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Abstract: We investigate properties and numerical algorithms for A- and D-optimal

regression designs based on the second-order least squares estimator (SLSE). Sev-

eral results are derived, including a characterization of the A-optimality criterion.

We can formulate the optimal design problems under SLSE as semidefinite pro-

gramming or convex optimization problems and we show that the resulting algo-

rithms can be faster than more conventional multiplicative algorithms, especially in

nonlinear models. Our results also indicate that the optimal designs based on the

SLSE are more efficient than those based on the ordinary least squares estimator,

provided the error distribution is highly skewed.
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1. Introduction

Consider a regression model to study the relationship between a response

variable y and a vector of independent variables x ∈ Rp,

yi = g(xi;θ) + εi, i = 1, · · · , n, (1.1)

where yi is the observation at xi, θ ∈ Rq is an unknown parameter vector, g(x;θ)

can be a linear or nonlinear function of θ, and the errors εi’s are i.i.d. having

mean 0 and variance σ2. Various optimality criteria have been investigated to

construct optimal regression designs. The criteria and optimal designs depend

on the response function, design space S, model assumptions and the estimation

method of θ; for example, Pukelsheim (1993); Berger and Wong (2009), and

Dean et al. (2015).

The ordinary least squares estimator (OLSE) is usually used to estimate

θ, and optimal designs have been constructed for various models based on it.

However, if the error distribution is asymmetric, the second-order least squares

estimator (SLSE) in Wang and Leblanc (2008) is more efficient than the OLSE.

Using this result, Gao and Zhou (2014) proposed new optimality criteria under
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SLSE and obtained several results. Bose and Mukerjee (2015) and Gao and Zhou

(2015) made further developments, including the convexity results for the criteria

and numerical algorithms. Bose and Mukerjee (2015) applied the multiplicative

algorithms in Zhang and Mukerjee (2013) for computing the optimal designs,

while Gao and Zhou (2015) used the CVX program in MATLAB (Grant and

Boyd (2013)).

In this paper we investigate the optimal designs based on the SLSE. Since

there are fewer results for A-optimal designs in previous work, this paper fills

a gap. Let u1, · · · ,uN ∈ S be N possible distinct levels of x. Define a dis-

crete design space SN = {u1, · · · ,uN}, and let ΞN be the set of all discrete

distributions on SN . We construct discrete optimal designs from ΞN using the

optimality criteria in Gao and Zhou (2014). Several results are derived for A- and

D-optimal designs. The A-optimality criterion is characterized in a new way, and

this leads to an efficient algorithm for computing the designs. The algorithm uses

the SeDuMi (Self-Dual-Minimization) program in MATLAB for semidefinite pro-

gramming (SDP) problems (Boyd and Vandenberghe (2004)). The A-efficiency

and D-efficiency of designs are studied to compare the SLSE with the OLSE, and

our results indicate that the optimal designs based on the SLSE can be much

more efficient than those based on the OLSE, provided the error distribution is

highly skewed.

The rest of the paper is organized as follows. In Section 2 we derive properties

of optimal designs under SLSE and an expression of the A-optimality criterion.

In Section 3 we develop numerical algorithms for computing optimal designs. In

Section 4 applications are presented, and numerical algorithms and efficiencies

of optimal designs are compared. Concluding remarks are in Section 5. Proofs

are given in the Appendix, or in the Supplementary Material.

2. Optimal Designs Based on the SLSE

In model (1.1), the SLSE γ̂SLS of γ = (θ>, σ2)> minimizes

Q(γ) =

n∑
i=1

ρ>i (γ)Wiρi(γ),

where vector ρi(γ) = (yi − g(xi;θ), y2i − g2(xi;θ) − σ2)> and Wi = W(xi) is

a 2 × 2 positive semidefinite matrix that may depend on xi. The most efficient

SLSE is obtained by choosing an optimal matrix Wi to minimize the asymptotic

covariance matrix of γ̂SLS , as derived in Wang and Leblanc (2008). For the rest

of the paper, the discussion is about the most efficient SLSE. Suppose θ0 and σ20
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are the true values of θ and σ2, respectively. Let µ3 = E(ε31 | x), µ4 = E(ε41 | x),

and t = µ23/(σ
2
0(µ4 − σ40)). Under some regularity conditions (Wang and Leblanc

(2008)), the asymptotic covariance matrix of γ̂SLS is

Cov(γ̂SLS) =

 Cov(θ̂SLS)
µ3

µ4 − σ40
V (σ̂2SLS)G−12 g1

µ3
µ4 − σ40

V (σ̂2SLS)g>1 G
−1
2 V (σ̂2SLS)

 , (2.1)

where

Cov(θ̂SLS) = (1− t)σ20
(
G2 − tg1g>1

)−1
, V (σ̂2SLS) =

(µ4 − σ40)(1− t)
1− tg>1 G

−1
2 g1

, (2.2)

g1 = E

[
∂g(x;θ)

∂θ
|θ=θ0

]
, G2 = E

[
∂g(x;θ)

∂θ

∂g(x;θ)

∂θ>
|θ=θ0

]
. (2.3)

The expectation in (2.3) is taken with respect to the distribution of x. The

asymptotic covariance matrix of the OLSE, γ̂OLS = (θ̂>OLS , σ̂
2
OLS)>, is

Cov(γ̂OLS) =

(
Cov(θ̂OLS) µ3G

−1
2 g1

µ3g
>
1 G

−1
2 V (σ̂2OLS)

)
=

(
σ20G

−1
2 µ3G

−1
2 g1

µ3g
>
1 G

−1
2 µ4 − σ40

)
. (2.4)

If the error distribution is symmetric, then µ3 = 0, t = 0, and the covariance

matrices in (2.1) and (2.4) are the same. For asymmetric errors, we have 0 < t < 1

(Gao and Zhou (2014)) and Cov(γ̂OLS)−Cov(γ̂SLS) � 0 (positive semidefinite)

from Wang and Leblanc (2008), so the SLSE is more efficient than the OLSE.

2.1. A- and D-optimality criteria

In Gao and Zhou (2014), the A- and D-optimal designs based on the SLSE are

defined to minimize tr(Cov(θ̂SLS)) and det(Cov(θ̂SLS)), respectively, where tr()

and det() are the matrix trace and determinant functions. For any distribution

ξ(x) ∈ ΞN of x, let ξ(x) = {(ui, wi) | wi = P (x = ui),ui ∈ SN , i = 1, · · · , N},
where

N∑
i=1

wi = 1, and wi ≥ 0, for i = 1, · · · , N. (2.5)

Define f(x;θ) = ∂g(x;θ)/∂θ, and write g1 and G2 in (2.3) as

g1(w) = g1(w;θ0) =

N∑
i=1

wif(ui;θ0),

G2(w) = G2(w;θ0) =

N∑
i=1

wi f(ui;θ0)f
>(ui;θ0), (2.6)
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where weight vector w = (w1, · · · , wN )>. Let A(w) = A(w;θ0) = G2(w) −
tg1(w)g>1 (w). By (2.2), the A- and D-optimal designs minimize loss functions

φ1(w) = tr
(

(A(w))−1
)

and φ2(w) = det
(

(A(w))−1
)

(2.7)

over w satisfying the conditions in (2.5), respectively. If A(w) is singular, φ1(w)

and φ2(w) are defined to be +∞. The A- and D-optimal designs are denoted by

ξA(x) and ξD(x), respectively. For nonlinear models, since optimal designs often

depend on the unknown parameter θ0, they are called locally optimal designs.

For simplicity, we write optimal designs instead of locally optimal designs. Since

all the elements of g1 and G2 in (2.6) are linear functions of w, we have the

following from Bose and Mukerjee (2015).

Lemma 1. φ1(w) and log(φ2(w)) are convex functions of w.

For a discrete distribution on SN , define

B(w) =

(
1

√
t g>1 (w)√

t g1(w) G2(w)

)
, (2.8)

so all the elements of B(w) are linear functions of w. Gao and Zhou (2015)

derived an alternative expression for the D-optimality criterion in Lemma 2.

Lemma 2. The D-optimal design based on the SLSE minimizes 1/ det (B(w)),

and −log (det (B(w))) and − (det (B(w)))1/(q+1) are convex functions of w.

From (2.7) and Lemma 2, ξD(x) minimizes 1/det (A(w)) or 1/det (B(w)).

In fact, det (A(w)) = det (B(w)). It is easier to use B(w) to develop numerical

algorithms for computing the optimal designs in Section 3.

2.2. Properties of ξA(x)

For some regression models, the transformation invariance property implies

the symmetry of ξA(x) . We derive a characterization of the A-optimality crite-

rion.

Let T be an one-to-one transformation defined on SN with T 2u = u for any

u ∈ SN . We say that the design space SN is invariant under transformation T

or that SN is T -invariant. If a distribution ξ(x) on a T -invariant SN satisfies

P (x = ui) = P (x = Tui), for i = 1, · · · , N, we say the distribution is invariant

under the transformation T , or T -invariant. To derive transformation invariance

properties of ξA(x), we order the points in SN such that Tui = uN−i+1 for

i = 1, · · · ,m and, if m < N/2, Tui = ui for i = m + 1, · · · , N − m. Here

the points um+1, · · · ,uN−m are fixed under T . If m = N/2, then there are no
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fixed points in SN . For T -invariant ξ(x), the weights satisfy wi = wN−i+1 for

i = 1, · · · ,m. To partially reverse the order of the elements in w, set

rev(w) = (wN , · · · , wN−m+1︸ ︷︷ ︸, wm+1, · · · , wN−m︸ ︷︷ ︸, wm, · · · , w1︸ ︷︷ ︸)>.
Theorem 1. Suppose ξA(x) is an A-optimal design for a regression model on a

T -invariant SN . If the weight vector of ξA(x), wA = (wA1 , · · · , wAN ), satisfies

tr
((

A(wA)
)−1)

= tr
((

A(rev(wA))
)−1)

, (2.9)

then there exists an A-optimal design that is invariant under the transformation

T .

The proof of Theorem 1 is in the Appendix. The condition in (2.9) requires

that one know the weights of an A-optimal design that may be hard to derive

analytically. The next theorem gives two sufficient conditions to check for the

condition.

Theorem 2. The condition at (2.9) holds if one of the following conditions holds:

(i) there exists a q×q constant matrix Q with Q>Q = Iq (identity matrix) such

that f(Tx;θ0) = Q f(x;θ0) for all x ∈ SN ;

(ii) there exists a q × q matrix U satisfying U>U = Iq such that g1(rev(w)) =

U g1(w) and G2(rev(w)) = U G2(w) U> for any w.

The proof of Theorem 2 is in the Appendix. The conditions in Theorem 2

are easy to verify, especially condition (i). The results in Theorems 1 and 2 can

be applied to both linear and nonlinear models.

Example 1. For the second-order regression model with independent variables

x1 and x2, y = θ1x1 + θ2x2 + θ3x
2
1 + θ4x

2
2 + θ5x1x2 + ε, we study the symmetry

of A-optimal designs for the design spaces

S9,1 = {(1, 0), (−1, 0), (0, 1), (0,−1), (1, 1), (−1, 1), (1,−1), (−1,−1), (0, 0)},
S9,2 = {(

√
2, 0), (−

√
2, 0), (0,

√
2), (0,−

√
2), (1, 1), (−1, 1),

(1,−1), (−1,−1), (0, 0)}.

Except for the center point (0, 0), the points in S9,1 are located on the edges of a

square while the points in S9,2 are on a circle with radius
√

2. These spaces are

invariant under several transformations, including

T1

(
x1
x2

)
=

(
−x1
x2

)
, T2

(
x1
x2

)
=

(
x1
−x2

)
,
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T3

(
x1
x2

)
=

(
−x1
−x2

)
, T4

(
x1
x2

)
=

(
x2
x1

)
.

It is easy to show that there exists an A-optimal design that is invariant under

T1, T2, or T3. For T4, we have f(T4x;θ) = Q f(x;θ) with

Q =

(
0 1

1 0

)
⊕

(
0 1

1 0

)
⊕ 1,

where ⊕ is the matrix direct sum. It is clear that Q>Q = I5. Thus, there

exists an A-optimal design that is invariant under T4. If we apply the four

transformations sequentially and use the results in Theorems 1 and 2, there

exists an A-optimal design that is invariant under all the four transformations.

This implies that there exists an A-optimal design ξA(x) on S9,1 (or S9,2) having

wA1 = wA2 = wA3 = wA4 and wA5 = wA6 = wA7 = wA8 .

Example 2. Consider a nonlinear model, yi = θ1x/(x
2 + θ2)+ε, θ1 6= 0, θ2 6= 0,

on the design space SN ⊂ [−a, a], invariant under transformation Tx = −x.

Here f(x;θ) = (x/(x2 + θ2),−θ1x/((x2 + θ2)
2))>, and it is easy to verify that

f(Tx;θ0) = Q f(x;θ0) with Q = diag(−1,−1) and Q>Q = I2. Thus, there

exists an A-optimal design that is symmetric about zero.

The results in Theorems 1 and 2 can be extended easily to D-optimal designs

ξD(x) by changing tr() to det() in (2.9). By applying the result in Theorem 1,

we can reduce the number of unknown weights in the loss functions φ1(w) and

φ2(w) in (2.7). For instance, in Example 1, the number of unknown weights is

reduced to 3.

From Lemma 2, an alternative expression for φ2(w) is φ2(w)=det((B(w))−1),

since det((A(w))−1) = det((B(w))−1). For φ1(w), we do not have tr((A(w))−1)

= tr((B(w))−1), but we can also characterize the A-optimality criterion using

B(w).

Theorem 3. If G2(w) in (2.8) is nonsingular, then φ1(w) = tr
(
(A(w))−1

)
=

tr
(
C(B(w))−1

)
, where C = 0⊕ Iq is a (q + 1)× (q + 1) matrix.

The proof of Theorem 3 is in the Supplementary Material. This characteri-

zation of the A-optimality criterion is useful for developing an efficient algorithm

for computing A-optimal designs. If we are interested in a subset of the model

parameters, the criterion can be easily modified. Let θ = (θ>1 ,θ
>
2 )>, where

θ1 ∈ Rq1 and θ2 ∈ Rq2 with q1 + q2 = q. The A-optimal design based on the

SLSE of θ2 minimizes φ3(w) = tr
(
C1(B(w))−1

)
, where C1 = 0q1+1 ⊕ Iq2 and

0q1+1 is a (q1 + 1)× (q1 + 1) matrix of zeros.
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3. Numerical Algorithms

For some regression models, ξA(x) and ξD(x) can be constructed analytically.

Examples are given in Gao and Zhou (2014) and Bose and Mukerjee (2015). In

general, it is hard to find the optimal designs analytically, so numerical algorithms

are developed. After reviewing the algorithms in Bose and Mukerjee (2015), we

propose efficient algorithms for computing ξA(x) and ξD(x). These algorithms

do not use the derivatives of the loss functions. Yang, Biedermann and Tang

(2013) proposed another efficient algorithm for computing optimal designs using

the derivatives.

3.1. Multiplicative algorithms

Bose and Mukerjee (2015) proposed multiplicative algorithms to compute

ξA(x) and ξD(x). For simplicity, we write f(u) for f(u;θ0). Define, for i =

1, · · · , N ,

ψAi(w) = (1− t)f>(ui)A
−2f(ui) + t (f(ui)− g1(w))>A−2 (f(ui)− g1(w)) ,

ψDi(w) = (1− t)f>(ui)A
−1f(ui) + t (f(ui)− g1(w))>A−1 (f(ui)− g1(w)) ,

(3.1)

where A−1 = (A(w))−1 and A−2 = (A(w))−1 (A(w))−1. Start with the uniform

weight vector, w(0) = (1/N, · · · , 1/N)>. For ξA(x), the multiplicative algorithm

finds w(j), j = 1, 2, · · · , iteratively as w
(j)
i = w

(j−1)
i ψAi(w

(j−1))/tr
(
A(w(j−1))

)−1
,

for i = 1, · · · , N, till w(j) satisfies

ψAi(w
(j))− tr

(
A(w(j))

)−1
≤ δ, for i = 1, · · · , N, (3.2)

for some prespecified small δ (> 0). Similarly, for ξD(x), the algorithm finds w(j)

iteratively as w
(j)
i = w

(j−1)
i ψDi(w

(j−1))/q, for i = 1, · · · , N, till w(j) satisfies

ψDi(w
(j))− q ≤ δ, for i = 1, · · · , N. (3.3)

Conditions in (3.2) and (3.3) are approximated from necessary and sufficient

conditions for the ξA(x) and ξD(x) in Bose and Mukerjee (2015).

Lemma 3. The weight vector w is

(a) A-optimal if and only if A(w) is nonsingular and ψAi(w) ≤ tr (A(w))−1,

for i = 1, · · · , N ,

(b) D-optimal if and only if A(w) is nonsingular and ψDi(w) ≤ q, for i =

1, · · · , N .

These algorithms can preserve the transformation invariance property for
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the weights at each iteration, if there exist transformation invariant ξA(x) and

ξD(x).

Theorem 4. Suppose the design space SN is invariant under a transformation

T . If there exists a q×q constant matrix Q with Q>Q = Iq such that f(Tx;θ0) =

Q f(x;θ0) for all x ∈ SN , then the weights from the multiplicative algorithms

satisfy rev(w(j)) = w(j) for all j = 0, 1, 2, · · · .

The proof of Theorem 4 is in the Supplementary Material. This result de-

pends on the fact that the initial weight vector satisfies rev(w(0)) = w(0).

3.2. Convex optimization algorithms

The CVX program in MATLAB (Grant and Boyd (2013)) is powerful and

widely used to solve convex optimization problems. Gao and Zhou (2015) applied

the CVX program to find the D-optimal designs based on the SLSE through the

moments of distribution ξ(x). The optimal design problems for ξA(x) and ξD(x)

on a discrete design space can be formulated as convex optimization problems,

differently from those in Gao and Zhou (2015). Using wN = 1 −
∑N−1

i=1 wi, we

define a weight vector having N − 1 weights as w̃ = (w1, w2, · · · , wN−1, 1 −∑N−1
i=1 wi)

>. Let D(w̃) = diag(w1, w2, · · · , wN−1, 1 −
∑N−1

i=1 wi) be a diagonal

matrix. One has φ1(w) = φ1(w̃) and φ2(w) = φ2(w̃), and φ1(w̃) and log(φ2(w̃))

are convex functions of w̃. The conditions in (2.5) are equivalent to that D(w̃) �
0. Thus, the A- and D-optimal design problems become, respectively,{

minw̃ φ1(w̃),

subject to: D(w̃) � 0,
(3.4)

{
minw̃ log(φ2(w̃)),

subject to: D(w̃) � 0.
(3.5)

The CVX program in MATLAB has some technical issues. In (3.5), we

need to use B(w̃) in φ2(w̃), and the CVX program works well to solve minw̃−
log(det(B(w̃)) or minw̃−(det(B(w̃))1/(q+1). In (3.4), however, it does not work

to use A(w̃) in φ1(w̃), and it is not straightforward to use B(w̃). We develop

a novel formulation of the A-optimal design problem with a linear objective

function and linear matrix inequality constraints that is an SDP problem.

Let ei be the ith unit vector in Rq+1, i = 1, · · · , q + 1, v = (v2, · · · , vq+1)
>,

and

Bi =

(
B(w̃) ei
e>i vi

)
, for i = 2, · · · , q + 1,
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H(w̃,v) = B2 ⊕ · · · ⊕Bq+1 ⊕D(w̃). (3.6)

Since B(w̃) and D(w̃) are linear matrices in w̃, H(w̃,v) is a linear matrix in w̃

and v. Then ξA(x) can be solved through{
minw̃,v

∑q+1
i=2 vi,

subject to: H(w̃,v) � 0.
(3.7)

Theorem 5. The solutions to the optimization problems (3.4) and (3.7) satisfy

(i) if w̃∗ is a solution to (3.4), then (w̃∗,v∗) is a solution to (3.7) with

v∗ = (e>2 (B(w̃∗))−1 e2, · · · , e>q+1 (B(w̃∗))−1 eq+1)
>,

(ii) if (w̃∗,v∗) is a solution to (3.7), then w̃∗ is a solution to (3.4).

The proof of Theorem 5 is in the Appendix. To solve (3.7), the SeDuMi

program in MATLAB can be used. See Sturm (1999) for a user’s guide. There

is a MATLAB program in Ye, Zhou and Zhou (2015) that applies the SeDuMi

for solving a different SDP problem.

4. Applications and Efficiencies

We compute ξA(x) and ξD(x) for various linear and nonlinear models and

give representative results. The A-optimal designs are computed by the multi-

plicative algorithm and the SeDuMi program, while the D-optimal designs are

computed by the multiplicative algorithm and the CVX program. Conditions

in (3.2) and (3.3) are used to verify that the numerical solutions are A- and

D-optimal designs, respectively. Numerical algorithms are compared, and effi-

ciencies of the SLSE and its optimal designs are discussed. A property of locally

optimal designs is also derived for nonlinear models.

4.1. Examples

Example 3. Consider the regression model and design spaces in Example 1 and

compute ξA(x) and ξD(x) for various values of t. Since the number of points in

design spaces S9,1 and S9,2 is small, all the algorithms work well and quickly. We

computed the weights, w1, · · · , w9. The results from the multiplicative algorithms

are the same as those from the CVX and SeDuMi programs, and the weights have

the transformation invariance property discussed in Example 1. Representative

results are given in Table 1, where only three weights, w1, w5, w9, are listed due

to the invariance property. The results indicate that the optimal designs depend

on the value of t. For small t the center point has weight zero for all the optimal
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Table 1. A- and D-optimal weights, wA
1 , w

A
5 , w

A
9 , wD

1 , w
D
5 , w

D
9 , in Example 3.

t wA
1 wA

5 wA
9 wD

1 wD
5 wD

9

Design space S9,1

0 0.131 0.119 0.000 0.071 0.179 0.000
0.3 0.130 0.120 0.000 0.072 0.178 0.000
0.5 0.128 0.122 0.000 0.074 0.176 0.000
0.9 0.118 0.121 0.044 0.088 0.162 0.000

Design space S9,2

0 0.104 0.146 0.000 0.125 0.125 0.000
0.3 0.104 0.146 0.000 0.125 0.125 0.000
0.5 0.104 0.146 0.000 0.125 0.125 0.000
0.9 0.088 0.125 0.148 0.116 0.116 0.072

designs, but for t = 0.9 the center point has a positive weight for three optimal

designs.

For linear models, the optimal designs do not depend on θ. If there is an

intercept term in the model, the optimal designs ξA and ξD are the same as those

based on the OLSE (Gao and Zhou (2014)). For nonlinear models, the optimal

designs usually depend on the true value, θ0, and are called locally optimal

designs. In practice an estimate of θ0 is used to construct the optimal designs.

However, if a nonlinear model is linear in a subset of parameters, then optimal

design ξD does not depend on the true value of the subset.

Theorem 6. Let θ = (α>,β>)>, where α ∈ Ra and β ∈ Rb with a+ b = q. For

a nonlinear model

g(x;θ) =

a∑
i=1

αihi(x;βi), (4.1)

where α = (α1, · · · , αa)>, β = (β>1 , · · · ,β>a )> with βi ∈ Rqi, and hi(x;βi) can

be linear or nonlinear in βi, then ξD(x) does not depend on α.

The proof of Theorem 6 is in the Supplementary Material. A similar result for

D-optimal designs based on the OLSE is in Dette, Melas and Wong (2006). For

ξA(x), this result is not true in general. More discussion about other approaches

for locally optimal designs can be found in Yang and Stufken (2012).

Example 4. The Michaelis-Menten model (Michaelis and Menten (1913)), one of

the best-known model in biochemistry, is used to study enzyme kinetics. Enzyme-

kinetics studies the chemical reactions for substrate that are catalyzed by en-

zymes. The relationship between the reaction rate and the concentration of the

substrate can be described as y = αx/(β + x) + ε, x ≥ 0, where y represents the
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Table 2. A- and D-optimal design points and their weights (in parentheses) for the
Michaelis-Menten model with α = 1 and β = 1.

N = 101
t = 0, 0.3 ξA: 0.520 (0.666) 4.000 (0.334)

ξD: 0.680 (0.500) 4.000 (0.500)
t = 0.7 ξA: 0.640 (0.641) 4.000 (0.359)

ξD: 0.000 (0.048) 0.680 (0.476) 4.000 (0.476)
t = 0.9 ξA: 0.000 (0.154) 0.680 (0.536) 4.000 (0.310)

ξD: 0.000 (0.260) 0.680 (0.370) 4.000 (0.370)
N = 201
t = 0 ξA: 0.500 (0.671) 4.000 (0.329)

ξD: 0.660 (0.500) 4.000 (0.500)
t = 0.3 ξA: 0.540 (0.661) 4.000 (0.339)

ξD: 0.660 (0.500) 4.000 (0.500)
t = 0.7 ξA: 0.640 (0.641) 4.000 (0.359)

ξD: 0.000 (0.048) 0.660 (0.476) 4.000 (0.476)
t = 0.9 ξA: 0.000 (0.159) 0.660 (0.536) 4.000 (0.305)

ξD: 0.000 (0.260) 0.660 (0.370) 4.000 (0.370)
N = 501
t = 0 ξA: 0.504 (0.670) 4.000 (0.330)

ξD: 0.664 (0.500) 4.000 (0.500)
t = 0.3 ξA: 0.536 (0.662) 4.000 (0.338)

ξD: 0.664 (0.500) 4.000 (0.500)
t = 0.7 ξA: 0.632 (0.642) 4.000 (0.358)

ξD: 0.000 (0.048) 0.664 (0.476) 4.000 (0.476)
t = 0.9 ξA: 0.000 (0.158) 0.664 (0.536) 4.000 (0.306)

ξD: 0.000 (0.260) 0.664 (0.370) 4.000 (0.370)

speed of reaction, and x is the substrate concentration. Optimal designs for this

model have been studied by many authors, including Dette, Melas and Wong

(2005) and Yang and Stufken (2009). Table 2 lists representative results of ξA

and ξD for various values of t and N for the model with α = 1, β = 1, and

SN = {4(i− 1)/(N − 1) : i = 1, · · · , N} ⊂ [0, 4]. By Theorem 6 the D-optimal

designs do not depend on the value of α, but the A-optimal designs depend on α

from the numerical results. For large N , the CVX and SeDuMi programs were

much faster than the multiplicative algorithms. In fact, the A-optimal designs

in Table 2 were all calculated by the SeDuMi program. The A-optimal and D-

optimal designs depend on t. For small t there are two support points, while for

large t there are three support points. When t = 0, the results give the optimal

designs based on the OLSE and they match the results shown in the website

(http://optimal-design.biostat.ucla.edu/optimal/OptimalDesign.aspx). The number

http://optimal-design.biostat.ucla.edu/optimal/OptimalDesign.aspx
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Table 3. A-efficiency and D-efficiency for the optimal designs in Examples 3 and 4.

Example 3 with design space S9,2 Example 4 with N = 501
t EffA EffD EffA EffD

0.0 1.000 1.000 1.000 1.000
0.3 1.000 1.000 0.997 0.999
0.7 1.000 1.000 0.963 0.996
0.9 0.836 0.975 0.704 0.739

of support points for t = 0 also agrees with the result in Yang and Stufken (2009).

4.2. A-efficiency and D-efficiency

To compare optimal designs based on the SLSE and the OLSE, we define

A-efficiency and D-efficiency measures as follows. Let

a1(ξ) = tr
(
Cov(θ̂SLS)

)
= tr

(
(1− t)σ20

(
G2 − tg1g>1

)−1)
,

d1(ξ) = det
(
Cov(θ̂SLS)

)
= det

(
(1− t)σ20

(
G2 − tg1g>1

)−1)
,

and take the A-efficiency and D-efficiency measures as,

EffA =
a1(ξ

A
SLS)

a1(ξAOLS)
, EffD =

(
d1(ξ

D
SLS)

d1(ξDOLS)

)1/q

,

where ξASLS and ξDSLS are the A- and D-optimal designs based on the SLSE, and

ξAOLS and ξDOLS are based on the OLSE. Since the SLSE is more efficient than

the OLSE, all the measures are evaluated using the covariance of the SLSE. If

EffA < 1 (EffD < 1), then ξASLS (ξDSLS) is more A-efficient (D-efficient) than ξAOLS
(ξDOLS).

We computed the efficiency measures for the examples in Section 4.1, and

representative results are given in Table 3. For small t the optimal designs based

on the SLSE and the OLSE are similar, which is consistent with the results in

Tables 1 and 2. For large t, the optimal designs based on the SLSE can be much

more efficient than those based on the OLSE for some models.

5. Discussion

If the design space S is not discrete, such as a closed interval, we can dis-

cretize it and then use the methods in this paper to construct optimal designs.

Gao and Zhou (2014, 2015) obtained some results for the D-optimal designs on

closed interval design spaces. Several results here for A-optimal designs can also
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be extended to closed interval design spaces. For any ξ(x) on a closed interval,

we can define matrix B(ξ) similarly to the one in (2.8), but using g1 and G2 in

(2.3). The expression for the A-optimality criterion in Theorem 3 can be easily

modified using B(ξ). The definition of transformation invariance can be changed

slightly by including all discrete and continuous distributions, and the invariance

property can be studied for the A-optimal designs. Furthermore, the number

of support points in optimal designs can be investigated analytically, a future

research topic.

Supplementary Materials

Supplementary Materials are posted on the journal’s website, where two

more examples of A- and D-optimal designs are presented. Example 5 is for

compartmental models, and Example 6 is for an Emax model. The results show

that SeDuMi and CVX can work faster than the multiplicative algorithm for

large N . The proofs of Theorems 3 , 4, and 6 are there.
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Appendix: Proofs

Let I1 = {1, · · · ,m, (N −m+ 1), · · · , N} and I2 = {(m+ 1), · · · , (N −m)}.
If m = N/2, I2 is an empty set.

Proof of Theorem 1: Using ξA(x), we define a distribution ξλ(x) having weight

vector w(λ) with elements wi(λ) = (1− λ)wAi + λwAN+1−i for i ∈ I1 and wi(λ) =

wAi for i ∈ I2, for λ ∈ [0, 1]. Since SN is T -invariant, it is obvious that distribution

ξ0.5(x) is T -invariant.

We show that φ1(w(λ)) ≤ φ1(w
A), where φ1 is defined in (2.7). For fixed

weight wA, the elements of w(λ) are linear functions of λ. From Lemma 1,

φ1(w) is a convex function of w, so φ1(w(λ)) is a convex function of λ. Notice

that w(0) = wA and w(1) = rev(wA). By (2.7) and (2.9), we have φ1(w(0)) =

φ1(w(1)). Using the convex property, we get
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φ1(w(λ)) ≤ (1− λ)φ1(w(0)) + λφ1(w(1)) = φ1(w(0)) = φ1(w
A).

Since ξA(x) minimizes φ1(w), we must have φ1(w(λ)) = φ1(w
A), for all λ ∈ [0, 1].

This implies that ξλ(x) is also an A-optimal design. Thus, there exists an A-

optimal design ξ0.5(x) that is T -invariant.

Proof of Theorem 2: (i) For T -invariant SN , we have Tui = uN+1−i for i ∈ I1
and Tui = ui for i ∈ I2. If there exists a q×q constant matrix Q with Q>Q = Iq
such that f(Tx;θ0) = Q f(x;θ0) for all x ∈ SN , we have, from (2.6),

g1(rev(w)) =
∑
i∈I1

wN+1−if(ui;θ0) +
∑
i∈I2

wif(ui;θ0)

=
∑
i∈I1

wif(uN+1−i;θ0) +
∑
i∈I2

wif(ui;θ0)

=

N∑
i=1

wif(Tui;θ0) =

N∑
i=1

wiQ f(ui;θ0) = Q g1(w),

and similarly,G2(rev(w)) = QG2(w) Q>. Since A(w) = G2(w)−tg1(w)g>1 (w),

it is clear that A(rev(w)) = Q A(w) Q>. Thus,

tr
(

(A(rev(w)))−1
)

= tr

((
Q A(w) Q>

)−1)
= tr

((
Q>
)−1

(A(w))−1 Q−1
)

= tr
(

(A(w))−1
)
, from Q>Q = Iq,

which implies that the condition in (2.9) holds.

(ii) The proof is similar to that in part (i) and is omitted.

Proof of Theorem 5: (i) If w̃∗ is a solution to (3.4), then A(w̃∗) � 0 (positive

definite) and B(w̃∗) � 0 by (2.7) and Theorem 3. Let

v∗ = (v∗2, · · · , v∗q+1)
> = (e>2 (B(w̃∗))−1 e2, · · · , e>q+1 (B(w̃∗))−1 eq+1)

>.

Then, from (3.6) Bi � 0, for i = 2, · · · , q + 1 and the constraint in (3.7) is

satisfied. For any w̃ satisfying D(w̃) � 0 and B(w̃) � 0, we get

q+1∑
i=2

v∗i =

q+1∑
i=2

e>i (B(w̃∗))−1 ei

= tr
(
C (B(w̃∗))−1

)
= φ1(w̃

∗), from Theorem 3,

≤ φ1(w̃), from w̃∗ being a solution to problem (3.4),

=

q+1∑
i=2

e>i (B(w̃))−1 ei
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≤
q+1∑
i=2

vi, from Bi � 0,

which implies that (w̃∗,v∗) is a solution to (3.7).

(ii) Suppose that (w̃∗,v∗) is a solution to (3.7). Since Bi � 0, we must have

B(w̃∗) � 0. For any w̃ satisfying D(w̃) � 0 and B(w̃) � 0, we have

φ1(w̃
∗) = tr

(
C (B(w̃∗))−1

)
, from Theorem 3,

=

q+1∑
i=2

e>i (B(w̃∗))−1 ei

≤
q+1∑
i=2

v∗i , from Bi � 0,

≤
q+1∑
i=2

vi, from ṽ∗ being a solution to problem (3.7),

=

q+1∑
i=2

e>i (B(w̃))−1 ei, by choosing vi = e>i (B(w̃))−1 ei,

= φ1(w̃).

Thus, w̃∗ is a solution to (3.4).
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