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Abstract: Some biomedical studies lead to mixture data. When a subgroup mem-

bership is missing for some of the subjects in a study, the distribution of the outcome

is a mixture of the subgroup-specific distributions. Taking into account the uncer-

tain distribution of the group membership and the covariates, we model the relation

between the disease onset time and the covariates through transformation models

in each sub-population, and develop a nonparametric maximum likelihood-based

estimation implemented through the EM algorithm along with its inference pro-

cedure. We propose methods to identify the covariates that have different effects

or common effects in distinct populations, which enables parsimonious modeling

and better understanding of the differences across populations. The methods are

illustrated through extensive simulation studies and a data example.
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1. Introduction

Biomedical studies can lead to mixture data. When a discrete covariate

defining subgroup membership is missing for some of the subjects in a study, the

distribution of the outcome is a mixture of the subgroup-specific distributions.

One example is the kin-cohort study Wacholder et al. (1998) with the goal of es-

timating the cumulative risk of disease for mutation carriers Khoury, Beaty and

Cohen (1993). However, mutation status is only collected in the initial sample

of participants, referred as probands, not in their relatives. For example, genetic

mutation status is not available for deceased relatives or those who have not

undergone genetic testing due to resource constraints. The disease phenotype

information for such relatives is available from other sources, such as interview-

ing the proband in a family Marder et al. (2003). For a late-onset disease, such
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as Parkinson’s disease (PD), parents of study participants are often deceased.

Therefore even though age-at-onset of PD is provided by a family member, no

genotyping can be performed on deceased parents. When estimating the disease

risk distribution for mutation carriers and non-carriers using these relatives’ dis-

ease onset information, the unknown mutation status needs to be accounted for

by using the distribution of mutation status in such relatives as estimated from

living relatives who provide blood sample Wang, Garcia and Ma (2012), Ma and

Wang (2014).

We consider estimating the subgroup-specific distribution for outcomes that

are subject to censoring and with missing subgroup identifiers. The nonpara-

metric models in Wacholder et al. (1998), Wang, Garcia and Ma (2012), and

Ma and Wang (2014) do not include any covariates other than the mutation sta-

tus. We consider how to include covariates that can have identical or different

effects across subgroups. Popular semiparametric models for censored outcomes,

such as the Cox proportional hazards model, accelerated failure time model, and

transformation model have been studied extensively in the literature, but less

so in a mixture data setting. Recently, Altstein and Li (2013) proposed a la-

tent subgroup analysis for a semiparametric accelerated failure time model in

a clinical trials setting. Our work differs from Altstein and Li (2013) in that

the distribution of the subgroup identifiers is available in our problem, and we

assume a semiparametric transformation model in each subgroup. A transfor-

mation model is applied to analyze neurological disorder data (e.g, Huntington’s

disease [HD] as in our motivating study) due to its useful biological and clinical

interpretations; see for example Zhang et al. (2012).

We propose a semiparametric transformation model for mixture data. Com-

pared to parametric transformation model in the literature Zhang et al. (2012),

we allow for greater flexibility to account for subgroup heterogeneity. This is

achieved in our model through characterizing the outcome in each subpopulation

using a different distribution, indexed by both parameters and error distributions.

They can also have both as shared covariate effect and/or a subgroup-specific co-

variate effect. In addition, we assume an unknown transformation to avoid the

difficulty of specifying a parametric transformation. When assuming a homoge-

neous covariate effect, we account for a missing population identifier by taking

advantage of the distribution of the mixing proportion and using a weighted

least-square type estimator, which greatly simplifies the procedure. When we

assume a subgroup-specific covariate effect, the weighted least-square estimator

no longer applies, and we use the EM algorithm. We have performed extensive
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simulation studies to examine performance of the proposed approach and ap-

plied it to estimating the survival function for HD mutation carriers in a large

genetic epidemiology study Dorsey and The Huntington Study Group COHORT

Investigators (2012).

2. Modeling, Estimation, and Asymptotic Properties

Assume there are n observations from p populations. Here p is usually de-

termined by the research purpose. For genetic studies, populations are defined

by mutation carrier status. Throughout, we assume p is pre-determined. Denote

the data from the ith observation as Oi = (qi,xi, zi, yi, δi), where qi is a length

p vector, with the jth entry qij being the probability that the ith observation is

randomly sampled from the jth population. We also allow a subject’s population

membership to be known by allowing qi to be a vector with 1 in one component

and zero in all others. Let ti be the time to event and ci be the censoring time,

yi = min(ti, ci), and δi = I(ti ≤ ci). Let xi denote the covariate vector that

has a common effect on the event time across different populations, while zi de-

notes the covariate vector that has a different effect in different populations. For

simplicity, we sort the data so that yi ≤ yk for all i < k.

2.1. Model

For the jth population, the linear transformation model we propose has the

form

H(T ) = −XTβ − ZTαj + εj . (2.1)

Here H is an unknown, monotonically increasing function and, without loss of

generality, we assume H(0) = −∞. We assume εj is independent of X, Z, and

has a known population-specific distribution fj(εj). Here, in each population,

this is a classical linear transformation model, in which the baseline population

distribution can be heterogeneous due to the different choices of fj . Selection

of fj for each population can be based on scientific or biological knowledge of

a particular population. The covariate effect is also allowed to vary, reflected

in the population-specific αj . By including the term xTβ, we also allow the

possibility that some covariates have a homogeneous effect across populations.

We develop a test to assess whether a covariate exhibits evidence of deviation

from a homogeneous effect model.

Let θ = (βT,αT
1 , . . . ,α

T
p )T, Φ(t) = exp{H(t)}, and φ(t) = exp{H(t)}h(t).

The conditional distribution function of the ith relative from (2.1) is then
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f(yi, δi | xi, zi;θ,Φ, φ)

=

h(yi)

p∑
j=1

qijfj{H(yi) + xT
i β + zTi αj}

δi
1−

p∑
j=1

qijFj{H(yi) + xT
i β + zTi αj}

1−δi

= φ(yi)
δiΨ(Oi;θ,Φ),

where Φ is a function that depends only on θ and Φ, but not on φ. The model can

not be viewed as a transformation model, hence existing estimation procedures

do not apply. To ensure identifiability, we require that the qi variable takes m

different vector values, denoted u1, . . . ,um, so that the matrix (u1, . . . ,um) has

rank p. We point out that the identifiability here excludes any permutation.

This identifiability is stronger than that up to a permutation in most classical

mixture models Holzmann, Munk and Stratmann (2006). We can achieve the

stronger form of identifiability because the mixture probabilities, while different

for different observations, are known.

2.2. Estimation

We propose a nonparametric maximum likelihood estimator (NPMLE) to

estimate θ and Φ(·). Specifically, we obtain θ̂ and Ĥ = log(Φ̂) through maxi-

mizing

l(θ,Φ) =

n∑
i=1

δilog{φ(yi)}+

n∑
i=1

log{Ψ(Oi;θ,Φ)}

with respect to θ and Φ, where we restrict Φ, hence H, to be a piecewise con-

stant non-decreasing function with non-negative jumps only at the observed event

times. Following existing literature Wacholder et al. (1998); Wang, Garcia and

Ma (2012), We exclude the probands from the analysis sample and the likelihood

to protect against potential ascertainment bias from unknown sources that may

be difficult to adjust (e.g., convenience sample of patients visiting a clinic). Given

the mutation carrier status, we also assume the relatives’ phenotypes are condi-

tionally independent of probands’ phenotypes, which is an assumption satisfied

by a monogenic disorder with a known genetic cause controlled in the model

(e.g., HD in our application).

Although conceptually simple, the computation of NPMLE is not straight-

forward because the maximization is with respect to not only γ, but also Φ(·) at
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all the yi’s that are not censored. As sample size increases, the potential num-

ber of parameters increases as well, hence the computational problem does not

simplify in the asymptotic sense. To overcome the computational difficulty, we

use an EM algorithm. To this end, we first use Laplace transformation in each

population to obtain

1− Fj(x) =

∫ ∞
0

exp(−rjex)ψj(rj)drj ,

where ψj(·) is the inverse Laplace transformation of 1 − Fj(x) as a function of

ex, consequently

1−
p∑
j=1

qijFj{H(yi) + xT
i β + zTi αj}

=

p∑
j=1

qij

∫ ∞
0

exp{−rijeH(yi)+xT
i β+zT

i αj}ψj(rij)drij

=

p∑
j=1

qij

∫ ∞
0

exp{−rijΦ(yi)e
xT
i β+zT

i αj}ψj(rij)drij

and

h(yi)

p∑
j=1

qijfj{H(yi) + xT
i β + zTi αj}

=

p∑
j=1

qij

∫ ∞
0

exp{−rijΦ(yi)e
xT
i β+zT

i αj}φ(yi) exp(xT
i β + zTi αj)rijψj(rij)drij .

The ith observation here is Oi, let D = (O1, · · · ,On). Let 0 < t1 < · · · <
tK < τ be the distinct event times, and write the quantities to be estimated as

γ = {θT, H(t1), . . . H(tK)}T. The log-likelihood is then l(γ; D) =
∑n

i=1 li(γ; Oi),

where

li(γ; Oi) = log

p∑
j=1

∫ ∞
0
{φ(yi)rij exp(xT

i β + zTi αj)}δi

exp{−rijΦ(yi)e
xT
i β+zT

i αj}qijψj(rij)drij .

We take advantage of this special data structure and view the population identi-

fiers G = (G1, . . . , Gn) and r = (r1, . . . , rn) as the missing variable, whereGi = Ij
represents that the ith observation is a random sample from the jth population,

and ri = (ri1, . . . , rip)
T is the introduced random effects to facilitate computation.

Then the complete data loglikelihood is l(γ | D,G, r) =
∑n

i=1 li(γ | Oi, Gi, ri),
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where

li(γ | Oi, Gi = Ij , rij)

= log
[
{φ(yi)rij exp(xT

i β + zTi αj)}δi exp{−rijΦ(yi)e
xT
i β+zT

i αj}
]

= δilog{φ(yi)rij}+ δi(x
T
i β + zTi αj)− rijΦ(yi)e

xT
i β+zT

i αj .

This is a Cox model log-likelihood. Thus, in the E-step, we calculate

Q(γ,γ(u),D) ≡ Eγ(u){l(γ | D,G, r) | D}

=

n∑
i=1

∫ ∑p
j=1 li(γ | Oi,Gi = Ij , rij)a

(u)
ij drij∫ ∑p

j=1 a
(u)
ij drij

,

where

a
(u)
ij = {φ(u)(yi)rij exp(xT

i β
(u) + zTi α

(u)
j )}δi

exp{−rijΦ(u)(yi)e
xT
i β

(u)+zT
i α

(u)
j }qijψj(rij).

In the M-step, we maximize Q(γ,γ(u),D) with respect to γ subject to the con-

straints 0 < H(t1) < · · · < H(tK) ≤ 1 to obtain γ(u+1). Specifically, taking

derivative with respect to γ, we obtain estimating equations

0 =

n∑
i=1

∫ ∑p
j=1{δixi − xirijΦ(yi)e

xT
i β+zT

i αj}a(u)ij drij∫ ∑p
j=1 a

(u)
ij drij

=

n∑
i=1

δixi − xiΦ(yi)e
xT
i β

∑p
j=1 e

zT
i αj

∫
rija

(u)
ij drij∫ ∑p

j=1 a
(u)
ij drij

.

For j = 1, . . . , p,

0 =

n∑
i=1

∫
(δizi − zirije

H(yi)+xT
i β+zT

i αj )a
(u)
ij drij∫ ∑p

j=1 a
(u)
ij drij

=

n∑
i=1

δizi
∫
a
(u)
ij drij − ziΦ(yi)e

xT
i β+zT

i αj
∫
rija

(u)
ij drij∫ ∑p

j=1 a
(u)
ij drij

.

For k = 1, . . . ,K,

0 =
∑
yi≥tk

∫ ∑p
j=1

{
I(yi = tk)/φk − rijex

T
i β+zT

i αj
}
a
(u)
ij drij∫ ∑p

j=1 a
(u)
ij drij

=
1

φk
−
∑
yi≥tk

ex
T
i β
∑p

j=1 e
zT
i αj

∫
rija

(u)
ij drij∫ ∑p

j=1 a
(u)
ij drij

.
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This yields

φk =

∑
yi≥tk

ex
T
i β
∑p

j=1 e
zT
i αj

∫
rija

(u)
ij drij∫ ∑p

j=1 a
(u)
ij drij

−1 ,
or in general

φ(yk;β,α) = δk

(
n∑
i=1

I(yi ≥ yk)ex
T
i β
∑p

j=1 e
zT
i αj

∫
rija

(u)
ij drij∫ ∑p

j=1 a
(u)
ij drij

)−1
, (2.2)

Φ(yi;β,α) =

n∑
k=1

I(yk ≤ yi)δk

(
n∑
i=1

I(yi ≥ yk)ex
T
i β
∑p

j=1 e
zT
i αj

∫
rija

(u)
ij drij∫ ∑p

j=1 a
(u)
ij drij

)−1
.

Plugging into the estimating equation for β,α1, . . . ,αp, we obtain

n∑
i=1

δixi − xiΦ(yi;β,α)ex
T
i β

∑p
j=1 e

zT
i αj

∫
rija

(u)
ij drij∫ ∑p

j=1 a
(u)
ij drij

= 0, (2.3)

n∑
i=1

δizi
∫
a
(u)
ij drij − ziΦ(yi;β,α)ex

T
i β+zT

i αj
∫
rija

(u)
ij drij∫ ∑p

j=1 a
(u)
ij drij

= 0

at j = 1, . . . , p.

We solve the estimating equations (2.3) to obtain β̂(u+1), α̂(u+1), j = 1, . . . , p,

and then substitute into (2.2) to obtain Φ(u+1)(t), and hence also H(u+1)(t) =

log{Φ(u+1)(t)}. The procedure iterates between the E-step and the M-step until

convergence.

We point out that, although the functions ψj(r)’s are left as unknown, we

can still calculate
∫
a
(u)
ij drij and

∫
rija

(u)
ij drij in the M-step. Specifically,∫

a
(u)
ij drij = qij {1− Fj(t)}1−δi

{
h(u)(yi)fj(t)

}δi ∣∣∣
t=H(u)(yi)+xT

i β
(u)+zT

i α
(u)
j

,∫
rija

(u)
ij drij =

{
e−tqijfj(t)

}1−δ
[
e−tqijh

(u)(yi){fj(t)− f ′j(t)}
]δ ∣∣∣

t=H(u)(yi)+xT
i β

(u)+zT
i α

(u)
j

,

as shown in Appendix A.1, by taking advantage of the Laplace/inverse Laplace

transform relation. In fact, even if an explicit form of ψj(r) can be obtained, it

is not necessary to go through the calculation because ψj(r) itself is not needed.

Finally, because ψj is defined as the inverse Laplace transform of a bounded

function, it always exists for any ε distribution.
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2.3. Theoretical properties

Although (2.1) is not a transformation model, under the list of conditions

imposed in Appendix A.2, it can be cast into the general framework, Zeng and

Lin (2007). To this end, we can verify that our Conditions (a), (b), (c) lead to

their conditions (C1), (C2), (C3), respectively. Our Conditions (d) and (e) jointly

ensure their conditions (C4) and (C8). Our Condition (f) leads to their condition

(C6), and our Condition (g) leads to their conditions (C5), (C7). These are mild

conditions mainly imposing identifiability, sufficient smoothness, and bounded-

ness of various functions; They are usually satisfied in practice. Having verified

the regularity conditions C1-C7 of Zeng and Lin (2007), we can use their results

to obtain the asymptotic properties of the NPMLE in the linear transformation

model in the mixture data setting. We state the results in Theorem 1 and provide

the proof in Appendix A.3.

Theorem 1. Let θ0,Φ0 denote the true value of θ,Φ, and write Φ = {Φ(t1), . . . ,

Φ(tK)}T. Under conditions (a)-(g) of Appendix A.2, θ̂, Φ̂ are consistent, and

have the asymptotic property that
√
n(θ̂ − θ, Φ̂ − Φ) converges weakly to a zero

mean Gaussian process. Then, for any function a1(s) with bounded total variation

and any vector a2,
√
n
∫
a1(s)d{Φ̂(s)−Φ(s)}+

√
naT

2 (θ̂− θ) converges to a zero

mean normal distribution whose variance can be approximated by

v{a1(·),a2} ≡ −(aT
1 ,a

T
2 )

{
∂2l(Φ̂, θ̂)

∂(ΦT,θT)∂(ΦT,θT)T

}−1
(aT

1 ,a
T
2 )T,

where a1 = {a1(t1), . . . , a1(tK)}T.

2.4. Inference

The main interest is often in the covariate effects described by θ. In such

cases, we can perform inference using the results of a profiling procedure: at

any θ, we use the same EM algorithm to calculate Ĥ(T,θ) except that we hold

θ fixed, and then calculate the information matrix using numerical derivatives.

This is a simplification because it bypasses the need to invert a potentially high-

dimensional matrix. For example, the α100% confidence interval for the jth

component of θ, θj is

θ̂j ± Z(1+α)/2

[
−

n∑
i=1

∂2li{θ, Ĥ(t1,θ), . . . , Ĥ(tK ,θ)}
∂θ2j

∣∣
θ=θ̂

]−1/2

≈ θ̂j ± Z(1+α)/2

[
n∑
i=1

−li{θ̂ + bej , Ĥ(t1, θ̂ + bej), . . . , Ĥ(tK , θ̂ + bej)}
b2
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+
2li{θ̂, Ĥ(t1, θ̂), . . . , Ĥ(tK , θ̂)}−li{θ̂−bej , Ĥ(t1, θ̂−bej), . . . , Ĥ(tK , θ̂−bej)}

b2

]−1/2
,

where Z(1+α)/2 is the (1 + α)/2 quantile of the standard normal distribution,

li is the likelihood evaluated at the ith observation, ej is the vector with zero

components everywhere except the jth component being 1, and b is a small

number that facilitates the numerical derivative.

Likewise, for hypothesis testing of the form H0 : θ = c, we can construct the

test statistic

Z =

[
−

n∑
i=1

∂2li{θ, Ĥ(t1,θ), . . . , Ĥ(tK ,θ)}
∂θ∂θT

∣∣
θ=θ̂

]1/2
(θ − c)

≈

[(
n∑
i=1

−li{θ̂ + bej + bek, Ĥ(t1, θ̂ + bej + bek), . . . , Ĥ(tK , θ̂ + bej + bek)}
4b2

+
li{θ̂ + bej − bek, Ĥ(t1, θ̂ + bej − bek), . . . , Ĥ(tK , θ̂ + bej − bek)}

4b2

+
li{θ̂ − bej + bek, Ĥ(t1, θ̂ − bej + bek), . . . , Ĥ(tK , θ̂ − bej + bek)}

4b2

− li{θ̂ − bej − bek, Ĥ(t1, θ̂ − bej − bek), . . . , Ĥ(tK , θ̂ − bej − bek)}
4b2

)
jk

1/2

×(θ − c),

and note that Z is approximately a standard multivariate normal random variable

under H0. Here, we use the notation (Ajk) to denote the square matrix A with

size the length of θ and (j, k) entry Ajk.

3. Homogeneous and No Covariate Effect Model

When either β or αj does not appear in (2.1), the model is more restrictive

and the computation simplifies. If β does not appear, then there is no homoge-

neous covariate effect in the transformation model. In terms of estimation, the

procedures follows the same line with some minor simplifications. However, if αj

does not appear, (2.1) greatly simplifies and can be treated quite differently, as

we now explain.

The common-effect covariate effect model for the jth population is

H(T ) = −XTβ + εj ,

where all the components in the model retain the same interpretation as in (2.1).
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The implication of the model is that the heterogeneity between subpopulations is

due to the different variability of measurement errors, but not the heterogeneous

effect of covariates. The conditional distribution is then simplified to

f(Y,∆ | X) =

h(y)

p∑
j=1

qjfj{H(y) + xTβ}

δ 1−
p∑
j=1

qjFj{H(y) + xTβ}

1−δ

=
[
h(y)qTf{H(y) + xTβ}

]δ [
1− qTF

{
H(y) + xTβ

}]1−δ
,

where f = (f1, . . . , fp)
T, F = (F1, . . . , Fp)

T, and h(y) ≡ H ′(y), because the

same transformation H and the same parameter β are assumed across all p

populations. The population difference is only reflected in the distribution of

εj , which is assumed to be fj . We can however still use the different fj ’s of the

model to account for unexplained residual population heterogeneity, for example,

different variances.

As before, estimating the distribution in each population is equivalent to

estimating H and β. As the qi’s have m ≥ p different vector values u1, . . . ,um,

assign the n observations to these m groups according to their q values. Assume

there are, respectively, r1, . . . , rm observations in each group. In group k, we

can view the model as a transformation model with the same transformation H,

the same parameter β, but a new distribution for ε, which has the mixture form

uT
k f(ε). Thus, we can use the existing estimation method for transformation

models to obtain the estimators of H and β, using exclusively the kth group

data. Denote the resulting estimators as Ĥk and β̂k. We can then take the

weighted average to obtain the final estimator Ĥ(t) =
∑m

k=1wk(t)Ĥk(t) and

β̂ =
∑m

k=1 wkβ̂k. To be consistent with the estimation in the general model

(2.1), we use the NPMLE proposed by Zeng and Lin (2006). Thus, we obtain

β̂k, Ĥk via maximizing

lk(H,β) = n−1
n∑
i=1

I(qi = uk)
(
δilog

[
h(yi)u

T
k f{H(yi) + xT

i β}
]

+(1− δi)log
[
1− uT

kF
{
H(yi) + xT

i β
}])

with respect to β and H. Here, we restrict H(y) to be a piecewise constant nonde-

creasing function with nonnegative jumps only at the yi’s where qi = uk and δi =

1. We write these jump points t1, . . . , tK , and write Hk = {H(t1), . . . ,H(tK)}T.

Zeng and Lin (2006) showed that the resulting β̂k, Ĥk are consistent, and that√
n(β̂k−β, Ĥk−H) converges weakly to a zero mean Gaussian process. Thus, for

any function a1(s) with bounded total variation and any vector a2,
√
n
∫
a1(s)
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d{Ĥk(s)−H(s)}+
√
naT

2 (β̂k −β) converges to a zero mean normal distribution

whose variance can be approximated by

vk{a1(·),a2} ≡ −(aT
1 ,a

T
2 )

{
∂2lk(Ĥk, β̂k)

∂(HT
k ,β

T)∂(HT
k ,β

T)T

}−1
(aT

1 ,a
T
2 )T,

where a1 = {a1(t1), . . . , a1(tK)}T.

It remains to determine the choice of weights wk. Because the estima-

tion in different group is based on different subjects, they are independent.

Hence the optimal weights are proportional to the inverse of the variance of

the estimators. The optimal weights for Ĥ(t) are then wk(t) = vk{I(s ≤
t),0}−1/[

∑m
k=1 vk{I(s ≤ t),0}−1] and wk is a diagonal matrix with the jth

diagonal element wkj = vk(0, ej)
−1/{

∑m
k=1 vk(0, ej)

−1}. In practice, this may

not work well since it relies on asymptotic results. Based on prior work in Ma and

Wang (2014), a simple choice of wk(t) = wk = r−1k has satisfactory performance.

Because the within group NPMLE already guarantees the monotonicity of

each Ĥk, the final weighted average estimator for Ĥ is monotone. The asymptotic

property of Ĥ and β is standard:
√
n(β̂ − β, Ĥ − H) converges weakly to a

zero mean Gaussian process. Then, for any function a1(t) with bounded total

variation and any vector a2,
√
n
∫
a1(s)d{Ĥ(s)−H(s)}+

√
naT

2 (β̂−β) converges

to a zero mean normal distribution whose variance can be approximated with

v{a1(·),a2} ≡
m∑
k=1

vk{a1(·)wk(·),wka2},

where t1, . . . , tK are the observed event times.

Testing whether population heterogeneity in the covariate effects is present

in (2.1) is equivalent to testing α1 = α2 = · · · = αp. This can be written as

testing Aθ = 0, A a (p − 1)dz × (dx + pdz) block matrix in which the (j, j)

block is I and the (2, j) block is −I for j = 3, . . . , p + 1. All other blocks are

zero. Based on the asymptotic results in Section 2, we can conveniently use a

Wald test: under Φ0, n(Aθ)TV−1Aθ has χ2 distribution with (p− 1)dz degrees

of freedom, where

V = −(0(p−1)dz×K ,A)

{
∂2l(Φ̂, θ̂)

∂(ΦT,θT)∂(ΦT,θT)T

}−1
(0(p−1)dz×K ,A)T.

When no covariate is included in the model, β does not appear. The proce-

dure can then be directly applied with the simplification of deleting all the steps

concerning estimating β: we estimate H(·) from each of the m groups, then

combine the results via a weighted average. This is similar to the approaches in
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Table 1. Simulation results based on 1,000 repetitions.

true mean median sd mean(ŝd) median(ŝd) 95% CI
simulation 1.1

β1 1.0000 0.9834 0.9703 0.4384 0.4474 0.4472 0.9570
β2 2.0000 1.9734 1.9626 0.3845 0.3958 0.3954 0.9570

simulation 1.2
α11 1.0000 0.9958 0.9992 1.0400 0.9623 0.9414 0.9410
α12 2.0000 2.0420 2.0456 0.8916 0.8539 0.8199 0.9310
α21 1.0000 0.9915 1.0140 0.8581 0.8395 0.8378 0.9420
α22 2.0000 1.9684 1.9879 0.7328 0.7436 0.7350 0.9530

simulation 2
α11 1.0000 1.0644 1.0584 1.1017 1.1758 1.1264 0.9530
α12 2.0000 2.0767 2.0493 1.2519 1.3178 1.2870 0.9620
α21 1.5000 1.4353 1.4306 0.7582 0.8072 0.7918 0.9640
α22 3.0000 2.9344 2.9167 0.8787 0.9039 0.8852 0.9490

simulation 3
β1 1.0000 0.9895 0.9915 0.3944 0.3976 0.3974 0.9520
β2 1.5000 1.4974 1.4894 0.1983 0.2083 0.2079 0.9560
α1 2.0000 1.9007 1.9443 1.1372 1.1737 1.1683 0.9600
α2 3.0000 3.0040 2.9988 0.5071 0.5071 0.5028 0.9420

Wacholder et al. (1998) and in Ma and Wang (2014), except that the estimation

of H(·) in each group is carried out via MLE instead of least squares, and the

weight selection is different from that in Wacholder et al. (1998).

4. Simulation Studies

We performed six sets of simulation studies to demonstrate the performance

of the proposed method for the transformation model in the mixture data context.

We present three of the simulation studies here and relegate the remaining three

to Appendix A.4. Our first set of simulations contain homogeneous covariate

effects. We generated data using p = 2, without αj , and X a bivariate random

vector. The first component of X was a binary variable, taking values 1 or 0

each with probability 0.5, the second component was uniform on −1 to 1. The

transformation H was a logarithm function. We set f1 to be the extreme value

distribution, f2 to be the logistic distribution. The censoring distribution was

exponential, resulting in an overall censoring rate about 25%. The results are in

the first block of Table 1 and upper-left plot of Figure 1. For comparison, we

also did the estimation treating the homogeneous effect as heterigeneous, and

estimated β1, β2 as α11, α21, α12, α22 instead. The results are in the second block

of Table 1 and upper-right plot of Figure 1. These estimations are still consistent,



PREDICTING DISEASE RISK BY TRANSFORMATION MODELS 1869

− −

−

−

−

−

Figure 1. True function (solid line), median estimation (dashed line), mean estimation
(dotted line) and 95% confidence band (dash-dotted line) of H(T ) in simulations 1.1
(upper-left), 1.2 (upper-right), 2 (lower-left), and 3 (lower-right).

yet the variability roughly doubled.

The second set of simulations studied heterogeneous covariate effects. It

included αj , but not β. We generated data using p = 2. Z was of the same

structure as X in the first simulation for the first two terms and an intercept

term for the third term. We kept H the same as in the first simulation. Usually,

in transformation models, the intercept term is not identifiable. In our case, the

difference of the intercepts in different populations is identifiable, and hence was

estimated. Here we set f1 to be standard normal and f2 to be a t distribution

with 5 degrees of freedom. The censoring distribution was still exponential to

achieve a 20% overall censoring rate. Results are in the second block of Table 1

and lower-left plot of Figure 1.

Our third simulation included both β and αj . We generated data using
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p = 2. X is bivariate with the first component either 1 or 0 with equal probability,

and the second component a standard normal. Z was a uniform covariate on

[−1 1] and a constant 1 to capture the intercept. The true H was still the log

transformation. We took both f1, f2 to be normal with mean zero, but the second

population had four times the variance as the first. The censoring distribution

was exponential yielding a 20% overall censoring rate. The results are in the

third block of Table 1 and the lower-right plot of Figure 1.

The simulation studies suggest that the proposed method has satisfactory

finite sample performance: the parameter estimation yields small biases in all

three simulations, measured by the mean and median of the 1,000 estimates; In-

ference results are precise, in that the sample standard deviation from the 1,000

simulations are closely matched by the average and the median of the 1,000 es-

timated standard deviations calculated from the asymptotic results. The overall

distribution of the estimated parameters are close to normal, as indicated by the

empirical coverage of the 95% confidence intervals, which are close to their nom-

inal levels. The estimation of the transformation function H, as shown in Figure

1, is within expectations. Overall, the average of the curve estimation approxi-

mately overlays the true H curve, while the 95% confidence bands have better

performance than the typical nonparametric curve estimation. This is because

H is estimated as the root-n rate, instead of the usual nonparametric rate. We

also tired different transformations than H, with the overall performance similar.

The details of these simulations are in Appendix A.4.

5. Application to Huntington’s Disease Study

HD is the most prevalent monogenic neurodegenerative disorder caused by

expansion of C-A-G repeats at the HD gene on chromosome 4 MacDonald et al.

(1993). Typically neurological, cognitive, and physical symptoms begin to ex-

hibit around 30-50 years of age for affected individuals, and eventually death

is from pneumonia, heart failure, or other complications 15-20 years after the

diagnosis Foroud et al. (1999). The subjects analyzed here were recruited in the

Cooperative Huntington’s Observational Research Trial (COHORT, Dorsey and

The Huntington Study Group COHORT Investigators, 2012), an epidemiologi-

cal study of the natural history of HD. The probands were recruited primarily at

academic research centers from 50 sites in the United States, Canada, and Aus-

tralia. Probands were either clinically diagnosed with HD or the individuals who

pursued HD genetic testing and carried a mutation but who were not clinically
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Table 2. COHORT analysis results: estimated covariate effects (age, gender, proband’s
diagnosis of HD), their standard errors, and p-values.

Carriers Non-carriers
α1intercept α1Age α1Gender α1ProDiag α2intercept α2Age α2Gender α2ProDiag

est −33.65 0.76 −0.67 1.79 −7.07 0.18 2.82 −2.30
se 4.28 0.09 0.70 1.00 1.25 0.03 0.67 0.84

p-value < 0.001 < 0.001 0.34 0.07 < 0.001 < 0.001 < 0.001 0.006

diagnosed. The initial probands underwent clinical examination and genotyping

for HD mutation, and reported family history information on their first-degree

relatives. The relatives were not genotyped because there was no resource for

in-person collection of blood samples. Thus the relatives’ HD mutation status

was unknown, while the distribution of their mutation status could be estimated

from the pedigree structure and the probands’ carrier status. The full details of

the COHORT study design are described in Dorsey and The Huntington Study

Group COHORT Investigators (2012) and in Wang, Garcia and Ma (2012).

There were 4105 subjects included in the COHORT analysis, and they were

either mutation carriers or not, hence p = 2. The heterogeneous covariate effect

model (2.1) was used to study the effect of several covariates on mortality in HD

mutation carriers where, for carriers, f1 was normal with mean zero standard

deviation 0.2, and for non-carriers, f2 was 0.2T5, with T5 a student t with 5

degrees-of-freedom. The main research interest is to predict age at death based

on CAG repeats length, adjusting for gender, proband’s HD clinical diagnosis

status and a relative’s relationship to the probands. We assumed all covariates

to have differential effect in each mutation group to allow for maximal flexibility.

The covariates included in the model were: CAG repeats length at the HD gene,

gender, and proband’s HD diagnosis status.

The results are reported in Table 2. As expected, the effects of CAG repeats

length has a significant effect on age-at-death with an estimated effect of −0.76

(SE: 0.09, p-value < 0.001). The results suggest that if all covariates are the same,

the subjects with one unit CAG longer repeat are expected to have a 2.38 years

shorter lifespan. Here 2.38 is calculated as the average of Ĥ−1(U)−Ĥ−1(U−0.76)

for a random U , where Ĥ is the estimated transformation function and is close

to a linear function (See Figure 2). This finding is consistent with the clinical

literature which indicates an inverse association between CAG repeats length and

HD age at diagnosis and death, Foroud et al. (1999), Langbehn et al. (2004).

Proband’s HD diagnosis also has a significant effect after adjusting for CAG

repeats and other covariates: having a positive HD diagnosis in a family member
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Figure 2. Estimated H function (solid line), median estimation (dashed line), mean
estimation (dash-dotted line) and 95% confidence band (dashed line) of H(T ) in data
analysis. Median, mean and 95% confidence band are based on 1,000 bootstrapped
samples.

−
−

−
−

Figure 3. Fitted linear function Ĥ(t) versus age t for HD data analysis.

is associated with an earlier mean age-at-death in carrier, potentially due to other

shared familial risk factors.

The estimated transformation H(·) and its bootstrap confidence interval are

presented in Figure 2. The nonparametric function suggests that a linear trans-

formation may fit the data adequately and, under a parametric approximation,

predictions formula for the age-at-death in a mutation carrier subject can be

obtained. The approximated linear function is Ĥ(t) = −24.35+0.32t, see Figure

3.
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A limitation of our analysis is that probands data were not included to

protect against potential bias resulting from unknown sources in the COHORT

study that did not use a population-based ascertainment scheme for probands.

When the proband ascertainment is population-based, for example, probands

are randomly selected from diseased population (case-family design), their data

may be included through a retrospective likelihood. It would be interesting to

replicate our analysis in an independent study using such a design, including

probands data in the analyses.

6. Discussion

A potentially interesting extension of our method is to further parametrize

the mixing distributions and estimate the parameters from data. If the qij ’s are

modeled parametrically, semiparametrically, or nonparametrically and estimated

as q̂ij , it would be interesting to develop methods to account for the discrepancy

between q̂ij and qij and to deliver appropriate estimation of the survival function

and covariate effect using the q̂ij .

Our method has the flexibility to account for cross-population heterogeneity

by characterizing the outcome in each population using different distributions

specified by covariate parameters and error distributions (e.g., distinct scale or

shape parameter; population-specific covariate effect), while simultaneously al-

low for common components across populations (e.g., shared covariate effect).

Whether or not to adopt population-specific effects or shared effects is often de-

termined by the purpose of the analysis and prior knowledge. In many cases,

covariates whose effects are of particular research interest might be assumed to

be population-specific as a precaution, while covariates that are not of interest

be modeled across population.

We have assumed that the relative observations are independent, and ex-

cluded probands from the analyses. In proband-relative studies, multiple rela-

tives from the same family may be collected and thus could have residual familial

correlation. Our current approach is still consistent if the probands are represen-

tative samples of the probands population, but the inferences developed would

no longer be valid. When probands are not representative and there is resid-

ual familial aggregation, ascertainment schemes may need to be modeled and

probands and relative data analyzed jointly. How to best accommodate familial

correlation and adjust for probands ascertainment schemes is highly challenging,

and interesting.
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Appendix

A.1. Derivation of
∫
a
(u)
ij drij and

∫
rija

(u)
ij drij

Here we show the derivation of the relationships∫
a
(u)
ij drij = qij {1− Fj(t)}1−δi

{
h(u)(yi)fj(t)

}δi ∣∣∣
t=H(u)(yi)+xT

i β
(u)+zT

i α
(u)
j

,∫
rija

(u)
ij drij = e−tqijfj(t)

∣∣∣
t=H(u)(yi)+xT

i β
(u)+zT

i α
(u)
j

if δi = 0,∫
rija

(u)
ij drij = −e−tqijh(u)(yi){f ′j(t)− fj(t)}

∣∣∣
t=H(u)(yi)+xT

i β
(u)+zT

i α
(u)
j

if δi = 1.

Let t = H(u)(yi) + xT
i β

(u) + zTi α
(u)
j . Then

a
(u)
ij = {h(u)(yi)rij exp(t)}δi exp(−rijet)qijψj(rij)

∣∣∣
t=H(u)(yi)+xT

i β
(u)+zT

i α
(u)
j

.

When δi = 0,

da
(u)
ij

dt
= −rijet exp(−rijet)qijψj(rij)

∣∣∣
t=H(u)(yi)+xT

i β
(u)+zT

i α
(u)
j

,

d2a
(u)
ij

dt2
= −rijet exp(−rijet)qijψj(rij) + r2ije

2t exp(−rijet)qijψj(rij)
∣∣∣
t=H(u)(yi)+xT

i β
(u)+zT

i α
(u)
j

.

When δi = 1,

da
(u)
ij

dt
= −h(u)(yi)r2ije2t exp(−rijet)qijψj(rij)

+h(u)(yi)rije
t exp(−rijet)qijψj(rij)

∣∣∣
t=H(u)(yi)+xT

i β
(u)+zT

i α
(u)
j

.

Thus, when δi = 0,

rija
(u)
ij = −e−t

da
(u)
ij

dt

∣∣∣
t=H(u)(yi)+xT

i β
(u)+zT

i α
(u)
j ,δi=0

,

and when δi = 1,
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rija
(u)
ij = h(u)(yi)e

−t

(
d2a

(u)
ij

dt2
−
da

(u)
ij

dt

)∣∣∣
t=H(u)(yi)+xT

i β
(u)+zT

i α
(u)
j ,δi=0

.

A.2. List of regularity conditions

(a) The parameter value θ0 belongs to the interior of a compact set Θ ∈ Rdθ ,
and φ0(t) > 0 for all t ∈ [0, τ ]. (C1).

(b) With probability 1, pr(Yi ≥ τ | Xi,Zi) > δ0 > 0 for some constant δ0 > 0.

(C2).

(c) fj(s) is bounded away from zero and infinity on its support for j = 1, . . . , p.

(C3).

(d) fj(s) is three times continuously differentiable and, the f
(v)
j (s)/ exp(ks), v =

0, . . . , 3, k = 2, . . . , 4, are square integrable on (−∞, log(τ)] for j = 1, . . . , p.

(C4), (C8).

(e) The covariates X,Z have finite kth moments, k = 1, . . . , 6. (C4), (C8).

(f) The first moment of logfj(s) exists for j = 1, . . . , p. (C6).

(g) m ≥ p and the matrix (u1, . . .um) has rank p. (C5), (C7).

A.3. Proof of Theorem 1

Because NPMLE for the linear transformation model in the mixture model

setting we consider can be cast into the general framework established in Zeng

and Lin (2007), we prove Theorem 1 through verifying the conditions (C1)-(C8)

required by them.

Condition (a) ensures that the true parameter value is in the interior of a

compact set of the parameter space, with Conditions (c) and (d), we further

guarantee the differentiability and positivity of the hazard function. This leads

to condition (C1) of Zeng and Lin (2007).

Condition (b) is equivalent to their (C2).

Condition (c) guarantees that (C3) of Zeng and Lin (2007) is satisfied.

Condition (C4) of Zeng and Lin (2007) is a type of Lipschitz condition,

with respect to both parameter and function; It is guaranteed by the stronger

differentiability conditions in our Condition (d) and and the moment conditions

in (e).



1876 QIANQIAN WANG, YANYUAN MA AND YUANJIA WANG

Table 3. Simulation results. Results based on 1,000 simulations.

true mean median sd mean(ŝd) median(ŝd) 95% CI
simulation 4

β1 1.0000 0.9809 0.9776 0.4393 0.4605 0.4601 0.9650
β2 2.0000 1.9693 1.9565 0.3974 0.4088 0.4084 0.9540

simulation 5
α11 1.0000 0.9893 0.9986 0.6229 0.6363 0.6351 0.9590
α12 2.0000 1.9895 1.9988 0.5339 0.5552 0.5535 0.9550
α21 1.5000 1.4764 1.4410 1.1660 1.1346 1.1292 0.9530
α22 3.0000 2.9565 2.9681 0.9947 0.9971 0.9933 0.9460

simulation 6
β1 1.0000 0.9973 0.9914 0.2951 0.2982 0.2978 0.9590
β2 1.5000 1.5038 1.4982 0.1551 0.1569 0.1567 0.9590
α1 2.0000 1.8943 1.9186 0.7693 0.7955 0.7945 0.9510
α2 3.0000 3.0311 3.0257 0.3728 0.3609 0.3595 0.9560

Our Condition (g) is stated in their (C5).

Condition (C6) of Zeng and Lin (2007) requires sufficient smoothness and

boundedness of the hazard functions and some functions derived from them, as

do our Conditions (c), (d) and (f).

Condition (C7) there is an identifiability condition that arises due to the

generality of the framework they consider; It is guaranteed to hold under our

Condition (g) and the parameterization requiring H(0) = −∞.

Condition (C8) of Zeng and Lin (2007) strengthen their (C4) to hold along

each path in a neighborhood of the true parameter value, while our Conditions

(d) and (e) are imposed for all the parameter values in a compact set jointly

ensuring that this holds.

A.4. Additional simulations

Our fourth simulation is the same as the first, except that the true transfor-

mation H is log{t/(1− t)}. In this case, the overall censoring rate is about 25%.

The results are in Table 3 and Figure 4.

Similarly, the fifth simulationis the same as the second but withH = log{t/(1−
t)}, and an overall censoring rate of about 20%. The results are in Table 3 and

Figure 4.

The sixth simulation is the same as the third except that H = log{t/(1− t)},
with an overall censoring rate of about 25%. The results are in Table 3 and

Figure 4.
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Figure 4. True function (solid line), median estimation (dashed line), mean estima-
tion (dotted line) and 95% confidence band (dash-dotted line) of H(T ) in simulations 1
(upper-left), 2 (upper-right), and 3 (lower) .
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