldots, m ; t=1, \ldots, J-1 ; e_{i}=$ $\sum_{t=1}^{J-1} c_{i t}=\sum_{t=1}^{J-1}\left(u_{i t}-2 b_{i t}\right), i=1, \ldots, m$, where $b_{i 1}=b_{i J}=0$ for $i=$ $1, \ldots, m$.
Lemma S.3. $\operatorname{Rank}\left(\left(\mathbf{A}_{i 1} \mathbf{A}_{i 2}\right)\right) \leq 1$ where $"="$ is true if and only if $\mathbf{x}_{i} \neq 0$.
Based on Lemmas 1 and S.3, we obtain the two lemmas below on $c_{\alpha_{1}, \ldots, \alpha_{m}}$ which significantly simplify the structure of $|\mathbf{F}|$ as a polynomial of $\left(n_{1}, \ldots, n_{m}\right)$.
Lemma S.4. If $\max _{1 \leq i \leq m} \alpha_{i} \geq J$, then $\left|\mathbf{A}_{\tau}\right|=0$ for any $\tau \in\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ and thus $c_{\alpha_{1}, \ldots, \alpha_{m}}=0$.
Proof of Lemma S.4: Without any loss of generality, we assume $\alpha_{1} \geq$ $\alpha_{2} \geq \cdots \geq \alpha_{m}$. Then $\max _{1 \leq i \leq m} \alpha_{i} \geq J$ implies $\alpha_{1} \geq J$. In this case, for any $\tau \in\left(\alpha_{1}, \ldots, \alpha_{m}\right), \tau^{-1}(1):=\{i \mid \tau(i)=1\} \subset\{1, \ldots, d+J-1\}$ and $\left|\tau^{-1}(1)\right|=\alpha_{1}$. If $\left|\tau^{-1}(1) \cap\{1, \ldots, d\}\right| \geq 2$, then $\left|A_{\tau}\right|=0$ due to Lemma S.3; otherwise $\{d+1, \ldots, d+J-1\} \subset \tau^{-1}(1)$ and thus $\left|A_{\tau}\right|=0$ due to Lemma 1 . Thus $c_{\alpha_{1}, \ldots, \alpha_{m}}=0$ according to (2.3) provided in Theorem 2.
Lemma S.5. If $\#\left\{i: \alpha_{i} \geq 1\right\} \leq d$, then $\left|\mathbf{A}_{\tau}\right|=0$ for any $\tau \in\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ and thus $c_{\alpha_{1}, \ldots, \alpha_{m}}=0$.
Proof of Lemma S.5: Without any loss of generality, we assume $\alpha_{1} \geq$ $\alpha_{2} \geq \cdots \geq \alpha_{m}$. Then $\#\left\{i: \alpha_{i} \geq 1\right\} \leq d$ indicates $\alpha_{d+1}=\cdots=\alpha_{m}=0$. Let $\tau:\{1,2, \ldots, d+J-1\} \rightarrow\{1, \ldots, m\}$ satisfy $\tau \in\left(\alpha_{1}, \ldots, \alpha_{m}\right)$. Then the $(d+J-1) \times(d+J-1)$ matrix A_{τ} can be written as

$$
\left(\begin{array}{ll}
A_{\tau 1} & A_{\tau 2} \\
A_{\tau 3} & A_{\tau 4}
\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
\left(e_{\tau(s)} x_{\tau(s) s} x_{\tau(s) t}\right)_{s=1, \ldots d ; t=1, \ldots, d} & \left(-x_{\tau(s) s} c_{\tau(s) t}\right)_{s=1, \ldots, d ; t=1, \ldots, J-1} \\
\left(-c_{\tau(d+s) s} x_{\tau(d+s) t}\right)_{s=1, \ldots, J-1 ; t=1, \ldots, d} & A_{\tau 4}
\end{array}\right)
$$

where the $(J-1) \times(J-1)$ matrix $A_{\tau 4}$ is either a single entry $u_{\tau(d+1) 1}$ (if $J=$ $2)$ or symmetric tri-diagonal with diagonal entries $u_{\tau(d+1) 1}, \ldots, u_{\tau(d+J-1), J-1}$, upper off-diagonal entries $-b_{\tau(d+1) 2}, \ldots,-b_{\tau(d+J-2), J-1}$, and lower off-diagonal entries $-b_{\tau(d+2) 2}, \ldots,-b_{\tau(d+J-1), J-1}$. Note that A_{τ} is asymmetric in general.

If $\#\left\{i: \alpha_{i} \geq 1\right\} \leq d-1$, then there exists an i_{0} such that $1 \leq i_{0} \leq d$ and $\left|\tau^{-1}\left(i_{0}\right) \cap\{1, \ldots, d\}\right| \geq 2$. In this case, $\left|A_{\tau}\right|=0$ according to Lemma S.3.

If $\#\left\{i: \alpha_{i} \geq 1\right\}=d$, we may assume $\left|\tau^{-1}(i) \cap\{1, \ldots, d\}\right|=1$ for $i=1, \ldots, d$ (otherwise $\left|A_{\tau}\right|=0$ according to Lemma S.3). Suppose $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{k} \geq 2>\alpha_{k+1}$. Then $\{d+1, \ldots, d+J-1\} \subset \cup_{i=1}^{k} \tau^{-1}(i)$ and $\sum_{i=1}^{k}\left(\alpha_{i}-1\right)=J-1$. In order to show $\left|A_{\tau}\right|=0$, we first replace $A_{\tau 1}$ with $A_{\tau 1}^{(1)}=\left(e_{\tau(s)} x_{\tau(s) t}\right)_{s=1, \ldots d ; t=1, \ldots, d}$ and replace $A_{\tau 2}$ with $A_{\tau 2}^{(1)}=$ $\left(-c_{\tau(s) t}\right)_{s=1, \ldots, d ; t=1, \ldots, J-1}$. It changes A_{τ} into a new matrix $A_{\tau}^{(1)}$. Note that $\left|A_{\tau}\right|=\prod_{s=1}^{d} x_{\tau(s) s} \cdot\left|A_{\tau}^{(1)}\right|$. According to Lemma S.2, the sum of the columns of $A_{\tau 2}^{(1)}$ is $\left(-e_{\tau(1)}, \ldots,-e_{\tau(d)}\right)^{T}$, and the elementwise sum of the columns of $A_{\tau 4}$ is $\left(c_{\tau(d+1) 1}, c_{\tau(d+2) 2}, \ldots, c_{\tau(d+J-1), J-1}\right)^{T}$. Secondly, for $t=1, \ldots, d$, we add $x_{1 t}\left(-e_{\tau(1)}, \ldots,-e_{\tau(d)}, c_{\tau(d+1) 1}, \ldots, c_{\tau(d+J-1), J-1}\right)^{T}$ to the t th column of $A_{\tau}^{(1)}$. We denote the resulting matrix by $A_{\tau}^{(2)}$. Note that $\left|A_{\tau}^{(1)}\right|=\left|A_{\tau}^{(2)}\right|$. We consider the sub-matrix $A_{\tau d}^{(2)}$ which consists of the first d columns of $A_{\tau}^{(2)}$. For $s \in \tau^{-1}(1)$, the s th row of $A_{\tau d}^{(2)}$ is simply 0 . For $i=2, \ldots, k$, the j th row of $A_{\tau d}^{(2)}$ is proportional to $\left(x_{i 1}-x_{11}, x_{i 2}-x_{12}, \ldots, x_{i d}-x_{1 d}\right)$ if $j \in \tau^{-1}(i)$. Therefore, $\operatorname{Rank}\left(A_{\tau d}^{(2)}\right) \leq(d+J-1)-\alpha_{1}-\sum_{i=2}^{k}\left(\alpha_{i}-1\right)=d-1$, which leads to $\left|A_{\tau}^{(2)}\right|=0$ and thus $\left|A_{\tau}^{(1)}\right|=0,\left|A_{\tau}\right|=0$. According to (2.3) in Theorem 2, $c_{\alpha_{1}, \ldots, \alpha_{m}}=0$.

Lemma S.6. $\mathbf{F}=\mathbf{F}(\mathbf{p})$ is always positive semi-definite. It is positive definite if and only if $\mathbf{p} \in S_{+}$. Furthermore, $\log f(\mathbf{p})$ is concave on S.

For Section 5.2: The procedure seeking for analytic solutions here follows Tong, Volkmer, and Yang (2014). As a direct conclusion of the Karush-Kuhn-Tucker conditions (see also Theorem 10), a necessary condition for $\left(p_{1}, p_{2}, p_{3}\right)$ to maximize $f\left(p_{1}, p_{2}, p_{3}\right)$ in (5.5) is (5.6), which are equivalent to $\partial f / \partial p_{1}=\partial f / \partial p_{3}$ and $\partial f / \partial p_{2}=\partial f / \partial p_{3}$. In terms of p_{i}, w_{i} 's, they are

$$
\begin{align*}
& \left(p_{3}-p_{1}\right)\left(p_{1} w_{1}+p_{2} w_{2}+p_{3} w_{3}\right)=\left(w_{3}-w_{1}\right) p_{1} p_{3} \tag{S.5}\\
& \left(p_{3}-p_{2}\right)\left(p_{1} w_{1}+p_{2} w_{2}+p_{3} w_{3}\right)=\left(w_{3}-w_{2}\right) p_{2} p_{3} \tag{S.6}
\end{align*}
$$

Denote $y_{1}=p_{1} / p_{3}>0$ and $y_{2}=p_{2} / p_{3}>0$. Since $p_{1}+p_{2}+p_{3}=1$, it implies $p_{3}=1 /\left(y_{1}+y_{2}+1\right)$, $p_{1}=y_{1} /\left(y_{1}+y_{2}+1\right)$, and $p_{2}=y_{2} /\left(y_{1}+y_{2}+1\right)$. In terms of y_{1}, y_{2}, (S.5) and (S.6) are equivalent to

$$
\begin{align*}
& \left(1-y_{1}\right)\left(y_{1} w_{1}+y_{2} w_{2}+w_{3}\right)=\left(w_{3}-w_{1}\right) y_{1} \tag{S.7}\\
& \left(1-y_{2}\right)\left(y_{1} w_{1}+y_{2} w_{2}+w_{3}\right)=\left(w_{3}-w_{2}\right) y_{2} \tag{S.8}
\end{align*}
$$

Lemma S.7. Suppose $0<w_{3}<w_{2}<w_{1}$. If $\left(p_{1}, p_{2}, p_{3}\right)$ maximizes $f\left(p_{1}, p_{2}, p_{3}\right)$ in (5.5) under the constrains $p_{1}, p_{2}, p_{3} \geq 0$ and $p_{1}+p_{2}+p_{3}=1$, then $0<p_{3} \leq p_{2} \leq p_{1}<1$.

The proof of the lemma above is straightforward, because otherwise one could exchange p_{i}, p_{j} to strictly improve $f\left(p_{1}, p_{2}, p_{3}\right)$. Now we are ready to get solutions to equations (S.7) and (S.8) case by case.
(i) $w_{1}=w_{3}$. In that case, (S.7) implies $y_{1}=1$. After plugging it into (S.8), the only positive solution is $y_{2}=\left(-3 w_{1}+2 w_{2}+\sqrt{9 w_{1}^{2}-4 w_{1} w_{2}+4 w_{2}^{2}}\right) /\left(2 w_{2}\right)$.
(ii) $w_{2}=w_{3}$. In that case, (S.8) implies $y_{2}=1$. After plugging it into (S.7), the only positive solution is
$y_{1}=\left(2 w_{1}-3 w_{2}+\sqrt{4 w_{1}^{2}-4 w_{1} w_{2}+9 w_{2}^{2}}\right) /\left(2 w_{1}\right)$.
(iii) $w_{1}=w_{2}$ but $w_{1} \neq w_{3}$. The ratio of (S.7) and (S.8) leads to $y_{1}=y_{2}$. After plugging it into (S.7), the only positive solution is $y_{1}=\left(3 w_{1}-\right.$ $\left.2 w_{3}+\sqrt{9 w_{1}^{2}-4 w_{1} w_{3}+4 w_{3}^{2}}\right) /\left(4 w_{1}\right)$.
(iv) w_{1}, w_{2}, w_{3} are distinct. Without any loss of generality, we assume $0<$ $w_{3}<w_{2}<w_{1}$, because otherwise the previous elimination procedure in the order of p_{3}, p_{2}, p_{1} could be easily changed accordingly. Based on Lemma S.7, if $\left(p_{1}, p_{2}, p_{3}\right)$ maximizes f_{4}, then $0<p_{3} \leq p_{2} \leq p_{1}<1$ and thus $y_{1} \geq y_{2} \geq 1$. The ratio of (S.7) and (S.8) leads to $\left(1-y_{1}\right) /(1-$ $\left.y_{2}\right)=\left(w_{3}-w_{1}\right) /\left(w_{3}-w_{2}\right) \cdot y_{1} / y_{2}$, which implies

$$
\begin{equation*}
y_{2}=\frac{\left(w_{1}-w_{3}\right) y_{1}}{\left(w_{2}-w_{3}\right)+\left(w_{1}-w_{2}\right) y_{1}} . \tag{S.9}
\end{equation*}
$$

Note that $\left(w_{2}-w_{3}\right)+\left(w_{1}-w_{2}\right) y_{1} \geq w_{1}-w_{3}>0$. After plugging (S.9) into (S.7), we get

$$
\begin{equation*}
c_{0}+c_{1} y_{1}+c_{2} y_{1}^{2}+c_{3} y_{1}^{3}=0 \tag{S.10}
\end{equation*}
$$

where $c_{0}=w_{3}\left(w_{2}-w_{3}\right)>0, c_{1}=3 w_{1} w_{2}-w_{1} w_{3}-4 w_{2} w_{3}+2 w_{3}^{2}>0$, $c_{2}=2 w_{1}^{2}-4 w_{1} w_{2}-w_{1} w_{3}+3 w_{2} w_{3}, c_{3}=w_{1}\left(w_{2}-w_{1}\right)<0$.

Lemma S.8. Suppose $0<w_{3}<w_{2}<w_{1}$. Then equation (S.10) has one and only one solution $y_{1}^{*} \geq 1$. Furthermore, $y_{1}^{*}>1$.

Proof of Lemma S.8: In order to locate the roots of equation (S.10), we let $f_{1}\left(y_{1}\right)=c_{0}+c_{1} y_{1}+c_{2} y_{1}^{2}+c_{3} y_{1}^{3}$. Then $f_{1}(1)=c_{0}+c_{1}+c_{2}+c_{3}=$ $\left(w_{1}-w_{3}\right)^{2}>0$.

On the other hand, the first derivative of f_{1} is $f_{1}^{\prime}\left(y_{1}\right)=a_{0}+a_{1} y_{1}+a_{2} y_{1}^{2}$, where $a_{0}=3 w_{1} w_{2}-w_{1} w_{3}-4 w_{2} w_{3}+2 w_{3}^{2}=w_{1}\left(w_{2}-w_{3}\right)+2\left(w_{1}-w_{2}\right) w_{2}+$ $2\left(w_{2}-w_{3}\right)^{2}>0, a_{1}=2\left(2 w_{1}^{2}-4 w_{1} w_{2}-w_{1} w_{3}+3 w_{2} w_{3}\right)$, and $a_{2}=3 w_{1}\left(w_{2}-\right.$ $\left.w_{1}\right)<0$. Therefore, $a_{1}^{2}-4 a_{0} a_{2}>a_{1}^{2} \geq 0$ and $f_{1}^{\prime}\left(y_{1}\right)=a_{2}\left(y_{1}-y_{11}\right)\left(y_{1}-y_{12}\right)$, where

$$
y_{11}=\frac{-a_{1}+\sqrt{a_{1}^{2}-4 a_{0} a_{2}}}{2 a_{2}}<0, \quad y_{12}=\frac{-a_{1}-\sqrt{a_{1}^{2}-4 a_{0} a_{2}}}{2 a_{2}}>y_{11}
$$

It can be verified that $y_{12}<1$ if and only if $w_{1}<2\left(w_{2}+w_{3}\right)$. There are two cases: Case (i): If $y_{12}<1$, then $f_{1}^{\prime}\left(y_{1}\right)<0$ for all $y_{1}>1$. That is, $f_{1}\left(y_{1}\right)$ strictly decreases after $y_{1}=1$. Since $f_{1}(1)>0$ and $f_{1}(\infty)=-\infty$, then there is one and only one solution in (1, ∞); Case (ii): If $y_{12} \geq 1$, then $f_{1}^{\prime}\left(y_{1}\right) \geq 0$ for $y_{1} \in\left[1, y_{12}\right]$ and $f_{1}^{\prime}\left(y_{1}\right)<0$ for $y_{1} \in\left(y_{12}, \infty\right)$. That is, $f_{1}\left(y_{1}\right)$ increases in $\left[1, y_{12}\right]$ and then strictly decreases in $\left(y_{12}, \infty\right)$. Again, due to $f_{1}(1)>0$ and $f_{1}(\infty)=-\infty$, there is one and only one solution in $(1, \infty)$. In either case, the conclusion is justified.

S. 3 Additional Proofs

Proof of Theorem 1 It is a direct conclusion of Lemmas S. 1 and S.2.
Examples of $\mathbf{A}_{i 3}$ in Theorem 1 include $\left(u_{i 1}\right)$,

$$
\left(\begin{array}{rr}
u_{i 1} & -b_{i 2} \\
-b_{i 2} & u_{i 2}
\end{array}\right),\left(\begin{array}{rrr}
u_{i 1} & -b_{i 2} & 0 \\
-b_{i 2} & u_{i 2} & -b_{i 3} \\
0 & -b_{i 3} & u_{i 3}
\end{array}\right),\left(\begin{array}{rrrr}
u_{i 1} & -b_{i 2} & 0 & 0 \\
-b_{i 2} & u_{i 2} & -b_{i 3} & 0 \\
0 & -b_{i 3} & u_{i 3} & -b_{i 4} \\
0 & 0 & -b_{i 4} & u_{i 4}
\end{array}\right)
$$

for $J=2,3,4$, or 5 respectively.
Proof of Theorem 2 To study the structure of $|\mathbf{F}|$ as a polynomial function of $\left(n_{1}, \ldots, n_{m}\right)$, we denote the (k, l) th entry of \mathbf{A}_{i} by $a_{k l}^{(i)}$. Given a row map $\tau:\{1,2, \ldots, d+J-1\} \rightarrow\{1, \ldots, m\}$, we define a $(d+J-1) \times$ $(d+J-1)$ matrix $\mathbf{A}_{\tau}=\left(a_{k l}^{(\tau(k))}\right)$ whose k th row is given by the k th row of
$\mathbf{A}_{\tau(k)}$. For a power index $\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ with $\alpha_{i} \in\{0,1, \ldots, d+J-1\}$ and $\sum_{i=1}^{m} \alpha_{i}=d+J-1$, we denote

$$
\tau \in\left(\alpha_{1}, \ldots, \alpha_{m}\right)
$$

if $\alpha_{i}=\#\{j: \tau(j)=i\}$ for each $i=1, \ldots, m$. In terms of the construction of \mathbf{A}_{τ}, it says that α_{i} rows of \mathbf{A}_{τ} are from the matrix \mathbf{A}_{i}.

According to the Leibniz formula for the determinant,

$$
|\mathbf{F}|=\left|\sum_{i=1}^{m} n_{i} \mathbf{A}_{i}\right|=\sum_{\sigma \in S_{d+J-1}}(-1)^{\operatorname{sgn}(\sigma)} \prod_{k=1}^{d+J-1} \sum_{i=1}^{m} n_{i} a_{k, \sigma(k)}^{(i)}
$$

where σ is a permutation of $\{1,2, \ldots, d+J-1\}$, and $\operatorname{sgn}(\sigma)$ is the sign or signature of σ. Therefore,

$$
\begin{aligned}
c_{\alpha_{1}, \ldots, \alpha_{m}} & =\sum_{\sigma \in S_{d+J-1}}(-1)^{\operatorname{sgn}(\sigma)} \sum_{\tau \in\left(\alpha_{1}, \ldots, \alpha_{m}\right)} \prod_{k=1}^{d+J-1} a_{k, \sigma(k)}^{(\tau(k))} \\
& =\sum_{\tau \in\left(\alpha_{1}, \ldots, \alpha_{m}\right)} \sum_{\sigma \in S_{d+J-1}}(-1)^{\operatorname{sgn}(\sigma)} \prod_{k=1}^{d+J-1} a_{k, \sigma(k)}^{(\tau(k))} \\
& =\sum_{\tau \in\left(\alpha_{1}, \ldots, \alpha_{m}\right)}\left|\mathbf{A}_{\tau}\right|
\end{aligned}
$$

Proof of Lemma 2 To simplify the notations, we let $i_{s}=s+1, s=$ $0, \ldots, d$. That is, $\alpha_{1}=J-1, \alpha_{2}=\cdots=\alpha_{d+1}=1$. There are only two types of $\tau \in\left(\alpha_{1}, \ldots, \alpha_{m}\right)$, such that, $\left|\mathbf{A}_{\tau}\right|$ may not be 0 .
τ of type I : There exist $1 \leq k \leq d, 2 \leq l \leq d+1$, and $1 \leq q \leq J-1$, such that, $\tau(k)=1$ and $\tau(d+q)=l$. Following a similar procedure as in the proof of Lemma S.5, we obtain

$$
\left|\mathbf{A}_{\tau}\right|=\prod_{i=2}^{d+1} e_{i} \cdot\left|\mathbf{A}_{13}\right| \cdot(-1)^{d}\left|\mathbf{X}_{\mathbf{1}}[1,2, \ldots, d+1]\right| \cdot(-1)^{\operatorname{sgn}(\tau)} \prod_{s=1}^{d} x_{\tau(s) s} \cdot \frac{c_{l q}}{e_{l}}
$$

τ of type $I I: \tau(d+1)=\cdots=\tau(d+J-1)=1$ and $\{\tau(1), \ldots, \tau(d)\}=$ $\{2, \ldots, d+1\}$. It can be verified that

$$
\left|\mathbf{A}_{\tau}\right|=\prod_{i=2}^{d+1} e_{i} \cdot\left|\mathbf{A}_{13}\right| \cdot(-1)^{d}\left|\mathbf{X}_{\mathbf{1}}[1,2, \ldots, d+1]\right| \cdot(-1)^{\operatorname{sgn}(\tau)} \prod_{s=1}^{d} x_{\tau(s) s}
$$

According to Theorem 2,

$$
\begin{aligned}
& c_{\alpha_{1}, \ldots, \alpha_{m}}=\sum_{\tau \text { of type I }}\left|\mathbf{A}_{\tau}\right|+\sum_{\tau \text { of type II }}\left|\mathbf{A}_{\tau}\right| \\
= & \prod_{i=2}^{d+1} e_{i} \cdot\left|\mathbf{A}_{13}\right| \cdot(-1)^{d}\left|\mathbf{X}_{\mathbf{1}}[1,2, \ldots, d+1]\right| \cdot\left(\sum_{k=1}^{d} \sum_{l=2}^{d+1} \sum_{\tau \in S_{d+1}: \tau(k)=1, \tau(d+1)=l}\right. \\
& \left.(-1)^{\operatorname{sgn}(\tau)} \prod_{s=1}^{d} x_{\tau(s) s} \sum_{q=1}^{J-1} \frac{c_{l q}}{e_{l}}+\sum_{\tau \in S_{d+1}: \tau(d+1)=1}(-1)^{\operatorname{sgn}(\tau)} \prod_{s=1}^{d} x_{\tau(s) s}\right) \\
= & \prod_{i=2}^{d+1} e_{i} \cdot\left|\mathbf{A}_{13}\right| \cdot(-1)^{d}\left|\mathbf{X}_{\mathbf{1}}[1,2, \ldots, d+1]\right| \cdot \sum_{\tau \in S_{d+1}}(-1)^{\operatorname{sgn}(\tau)} \prod_{s=1}^{d} x_{\tau(s) s} \\
= & \prod_{i=2}^{d+1} e_{i} \cdot\left|\mathbf{A}_{13}\right| \cdot(-1)^{d}\left|\mathbf{X}_{\mathbf{1}}[1,2, \ldots, d+1]\right| \cdot(-1)^{d}\left|\mathbf{X}_{\mathbf{1}}[1,2, \ldots, d+1]\right| \\
= & \prod_{i=2}^{d+1} e_{i} \cdot\left|\mathbf{A}_{13}\right| \cdot\left|\mathbf{X}_{\mathbf{1}}[1,2, \ldots, d+1]\right|^{2}
\end{aligned}
$$

where S_{d+1} is the set of permutations of $\{1, \ldots, d+1\}$. The general case with $i_{0}, i_{1}, \ldots, i_{d}$ can be obtained similarly.

Proof of Theorem 4 Suppose $\operatorname{Rank}\left(\mathbf{X}_{\mathbf{1}}\right)=d+1$. Then there exist $i_{0}, \ldots, i_{d} \in\{1, \ldots, m\}$, such that, $\left|\mathbf{X}_{\mathbf{1}}\left[i_{0}, i_{1}, \ldots, i_{d}\right]\right| \neq 0$. According to Lemma S.4, $f(\mathbf{p})$ can be regarded as an order- $(J-1)$ polynomial of $p_{i_{0}}$. Let $p_{i_{0}}=x \in(0,1)$ and $p_{i}=(1-x) /(m-1)$ for $i \neq i_{0}$. Based on Lemma 2, $f(\mathbf{p})$ can be written as

$$
\begin{aligned}
f_{i_{0}}(x)= & a_{J-1} x^{J-1}\left(\frac{1-x}{m-1}\right)^{d}+a_{J-2} x^{J-2}\left(\frac{1-x}{m-1}\right)^{d+1} \\
& +\cdots+a_{1} x\left(\frac{1-x}{m-1}\right)^{d+J-2}+a_{0}\left(\frac{1-x}{m-1}\right)^{d+J-1}, \text { where } \\
a_{J-1}= & \left|\mathbf{A}_{i_{0} 3}\right| \sum_{\left\{i_{1}^{\prime}, \ldots, i_{d}^{\prime}\right\} \subset\{1, \ldots, m\} \backslash\left\{i_{0}\right\}} \prod_{s=1}^{d} e_{i_{s}^{\prime}}\left|\mathbf{X}_{\mathbf{1}}\left[i_{0}, i_{1}^{\prime}, \ldots, i_{d}^{\prime}\right]\right|^{2}>0
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow 1^{-}}(1-x)^{-d} x^{1-J} f_{i_{0}}(x)=(m-1)^{-d} a_{J-1}>0$. That is, $f(\mathbf{p})>0$ for $p_{i_{0}}=x$ close enough to 1 and $p_{i}=(1-x) /(m-1)$ for $i \neq i_{0}$.

In order to justify that the condition $\operatorname{Rank}\left(\mathbf{X}_{\mathbf{1}}\right)=d+1$ is also necessary, we only need to show that $f(\mathbf{p}) \equiv 0$ if $\operatorname{Rank}\left(\mathbf{X}_{\mathbf{1}}\right) \leq d$. Actually, for any $\tau:\{1, \ldots, d+J-1\} \rightarrow\{1, \ldots, m\}$, we construct $\mathbf{A}_{\tau}^{(1)}$ as in the proof of Lemma S.5. Then $\left|\mathbf{A}_{\tau}\right|=\prod_{s=1}^{d} x_{\tau(s) s} \cdot\left|\mathbf{A}_{\tau}^{(1)}\right|$. Similar as in the proof of Lemma S.5, for $t=1, \ldots, d$, we add $x_{\tau(1) t}\left(-e_{\tau(1)}, \ldots,-e_{\tau(d)}, c_{\tau(d+1) 1}\right.$, $\left.\ldots, c_{\tau(d+J-1), J-1}\right)^{T}$ to the t th column of $\mathbf{A}_{\tau}^{(1)}$. We denote the resulting matrix by $\mathbf{A}_{\tau}^{(3)}$. Note that $\left|\mathbf{A}_{\tau}^{(1)}\right|=\left|\mathbf{A}_{\tau}^{(3)}\right|$. We consider the sub-matrix $\mathbf{A}_{\tau d}^{(3)}$ which consists of the first d columns of $\mathbf{A}_{\tau}^{(3)}$. For $s \in \tau^{-1}(\tau(1))$, the s th row of $\mathbf{A}_{\tau d}^{(3)}$ is simply 0 . For $s=2, \ldots, k$, the s th row of $\mathbf{A}_{\tau d}^{(3)}$ is $e_{\tau(s)}\left(x_{\tau(s) 1}-x_{\tau(1) 1}, \ldots, x_{\tau(s) d}-x_{\tau(1) d}\right)$. For $s=1, \ldots, J-1$, the $(d+s)$ th row of $\mathbf{A}_{\tau d}^{(3)}$ is $-c_{\tau(d+s) s}\left(x_{\tau(d+s) 1}-x_{\tau(1) 1}, \ldots, x_{\tau(d+s) d}-x_{\tau(1) d}\right)$. We claim that $\operatorname{Rank}\left(\mathbf{A}_{\tau d}^{(3)}\right) \leq d-1$. Otherwise, if $\operatorname{Rank}\left(\mathbf{A}_{\tau d}^{(3)}\right)=d$, then there exist $i_{1}, \ldots, i_{d} \in\{2, \ldots, d+J-1\}$, such that, the sub-matrix consisting of the i_{1} th $, \ldots, i_{d}$ th rows of $\mathbf{A}_{\tau d}^{(3)}$ is nonsingular. Then the sub-matrix consisting of the $\tau(1)$ th, $\tau\left(i_{1}\right)$ th, $\ldots, \tau\left(i_{d}\right)$ th rows of $\mathbf{X}_{\mathbf{1}}$ is nonsingular, which implies $\operatorname{Rank}\left(\mathbf{X}_{\mathbf{1}}\right)=d+1$. The contradiction implies $\operatorname{Rank}\left(\mathbf{A}_{\tau d}^{(3)}\right) \leq d-1$. Then $\left|\mathbf{A}_{\tau}^{(3)}\right|=0$ and thus $\left|\mathbf{A}_{\tau}\right|=0$ for each τ. Based on Theorem $2,|\mathbf{F}| \equiv 0$ and thus $f(\mathbf{p}) \equiv 0$.

Proof of Theorem 5 Combining Theorem 1 and Theorem 4, it is straightforward that $f(\mathbf{p})=0$ if $\operatorname{Rank}\left(\mathbf{X}_{\mathbf{1}}\left[\left\{i \mid p_{i}>0\right\}\right]\right) \leq d$. We only need to show that $f(\mathbf{p})>0$ if $\operatorname{Rank}\left(\mathbf{X}_{\mathbf{1}}\left[\left\{i \mid p_{i}>0\right\}\right]\right)=d+1$. Due to Theorem 1, we only need to verify the case $p_{i}>0, i=1, \ldots, m$, because otherwise we may simply remove all support points with $p_{i}=0$.

Suppose $p_{i}>0, i=1, \ldots, m$ and $\operatorname{Rank}\left(\mathbf{X}_{\mathbf{1}}\right)=d+1$. Then there exist $i_{0}, \ldots, i_{d} \in\{1, \ldots, m\}$, such that, $\left|\mathbf{X}_{\mathbf{1}}\left[i_{0}, \ldots, i_{d}\right]\right| \neq 0$. According to the proof of Theorem 4, for each $i \in\left\{i_{0}, \ldots, i_{d}\right\}$, there exists an $\epsilon_{i} \in(0,1)$, such that, $f(\mathbf{p})>0$ as long as $p_{i}=x \in\left(1-\epsilon_{i}, 1\right)$ and $p_{j}=(1-x) /(m-1)$ for $j \neq i$. On the other hand, for each $i \notin\left\{i_{0}, \ldots, i_{d}\right\}$, if we denote the j th row of $\mathbf{X}_{\mathbf{1}}$ by $\alpha_{j}, j=1, \ldots, m$, then $\alpha_{i}=a_{0} \alpha_{i_{0}}+\cdots+a_{d} \alpha_{i_{d}}$ for some real numbers a_{0}, \ldots, a_{d}. Since $\alpha_{i} \neq 0$, then at least one $a_{i} \neq 0$. Without any loss of generality, we assume $a_{0} \neq 0$. Then it can be verified that $\left|\mathbf{X}_{\mathbf{1}}\left[i, i_{1}, \ldots, i_{d}\right]\right| \neq 0$ too. Following the proof of Theorem 4 again, for such an $i \notin\left\{i_{0}, \ldots, i_{d}\right\}$, there also exists an $\epsilon_{i} \in(0,1)$, such that, $f(\mathbf{p})>0$ as long as $p_{i}=x \in\left(1-\epsilon_{i}, 1\right)$ and $p_{j}=(1-x) /(m-1)$ for $j \neq i$. Let $\epsilon_{*}=\min \left\{\min _{i} \epsilon_{i},(m-1) \min _{i} p_{i}, 1-1 / m\right\} / 2$. For $i=1, \ldots, m$, denote $\delta_{i}=\left(\delta_{i 1}, \ldots, \delta_{i m}\right)^{T} \in S$ with $\delta_{i i}=1-\epsilon_{*}$ and $\delta_{i j}=\epsilon_{*} /(m-1)$ for $j \neq i$. It can be verified that $\mathbf{p}=a_{1} \delta_{1}+\cdots+a_{m} \delta_{m}$ with $a_{i}=\left(p_{i}-\epsilon_{*} /(m-1)\right) /(1-$
$\left.m \epsilon_{*} /(m-1)\right)$. By the choice of $\epsilon_{*}, f\left(\delta_{i}\right)>0, a_{i}>0, i=1, \ldots, m$, and $\sum_{i} a_{i}=1$. Then $f(\mathbf{p})>0$ according to Lemma S.6.

Proof of Corollary 3 In order to check when a minimally supported design supported only on $\left\{x_{1}, x_{2}\right\}$ is D-optimal, we add one more support point, that is, x_{3}. According to Theorem 2, Lemmas S.4, S.5, and 2, the objective function for a D-optimal approximate design on $\left\{x_{1}, x_{2}, x_{3}\right\}$ is $f\left(p_{1}, p_{2}, p_{3}\right)=p_{1} p_{2}\left(c_{210} p_{1}+c_{120} p_{2}\right)+p_{1} p_{3}\left(c_{201} p_{1}+c_{102} p_{3}\right)+p_{2} p_{3}\left(c_{021} p_{2}+\right.$ $\left.c_{012} p_{3}\right)+c_{111} p_{1} p_{2} p_{3}$, where

$$
\begin{aligned}
c_{210}= & e_{2} g_{11}^{2} g_{12}^{2}\left(\pi_{11} \pi_{12} \pi_{13}\right)^{-1}\left(x_{1}-x_{2}\right)^{2}>0 \\
c_{120}= & e_{1} g_{21}^{2} g_{22}^{2}\left(\pi_{21} \pi_{22} \pi_{23}\right)^{-1}\left(x_{1}-x_{2}\right)^{2}>0 \\
c_{201}= & e_{3} g_{11}^{2} g_{12}^{2}\left(\pi_{11} \pi_{12} \pi_{13}\right)^{-1}\left(x_{1}-x_{3}\right)^{2}>0 \\
c_{102}= & e_{1} g_{31}^{2} g_{32}^{2}\left(\pi_{31} \pi_{32} \pi_{33}\right)^{-1}\left(x_{1}-x_{3}\right)^{2}>0 \\
c_{021}= & e_{3} g_{21}^{2} g_{22}^{2}\left(\pi_{21} \pi_{22} \pi_{23}\right)^{-1}\left(x_{2}-x_{3}\right)^{2}>0 \\
c_{012}= & e_{2} g_{31}^{2} g_{32}^{2}\left(\pi_{31} \pi_{32} \pi_{33}\right)^{-1}\left(x_{2}-x_{3}\right)^{2}>0 \\
c_{111}= & e_{1}\left(u_{22} u_{31}+u_{21} u_{32}-2 b_{22} b_{32}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)+ \\
& e_{2}\left(u_{12} u_{31}+u_{11} u_{32}-2 b_{12} b_{32}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)+ \\
& e_{3}\left(u_{12} u_{21}+u_{11} u_{22}-2 b_{12} b_{22}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)
\end{aligned}
$$

Based on Theorem 10, the design $\mathbf{p}=\left(p_{1}^{*}, p_{2}^{*}, 0\right)^{T}$ is D-optimal if and only if

$$
\partial f(\mathbf{p}) / \partial f\left(p_{1}\right)=\partial f(\mathbf{p}) / \partial f\left(p_{2}\right) \geq \partial f(\mathbf{p}) / \partial f\left(p_{3}\right)
$$

Similar conclusions could be justified for x_{4}, \ldots, x_{m} if $m \geq 4$.
Proof of Theorem 12 According to the solutions provided by the software Mathematica, the largest root of equation (S.10) after simplification is

$$
\begin{equation*}
y_{1}=-\frac{b_{2}}{3}-\frac{2^{1 / 3}\left(3 b_{1}-b_{2}^{2}\right)}{3 A^{1 / 3}}+\frac{A^{1 / 3}}{3 \times 2^{1 / 3}} \tag{S.11}
\end{equation*}
$$

where $A=-27 b_{0}+9 b_{1} b_{2}-2 b_{2}^{3}+3^{3 / 2}\left(27 b_{0}^{2}+4 b_{1}^{3}-18 b_{0} b_{1} b_{2}-b_{1}^{2} b_{2}^{2}+4 b_{0} b_{2}^{3}\right)^{1 / 2}$, and $b_{i}=c_{i} / c_{3}, i=0,1,2$. Note that the calculation of A and thus y_{1} should be regarded as operations among complex numbers since the expression under square root could be negative. Nevertheless, y_{1} at the end would be a real number. Thus we are able to provide the analytic solution maximizing $f\left(p_{1}, p_{2}, p_{3}\right)$.

Proof of Corollary 5 In order to check when a minimally supported design is D-optimal, we first add the four design points, that is, we consider
four design points $\left(x_{i 1}, x_{i 2}\right), i=1,2,3,4$ and check when the D-optimal design could be constructed on the first three design points. Let $\mathbf{X}_{\mathbf{1}}$ be defined as in Lemma 2. In this case, $\mathbf{X}_{\mathbf{1}}$ is a 4×3 matrix. Following Theorem 2, Lemmas S.4, S.5, and 2, the objective function for a minimally supported design at $(d, J, m)=(2,3,4)$ is

$$
\begin{aligned}
f\left(p_{1}, p_{2}, p_{3}, p_{4}\right) & =c_{1111} p_{1} p_{2} p_{3} p_{4} \\
& +\left|\mathbf{X}_{\mathbf{1}}[1,2,3]\right|^{2} e_{1} e_{2} e_{3} \cdot p_{1} p_{2} p_{3}\left(w_{1} p_{1}+w_{2} p_{2}+w_{3} p_{3}\right) \\
& +\left|\mathbf{X}_{\mathbf{1}}[1,2,4]\right|^{2} e_{1} e_{2} e_{4} \cdot p_{1} p_{2} p_{4}\left(w_{1} p_{1}+w_{2} p_{2}+w_{4} p_{4}\right) \\
& +\left|\mathbf{X}_{\mathbf{1}}[1,3,4]\right|^{2} e_{1} e_{3} e_{4} \cdot p_{1} p_{3} p_{4}\left(w_{1} p_{1}+w_{3} p_{3}+w_{4} p_{4}\right) \\
& +\left|\mathbf{X}_{\mathbf{1}}[2,3,4]\right|^{2} e_{2} e_{3} e_{4} \cdot p_{2} p_{3} p_{4}\left(w_{2} p_{2}+w_{3} p_{3}+w_{4} p_{4}\right)
\end{aligned}
$$

where $e_{i}=u_{i 1}+u_{i 2}-2 b_{i 2}, w_{i}=e_{i}^{-1} g_{i 1}^{2} g_{i 2}^{2}\left(\pi_{i 1} \pi_{i 2} \pi_{i 3}\right)^{-1}, i=1,2,3,4$, and

$$
\begin{equation*}
c_{1111}=\sum_{1 \leq i<j \leq 4} e_{i} e_{j}\left(u_{k 1} u_{l 2}+u_{k 2} u_{l 1}-2 b_{k 2} b_{l 2}\right) \cdot\left|\mathbf{X}_{\mathbf{1}}[i, j, k]\right| \cdot\left|\mathbf{X}_{\mathbf{1}}[i, j, l]\right| \tag{S.12}
\end{equation*}
$$

with $\{i, j, k, l\}=\{1,2,3,4\}$ given $1 \leq i<j \leq 4$.
According to Theorem 10, a minimally supported design $\mathbf{p}=\left(p_{1}^{*}, p_{2}^{*}, p_{3}^{*}\right.$, $0)^{T}$ in this case is D-optimal if and only if $\partial f / \partial p_{1}=\partial f / \partial p_{2}=\partial f / \partial p_{3} \geq$ $\partial f / \partial p_{4}$ at \mathbf{p}. Then $\partial f / \partial p_{1}=\partial f / \partial p_{2}=\partial f / \partial p_{3}$ at \mathbf{p} is equivalent to (1) of Corollary 5 , and $\partial f / \partial p_{4} \leq \partial f / \partial p_{1}$ at \mathbf{p} leads to (2) of Corollary 5 since the forms of $\partial f / \partial p_{i}$ at $\mathbf{p}, i=1,2,3$ will not change if more than four design points (i.e., $m>4$) are added into consideration. Note that $\left|\mathbf{X}_{\mathbf{1}}[1,2,3]\right|^{2} e_{1} e_{2} e_{3} p_{2}^{*} p_{3}^{*}\left(2 w_{1} p_{1}^{*}+w_{2} p_{2}^{*}+w_{3} p_{3}^{*}\right)$ in (2) of Corollary 5 is equal to $\partial f / \partial p_{1}$ at \mathbf{p}. It could be replaced with $\left|\mathbf{X}_{\mathbf{1}}[1,2,3]\right|^{2} e_{1} e_{2} e_{3} p_{1}^{*} p_{3}^{*}\left(w_{1} p_{1}^{*}+\right.$ $\left.2 w_{2} p_{2}^{*}+w_{3} p_{3}^{*}\right)\left(\right.$ i.e., $\left.\partial f / \partial p_{2}\right)$, or $\left|\mathbf{X}_{\mathbf{1}}[1,2,3]\right|^{2} e_{1} e_{2} e_{3} p_{1}^{*} p_{2}^{*}\left(w_{1} p_{1}^{*}+w_{2} p_{2}^{*}+2 w_{3} p_{3}^{*}\right)$ (i.e., $\partial f / \partial p_{3}$), since these three are all equal.

S. 4 Maximization of $f_{i}(z)$ in Section 3

According to Theorem $6, f_{i}(z)$ is an order- $(d+J-1)$ polynomial of z. In other to determine its coefficients $a_{0}, a_{1}, \ldots, a_{J-1}$ as in (3.2), we need to calculate $f_{i}(0), f_{i}(1 / 2), f_{i}(1 / 3), \ldots, f_{i}(1 / J)$, which are J determinants defined in (3.1).

Note that \mathbf{B}_{J-1}^{-1} is a matrix determined by $J-1$ only. For example, $B_{1}^{-1}=1$ for $J=2$,

$$
B_{2}^{-1}=\left(\begin{array}{rr}
2 & -1 \\
-1 & 1
\end{array}\right), B_{3}^{-1}=\left(\begin{array}{rrr}
3 & -3 & 1 \\
-\frac{5}{2} & 4 & -\frac{3}{2} \\
\frac{1}{2} & -1 & \frac{1}{2}
\end{array}\right)
$$

$$
B_{4}^{-1}=\left(\begin{array}{rrrr}
4 & -6 & 4 & -1 \\
-\frac{13}{3} & \frac{19}{2} & -7 & \frac{11}{6} \\
\frac{3}{2} & -4 & \frac{7}{2} & -1 \\
-\frac{1}{6} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{6}
\end{array}\right)
$$

for $J=3,4$, or 5 respectively.
Once a_{0}, \ldots, a_{J-1} in (3.2) are determined, the maximization of $f_{i}(z)$ on $z \in[0,1]$ is numerically straightforward since it is a polynomial and its derivative $f_{i}^{\prime}(z)$ is given by

$$
\begin{equation*}
(1-z)^{d} \sum_{j=1}^{J-1} j a_{j} z^{j-1}(1-z)^{J-1-j}-(1-z)^{d-1} \sum_{j=0}^{J-1}(d+J-1-j) a_{j} z^{j}(1-z)^{J-1-j} \tag{S.13}
\end{equation*}
$$

S. 5 Exchange algorithm for D-optimal exact allocation in Section 4

Exchange algorithm for D-optimal allocation $\left(n_{1}, \ldots, n_{m}\right)^{T}$ given $n>0$:
1° Start with an initial design $\mathbf{n}=\left(n_{1}, \ldots, n_{m}\right)^{T}$ such that $f(\mathbf{n})>0$.
2° Set up a random order of (i, j) going through all pairs $\{(1,2),(1,3)$, $\ldots,(1, m),(2,3), \ldots,(m-1, m)\}$.
3° For each (i, j), let $c=n_{i}+n_{j}$. If $c=0$, let $\mathbf{n}_{i j}^{*}=\mathbf{n}$. Otherwise, there are two cases. Case one: $0<c \leq J$, we calculate $f_{i j}(z)$ as defined in (4.1) for $z=0,1, \ldots, c$ directly and find z^{*} which maximizes $f_{i j}(z)$. Case two: $c>J$, we first calculate $f_{i j}(z)$ for $z=0,1, \ldots, J$; secondly determine $c_{0}, c_{1}, \ldots, c_{J}$ in (4.2) according to Theorem 9 ; thirdly calculate $f_{i j}(z)$ for $z=J+1, \ldots, c$ based on (4.2); fourthly find z^{*} maximizing $f_{i j}(z)$ for $z=0, \ldots, c$. For both cases, we define

$$
\mathbf{n}_{i j}^{*}=\left(n_{1}, \ldots, n_{i-1}, z^{*}, n_{i+1}, \ldots, n_{j-1}, c-z^{*}, n_{j+1}, \ldots, n_{m}\right)^{T}
$$

Note that $f\left(\mathbf{n}_{i j}^{*}\right)=f_{i j}\left(z^{*}\right) \geq f(\mathbf{n})>0$. If $f\left(\mathbf{n}_{i j}^{*}\right)>f(\mathbf{n})$, replace \mathbf{n} with $\mathbf{n}_{i j}^{*}$, and $f(\mathbf{n})$ with $f\left(\mathbf{n}_{i j}^{*}\right)$.
4° Repeat $2^{\circ} \sim 3^{\circ}$ until convergence, that is, $f\left(\mathbf{n}_{i j}^{*}\right)=f(\mathbf{n})$ in step 3° for any (i, j).

S. 6 More on Example 6: Polysilicon Deposition Study

Table S. 1 shows the list of experimental settings for the polysilicon deposition study. The factors are decomposition temperature (A), decomposition pressure (B), nitrogen flow (C), silane flow (D), setting time (E), cleaning method (F). Column 1 provides original indices of experimental settings out of 729 distinct ones. For each experimental setting labelled " 1 " in a design, 9 responses are collected (Phadke (1989)) and assumed to be independent.

Table S.1: Polysilicon Deposition Study: Experimental Settings for the Original, Rounded Approximate, and D-optimal Exact Designs

Index	A	B	C	D	E	F	Original	Rounded	D-optimal
1	1	1	1	1	1	1	1	0	0
76	1	1	3	3	2	1	1	0	0
89	1	2	1	1	3	2	1	0	0
98	1	2	1	2	3	2	0	0	1
111	1	2	2	1	1	3	0	0	1
116	1	2	2	1	3	2	0	1	0
122	1	2	2	2	2	2	1	0	0
130	1	2	2	3	2	1	0	0	1
167	1	3	1	1	2	2	0	0	1
181	1	3	1	3	1	1	0	1	0
199	1	3	2	2	1	1	0	1	1
201	1	3	2	2	1	3	1	0	0
243	1	3	3	3	3	3	1	0	1
258	2	1	1	2	2	3	1	0	0
286	2	1	2	2	3	1	0	1	0
290	2	1	2	3	1	2	1	0	0
291	2	1	2	3	1	3	0	1	0
294	2	1	2	3	2	3	0	0	1
299	2	1	3	1	1	2	0	0	1
301	2	1	3	1	2	1	0	1	0
313	2	1	3	2	3	1	0	0	1
331	2	2	1	1	3	1	0	1	1
336	2	2	1	2	1	3	0	1	1
339	2	2	1	2	2	3	0	1	0
350	2	2	1	3	3	2	0	1	0
365	2	2	2	2	2	2	0	0	1
376	2	2	2	3	3	1	1	0	0
384	2	2	3	1	2	3	1	0	0
394	2	2	3	2	3	1	0	1	0
399	2	2	3	3	1	3	0	1	0
407	2	3	1	1	1	2	0	0	1
421	2	3	1	2	3	1	1	0	0
461	2	3	3	1	1	2	1	1	0
464	2	3	3	1	2	2	0	1	0
495	3	1	1	1	3	3	0	1	0
501	3	1	1	2	2	3	0	0	1
505	3	1	1	3	1	1	0	0	1
521	3	1	2	1	3	2	0	0	1
522	3	1	2	1	3	3	1	0	0
536	3	1	2	3	2	2	0	1	0
557	3	1	3	2	3	2	1	0	0
558	3	1	3	2	3	3	0	1	0
569	3	2	1	1	1	2	0	1	0
588	3	2	1	3	1	3	1	0	0
625	3	2	3	1	2	1	0	0	1
631	3	2	3	2	1	1	1	0	0
641	3	2	3	3	1	2	0	0	1
671	3	3	1	3	2	2	1	0	0
679	3	3	2	1	2	1	1	0	0

Table S. 2 shows the model matrix for the D-optimal design \mathbf{n}_{o} found for the polysilicon deposition study. In this table, each 3-level factor is represented by its linear component and quadratic component. Thus there are level combinations of 12 predictors.

Table S.2: Polysilicon Deposition Study: Model Matrix for the D-optimal Design

Index	A_{1}	A_{2}	B_{1}	B_{2}	C_{1}	C_{2}	D_{1}	D_{2}	E_{1}	E_{2}	F_{1}	F_{2}
98	-1	1	0	-2	-1	1	0	-2	1	1	0	-2
111	-1	1	0	-2	0	-2	-1	1	-1	1	1	1
130	-1	1	0	-2	0	-2	1	1	0	-2	-1	1
167	-1	1	1	1	-1	1	-1	1	0	-2	0	-2
199	-1	1	1	1	0	-2	0	-2	-1	1	-1	1
243	-1	1	1	1	1	1	1	1	1	1	1	1
294	0	-2	-1	1	0	-2	1	1	0	-2	1	1
299	0	-2	-1	1	1	1	-1	1	-1	1	0	-2
313	0	-2	-1	1	1	1	0	-2	1	1	-1	1
331	0	-2	0	-2	-1	1	-1	1	1	1	-1	1
336	0	-2	0	-2	-1	1	0	-2	-1	1	1	1
365	0	-2	0	-2	0	-2	0	-2	0	-2	0	-2
407	0	-2	1	1	-1	1	-1	1	-1	1	0	-2
501	1	1	-1	1	-1	1	0	-2	0	-2	1	1
505	1	1	-1	1	-1	1	1	1	-1	1	-1	1
521	1	1	-1	1	0	-2	-1	1	1	1	0	-2
625	1	1	0	-2	1	1	-1	1	0	-2	-1	1
641	1	1	0	-2	1	1	1	1	-1	1	0	-2

