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The supplementary material contains all proofs. The proofs of the main results (Theorem 1,

Corollary 1 and Theorem 3) and the bootstrap versions (Theorems 2 and 4) are contained in

Sections S1 and S2, respectively. Technical details needed in the proofs of those results can

be found in Section S3.3. Finally, Section S3.1 contains basic results on linearized versions

and differentiability of the quantile estimator q̂τ , scale estimator ŝ and the corresponding

bootstrap versions, while Section S3.2 contains additional technical details.

S1 Proof of weak convergence results

Proof of Theorem 1. For the numerator F̄X,ε,n(t, y) = F̂X,ε,n(t, y)(F̂X,n(1 − 2hn) −
F̂X,n(2hn)) of the joint empirical distribution function defined in (3.2) we have

F̄X,ε,n(t, y) =
1

n

n∑
i=1

I
{
εi ≤ y

ŝ(Xi)

s(Xi)
+
q̂τ (Xi)− qτ (Xi)

s(Xi)

}
I{2hn < Xi ≤ t}.

Note that in Lemma 9 it is shown that without changing the asymptotic distribution of the

process the residuals ε̂i can be replaced by their versions obtained from linearized estimators

q̂τ,L, ŝL instead of q̂τ , ŝ (see Section S3.1 for the definitions). Thus we have

F̄X,ε,n(t, y) =
1

n

n∑
i=1

I
{
εi ≤ y

ŝL(Xi)

s(Xi)
+
q̂τ,L(Xi)− qτ (Xi)

s(Xi)

}
I{2hn < Xi ≤ t}+ oP (

1√
n

).

From this we obtain the expansion

F̄X,ε,n(t, y) =
1

n

n∑
i=1

I{εi ≤ y}I{2hn < Xi ≤ t}
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+

∫ 1−2hn

2hn

(
Fε

(
y
ŝL(x)

s(x)
+
q̂τ,L(x)− qτ (x)

s(x)

)
− Fε(y)

)
I{x ≤ t}fX(x) dx (S1.1)

+ oP (
1√
n

)

uniformly with respect to t ∈ [2hn, 1 − 2hn] and y ∈ R by the following argumentation.

Consider the empirical process

Gn(ϕ) =
1√
n

n∑
i=1

(
ϕ(Xi, εi)− E[ϕ(Xi, εi)]

)
, ϕ ∈ F ,

indexed by the following class of functions,

F =
{

(X, ε) 7→ I{ε ≤ yd2(X) + d1(X)}I{h < X}I{X ≤ t} − I{ε ≤ y}I{h < X}I{X ≤ t}∣∣∣ y ∈ R, h, t ∈ [0, 1], d1 ∈ C1+δ
1 ([0, 1]), d2 ∈ C̃1+δ

2 ([0, 1])
}
,

for some arbitrary δ ∈ (0, 1), where the function class C1+δ
c ([0, 1]) is defined as the set of

differentiable functions g : [0, 1]→ R with derivatives g′ such that

max
{

sup
x∈[0,1]

|g(x)|, sup
x∈[0,1]

|g′(x)|
}

+ sup
x,z∈[0,1]

|g′(x)− g′(z)|
|x− z|δ

≤ c

[see van der Vaart and Wellner (1996, p. 154)]. We further by slight abuse of notation define

the subset C̃1+δ
2 ([0, 1]) of C1+δ

1 ([0, 1]) by the additional constraint infx∈[0,1] g(x) ≥ 1/2. Now F
is a product of the uniformly bounded Donsker classes {(X, ε) 7→ I{h < X}I{X ≤ t}|h, t ∈
[0, 1]} and {(X, ε) 7→ I{ε ≤ yd2(X) + d1(X)} − I{ε ≤ y}|y ∈ R, d1 ∈ C1+δ

1 ([0, 1]), d2 ∈
C̃1+δ

2 ([0, 1])} [the Donsker property for the second class is shown in Lemma 1 by Akritas

and Van Keilegom (2001)] and is therefore Donsker as well (Ex. 2.10.8, van der Vaart and

Wellner (1996), p. 192). The remaining part of the proof for equality (S1.1) follows exactly

the lines of the end of the proof of Lemma 1, Akritas and Van Keilegom (2001), p. 567, using

the inequality

Var
(
I{ε1 ≤ yd2(X1) + d1(X1)}I{h < X1}I{X1 ≤ s} − I{ε1 ≤ y}I{h < X1}I{X1 ≤ s}

)
≤ E

[(
I{ε1 ≤ yd2(X1) + d1(X1)} − I{ε1 ≤ y}

)2]
.

Here one also needs ŝL/s ∈ C̃1+δ
2 ([0, 1]), (q̂τ,L−qτ )/s ∈ C1+δ

1 ([0, 1]) with probability converg-

ing to one, which follows from uniform consistency results in Lemma 1. For ϕ = ϕh,t,y,d1,d2
we obtain

sup
y∈R,

t∈[2hn,1−2hn]

∣∣∣Gn

(
ϕ
2hn,t,y,

q̂τ,L−qτ
s

,
ŝL
s

)∣∣∣ = oP (1)

and thus (S1.1).
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Further, by a Taylor expansion we obtain from (S1.1) together with assumption (A4) that

F̄X,ε,n(t, y) =
1

n

n∑
i=1

I{εi ≤ y}I{2hn < Xi ≤ t}+ yfε(y)

∫ 1−2hn

2hn

ŝL(x)− s(x)

s(x)
I{x ≤ t}fX(x) dx

+ fε(y)

∫ 1−2hn

2hn

q̂τ,L(x)− qτ (x)

s(x)
I{x ≤ t}fX(x) dx+ oP (

1√
n

)

uniformly with respect to t ∈ [2hn, 1 − 2hn] and y ∈ R. In Lemma 10 expansions of the

integrals in this decomposition are derived and it follows that

F̄X,ε,n(t, y) (S1.2)

=
1

n

n∑
i=1

I{εi ≤ y}I{2hn < Xi ≤ t} − φ(y)
1

n

n∑
i=1

(I{εi ≤ 0} − τ)I{2hn < Xi ≤ t}

− ψ(y)
1

n

n∑
i=1

(
I{|εi| ≤ 1} − 1

2

)
I{2hn < Xi ≤ t}+ oP (

1√
n

),

where φ and ψ are defined in the assertion of the theorem. Thus noting that F̂X,n(1−2hn)−
F̂X,n(2hn) = FX(1− 2hn)−FX(2hn) + oP (1) = 1 + oP (1), from the definition (3.3) we obtain

by Slutsky’s lemma that

Sn(t, y) =
1√
n

n∑
i=1

(
I{εi ≤ y} − Fε(y)− φ(y)(I{εi ≤ 0} − τ)− ψ(y)

(
I{|εi| ≤ 1} − 1

2

))
×
(
I{2hn < Xi ≤ t} − I{2hn < Xi ≤ 1− 2hn}

F̂X,n(t)− F̂X,n(2hn)

F̂X,n(1− 2hn)− F̂X,n(2hn)

)
+ oP (1).

uniformly with respect to t ∈ [2hn, 1 − 2hn] and y ∈ R. Note that the dominating part

of this process vanishes in the boundary points t = 2hn and t = 1 − 2hn. Further, from

F̂X,n(t) = FX(t) + OP (n−1/2) uniformly in t ∈ [0, 1] and FX(2hn)→ 0, FX(1− 2hn)→ 1 we

have

Sn(t, y) = Sn,1(t, y) + oP (1),

uniformly with respect to t ∈ [0, 1], y ∈ R, where Sn,1(t, y) = 0 for t ∈ [0, 2hn) ∪ (1− 2hn, 1]

and

Sn,1(t, y) =
1√
n

n∑
i=1

g(εi, y)
(
I{2hn < Xi ≤ t} − I{2hn < Xi ≤ 1− 2hn}FX(t)

)
for t ∈ [2hn, 1− 2hn] and y ∈ R, where g(εi, y) = I{εi ≤ y}− Fε(y)− φ(y)(I{εi ≤ 0}− τ)−
ψ(y)(I{|εi| ≤ 1} − 1

2
) is centered and independent of Xi. The first assertion of the theorem
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now follows if we show that for

Sn,2(t, y) =
1√
n

n∑
i=1

g(εi, y)
(
I{Xi ≤ t} − FX(t)

)
, t ∈ [0, 1], y ∈ R,

we have supt∈[0,1],y∈R |Sn,1(t, y)− Sn,2(t, y)| = oP (1), which is equivalent to

sup
t∈[2hn,1−2hn],y∈R

|Sn,1(t, y)− Sn,2(t, y)| = oP (1) (S1.3)

together with

sup
t∈[0,2hn)∪(1−2hn,1],y∈R

|Sn,2(t, y)| = oP (1). (S1.4)

We will only show (S1.3); (S1.4) follows by similar arguments. Note that Sn,1(t, y) −
Sn,2(t, y) = Gn(hn, t, y) for t ∈ [2hn, 1− 2hn], y ∈ R, where the process

Gn(h, t, y) =
−1√
n

n∑
i=1

g(εi, y)(I{Xi ≤ t} − FX(t))I{Xi ∈ [0, 2h) ∪ (1− 2h, 1]}

indexed in h ∈ [0, 1
4
], t ∈ [0, 1], y ∈ R, converges weakly to a centered Gaussian process G

with asymptotic variance

Var(G(h, t, y)) = E[g2(ε1, y)]
(

(FX(t ∧ 2h) + FX(t)− FX(t ∧ (1− 2h)))(1− 2FX(t))

+ F 2
X(t)(FX(2h) + 1− FX(1− 2h))

)
.

For h = hn → 0 this asymptotic variance vanishes uniformly with respect to y and t. From

asymptotic equicontinuity of Gn (confer van der Vaart and Wellner, 1996, p. 89/90), using the

asymptotic variance as semi-metric, with Gn(0, t, y) ≡ 0 it follows that supt,y |Gn(hn, t, y)| =
oP (1) and thus (S1.3).

Hence, we have shown the first assertion of the theorem, i. e. Sn = Sn,2 + oP (1) uniformly.

Weak convergence of Sn,2 (and thus of Sn) to a centered Gaussian process with the asserted

covariance structure follows by standard arguments. 2

Proof of Corollary 1. The asymptotic distribution of Kn directly follows from Theorem

1 and the continuous mapping theorem. From those theorems also follows that

C̃n =

∫
R

∫
[0,1]

S2
n(t, y)FX(dt)Fε(dy)

converges in distribution to the desired limit. It therefore remains to show that Cn − C̃n =

oP (1). To this end denote

C̃(1)
n =

∫
R

∫
[0,1]

S2
n(F−1X (F̂X,n(t)), F−1ε (F̂ε,n(y))) F̂X,n(dt) F̂ε,n(dy)
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and let %n be some sequence specified later with %n →∞ for n→∞. Then

|Cn − C̃(1)
n | ≤

∣∣∣ ∫
[−%n,%n]

∫
[0,1]

(
S2
n(t, y)− S2

n(F−1X (F̂X,n(t)), F−1ε (F̂ε,n(y)))
)
F̂X,n(dt) F̂ε,n(dy)

∣∣∣
+ 2 sup

t,y
|S2
n(t, y)|

∫
R\[−%n,%n]

F̂ε,n(dy).

The second term on the right hand side is OP (1)(1 − F̂ε,n(%n) + F̂ε,n(−%n)) = oP (1) due to

the results from Theorem 1 and because %n → ∞ and F̂ε,n converges to Fε uniformly in

probability (this follows from the proof of Theorem 1). The first term on the right hand side

can further be bounded by

2 sup
t,y
|Sn(t, y)| sup

t∈[0,1]
y∈[−%n,%n]

∣∣∣Sn(t, y)− Sn(F−1X (F̂X,n(t)), F−1ε (F̂ε,n(y)))
∣∣∣.

From Theorem 1 it follows that the process Sn is asymptotically stochastic equicontinuous

such that we obtain the desired rate oP (1) from

sup
t∈[0,1]|

|t− F−1X (F̂X,n(t))| ≤ sup
ξ∈[0,1]

1

fX(ξ)
sup
t∈[0,1]

|F̂X,n(t)− FX(t)| = oP (1)

by assumption (A1) and

sup
y∈[−%n,%n]

|y−F−1ε (F̂ε,n(y)))| ≤ sup
y∈[−%n,%n]

sup
ζ between

Fε(y) and F̂ε,n(y)

1

fε(F−1ε (ζ))
sup
y∈R
|F̂ε,n(y)−Fε(y)| = oP (1).

The latter rate follows because supy∈R |F̂ε,n(y)− Fε(y)| = OP (n−1/2) (which can be deduced

by F̂ε,n(·) = FX,ε,n(1−2hn, ·)/(F̂X,n(1−2hn)−F̂X,n(2hn)) and (S1.2) in the proof of Theorem

1) if we choose a sequence %n such that n1/2 infy∈[−2%n,2%n] fε(y) → ∞ for n → ∞. This is

possible by assumption (A4).

We have shown Cn − C̃(1)
n = oP (1) and it remains to show that C̃n − C̃(1)

n = oP (1). To this

end, note that almost surely

C̃n − C̃(1)
n =

∫
[0,1]

∫
[0,1]

S2
n(F−1X (s), F−1ε (z)) ds dz − 1

n2

n∑
i=1

n∑
j=1

S2
n(F−1X ( i

n
), F−1ε ( j

n
))

=
n∑
i=1

n∑
j=1

∫
[ i−1
n
, i
n
)

∫
[ j−1
n
, j
n
)

(
S2
n(F−1X (s), F−1ε (z))− S2

n(F−1X ( i
n
), F−1ε ( j

n
))
)
ds dz.

We decompose the second sum into
∑jn

j=1 . . . +
∑n

j=Jn+1 . . . +
∑Jn

j=jn+1 . . . for sequences of

integers with 1 ≤ jn < Jn ≤ n and jn/n→ 0, Jn/n→ 1 for n→∞. We obtain

|C̃n − C̃(1)
n | ≤ 2

jn + n− Jn
n

sup
t,y
|S2
n(t, y)|

+ 2 sup
t,y
|Sn(t, y)| sup

|s−u|≤ 1
n

s,u∈[0,1]

sup
|z−v|≤ 1

n

z,v∈[ jnn , Jnn ]

|Sn(F−1X (s), F−1ε (z))− Sn(F−1X (u), F−1ε (v))|.
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By asymptotic stochastic equicontinuity of Sn this converges to zero in probability if

sup
|s−u|≤ 1

n
s,u∈[0,1]

|F−1X (s)− F−1X (u)| → 0

which follows from assumption (A1) and the mean value theorem, and

sup
|z−v|≤ 1

n

z,v∈[ jnn , Jnn ]

|F−1ε (z)− F−1ε (v)| → 0

which can be guaranteed by assumption (A4) and the mean value theorem if jn/n and Jn/n

converge slowly enough. 2

Proof of Theorem 3. The assertion follows from Theorem 1 if we show that uniformly

with respect to t ∈ [0, 1] and y ∈ R, Sn(t, y) = Sn,I(t, y) + oP (1). To this end, observe

that as in the proof of Theorem 1 we can replace the estimators q̂τ and ŝ by their linearized

versions q̂τ,L and ŝL in the definition of Sn without changing the asymptotic properties.

Denote the corresponding version of the process by Sn,L. Similarly, in the definition of Sn,I

the estimators q̂τ,I and ŝ can be replaced by q̂τ,L,I = Γn(q̂τ,L) and ŝL, where q̂τ,L,I denotes

the increasing rearrangement of the linearized estimator q̂τ,L. More precisely, denoting this

version of the process by Sn,L,I , we will show that

sup
t∈[0,1],y∈R

|Sn,L,I(t, y)− Sn,I(t, y)| = oP (1). (S1.5)

To see this, let c = infx∈[0,1] q
′
τ (x) and note that by our assumptions c > 0 and by Lemma 1

we have for the set Ωn := {supx∈[hn,1−hn] |q̂′τ,L(x)− q′τ (x)| ≤ c
2
} that P (Ωn)→ 1 for n→∞.

Observe that by a straightforward modification of the proof of Theorem 3.1 (a) in Neumeyer

(2007), we have on the set Ωn

sup
x∈[hn,1−hn]

|Γn(q̂τ,L)(x)− Γn(q̂τ )(x)| ≤ C sup
x∈[hn,1−hn]

|q̂τ,L(x)− q̂τ (x)|

for a universal constant C which is independent of n. Thus Lemma 2 together with P (Ωn)→
1 implies that

sup
x∈[hn,1−hn]

|Γn(q̂τ,L)(x)− Γn(q̂τ )(x)| = oP (n−1/2).

Additionally, observe that the estimator q̂τ,L is strictly increasing provided that the event Ωn

holds, which implies that P (q̂τ,L ≡ Γn(q̂τ,L)) ≥ P (Ωn)→ 1. Now similar arguments as those

used in the proof of Lemma 9 show that, defining FX,εL,I ,n in the same manner as F̂X,εI ,n

but with ε̂i,L,I := (Yi − Γn(q̂τ,L)(x))/ŝ(Xi) instead of εi,I , we have

F̂X,εI ,n(t, y) = F̂X,εL,I ,n(t, y) + oP (n−1/2)
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uniformly on x ∈ [2hn, 1− 2hn], y ∈ R. Combining this with arguments which are similar to

those in the proof of Theorem 1, this shows the validity of (S1.5). Next, note that on Ωn

the estimator q̂τ,L is strictly increasing. For every ε > 0 it follows that

P
(

sup
t∈[2hn,1−2hn],y∈R

|Sn,L,I(t, y)− Sn,L(t, y)| > ε
)

= P
(

sup
t∈[2hn,1−2hn],y∈R

|Sn,L,I(t, y)− Sn,L(t, y)| > ε
)

+ o(1)

≤ P
(

sup
t∈[2hn,1−2hn],y∈R

|Sn,L,I(t, y)− Sn,L(t, y)| > ε , sup
x∈[hn,1−hn]

|q̂′τ,L(x)− q′τ (x)| ≤ c

2

)
+ o(1)

(∗)
≤ P

(
sup

t∈[2hn,1−2hn],y∈R
|Sn,L,I(t, y)− Sn,L(t, y)| > ε , inf

x∈[hn,1−hn]
q̂′τ,L(x) > 0

)
+ o(1)

= o(1).

Here the last equality is due to the following argumentation. If infx∈[hn,1−hn] q̂
′
τ,L(x) > 0,

then q̂τ,L is strictly increasing, and for any increasing function the increasing rearrangement

equals the original function function and we have q̂τ,L,I = q̂τ,L (see Section 4). But then,

Sn,L(t, y) = Sn,L,I(t, y) for all t ∈ [2hn, 1 − 2hn], y ∈ R and the probability in (∗) is zero.

Finally, similar arguments as those in the proof of Theorem 1 show that, uniformly with

respect to t ∈ [0, 2hn) ∪ (1 − 2hn, 1], y ∈ R, we have Sn,L,I(t, y) = Sn,L(t, y) + oP (1). This

completes the proof. 2

S2 Validity of bootstrap

Preliminaries.

Let f̃ε denote the density corresponding to F̃ε. Then under assumptions (B1) analogous to

Lemma 2 in Neumeyer (2009) it can be shown that

sup
y∈R
|f̃ε(y)− fε(y)| = oP ((

hn
log n

)1/2), sup
y∈R
|yf̃ε(y)− yfε(y)| = oP (1) (S2.1)

sup
y,z∈R

|f̃ε(y)− f(y)− f̃ε(z) + f(z)|
|y − z|δ/2

= oP (1), sup
y∈R
|F̃ε(y)− F (y)| = oP (1)

(with δ from assumption (B1)). Further note that under assumption (B2), Proposition 4

in Neumeyer (2009) is valid (with υ from assumption (B2)) and it follows that (for some

constants d and L) we have F̃ε ∈ D with probability converging to one. Here the function

class is defined as

D =
{
F : R→ [0, 1]

∣∣∣ F increasing and continuously differentiable with derivative

f such that sup
x∈R
|f(x)|+ sup

x,x′

|f(x)− f(x′)|
|x− x′|δ/2

≤ L,
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|1− F (x)| ≤ d

xυ
∀x > 0 and |F (x)| ≤ d

|x|υ
∀x < 0

}
. (S2.2)

From Lemma 4 in Neumeyer (2009) and the conditions on δ and υ in assumption (B2) it

follows that

logN(ε,D, || · ||∞) = O(ε−a) for some a < 1. (S2.3)

Proof of Theorem 2.

In Lemma 9 it is shown that in the process F̂ ∗X,ε,n the residuals ε̂∗i can be replaced by linearized

versions ε̂∗i,L (see Section S3.1 for the definitions). Using this, the preliminaries above as well

as Lemma 1 (instead of Lemma 3 in Neumeyer (2009)) we obtain analogously to the proofs

of Lemma 1(i) and Theorem 2 in the reference that

F̂ ∗X,ε,n(t, y)

=
1

n

n∑
i=1

I{ε̂∗i,L ≤ y}I{4hn < Xi ≤ t}+ oP (
1√
n

)

=
1

n

n∑
i=1

I{ε∗i ≤ y}I{4hn < Xi ≤ t}

+

∫ (
F̃ε

(
y
ŝ∗L(x)

ŝL(x)
+
q̂∗τ,L(x)− q̂τ,L(x)

ŝL(x)

)
− F̃ε(y)

)
I{4hn < x ≤ t}fX(x) dx

+ oP (
1√
n

)

uniformly with respect to t ∈ (4hn, 1−4hn], y ∈ R. One can further apply a Taylor expansion

for F̃ε. Lemma 10 gives expansions for the remaining integrals and we obtain

F̂ ∗X,ε,n(t, y) =
1

n

n∑
i=1

I{4hn < Xi ≤ t}
(
I{ε∗i ≤ y} − ψ̃n(y)

(
I{|ε∗i | ≤ 1} − 1

2

)
− φ̃n(y)

(
I{ε∗i ≤ 0} − τ

))
+ oP (

1√
n

)

uniformly with respect to t ∈ (4hn, 1− 4hn], y ∈ R, where

ψ̃n(y) =
yf̃ε(y)

f|ε|(1)
, φ̃n(y) =

f̃ε(y)

fε(0)

(
1− yfε(1)− fε(−1)

f|ε|(1)

)
.

By the definition of the process S∗n one now directly has

S∗n(t, y)

=
1√
n

n∑
i=1

(
I{ε∗i ≤ y} − ψ̃n(y)

(
I{|ε∗i | ≤ 1} − 1

2

)
− φ̃n(y)

(
I{ε∗i ≤ 0} − τ

))
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×
(
I{4hn < Xi ≤ t} − I{4hn < Xi ≤ 1− 4hn}

F̂X,n(t)− F̂X,n(4hn)

F̂X,n(1− 4hn)− F̂X,n(4hn)

)
+ oP (1)

=
1√
n

n∑
i=1

gn(ε∗i , y)
(
I{4hn < Xi ≤ t} − I{4hn < Xi ≤ 1− 4hn}

F̂X,n(t)− F̂X,n(4hn)

F̂X,n(1− 4hn)− F̂X,n(4hn)

)
+ oP (1)

uniformly with respect to t ∈ (4hn, 1− 4hn], y ∈ R, with

gn(ε∗i , y)

= I{ε∗i ≤ y} − F̃ε(y)− φ̃n(y)
(
I{ε∗i ≤ 0} − F̃ε(0)

)
− ψ̃n(y)

(
I{|ε∗i | ≤ 1} − F̃ε(1) + F̃ε(−1)

)
.

Note that E[gn(ε∗i , y) | Yn] = 0 and the dominating part of the process S∗n vanishes in the

boundary points t = 4hn and t = 1 − 4hn, for all y ∈ R. Similarly to the corresponding

arguments in the proof of Theorem 1 (but with more technical effort) it can be shown

that this process is equivalent in terms of conditional weak convergence in `∞([0, 1]× R) in

probability to the process

S∗n,2(t, y) =
1√
n

n∑
i=1

gn(ε∗i , y)
(
I{Xi ≤ t} − F̂X,n(t)

)
, t ∈ [0, 1], y ∈ R.

Details are omitted for the sake of brevity.

To finish the proof we have to show that (conditional on Y = ((X1, Y1), (X2, Y2), . . .)) the

process S∗n,2 converges weakly to S in probability (n→∞). To this end we may show that

for each subsequence (nk)k there exists a further subsequence (nk`)` such that (conditional

on Y) S∗nk` ,2
converges weakly to S almost surely (` → ∞), cf. Sweeting (1989), p. 463. To

this end we choose a subsequence (nk`)` such that along this subsequence the convergences

in (S2.1) hold almost surely (` → ∞). To simplify notation for the remainder of the proof

we simply assume that the sequences in (S2.1) converge almost surely (n → ∞) and show

that then S∗n,2 converges weakly to S almost surely (n→∞).

It is easy to see that the conditional covariances Cov(S∗n,2(s, y), S∗n,2(t, z) | Y) converge almost

surely to Cov(S(s, y), S(t, z)) as defined in Theorem 1. Thus it remains to show conditional

tightness and conditional fidi convergence of S∗n,2. To obtain the latter we use Cramér-

Wold’s device. Let k ∈ N, (y1, t1), . . . , (yk, tk) ∈ R × [0, 1], a1, . . . , ak ∈ R and Zn =∑k
j=1 ajS

∗
n,2(tj, yj) = n−1/2

∑n
i=1 zn,i. Note that for some constant c, |gn(ε∗i , y)(I{Xi ≤ t} −

F̂X,n(t))| ≤ 1+c(1+y)f̃ε(y), which converges almost surely to 1+c(1+y)fε(y) due to (S2.1)

and thus is almost surely bounded. From this the validity of the conditional Lindeberg

condition easily follows, i. e.

Ln(δ) =
1

n

n∑
i=1

E[z2n,iI{|zn,i| > n1/2δ} | Y ]→ 0 almost surely, for all δ > 0.
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Finally, to prove conditional tightness we use the decomposition S∗n,2(t, y) =
∑3

k=0 U
(k)
n (t, y),

where

U (0)
n (t, y) =

1√
n

n∑
i=1

(
I{ε∗i ≤ y} − F̃ε(y)

)
I{Xi ≤ t}

U (1)
n (t, y) = −φ̃n(y)Vn,1(t)

with Vn,1(t) =
1√
n

n∑
i=1

(
I{ε∗i ≤ 0} − F̃ε(0)

)(
I{Xi ≤ t} − F̂X,n(t)

)
U (2)
n (t, y) = −ψ̃n(y)Vn,2(t)

with Vn,2(t) =
1√
n

n∑
i=1

(
I{|ε∗i | ≤ 1} − F̃ε(1) + F̃ε(−1)

)(
I{Xi ≤ t} − F̂X,n(t)

)
U (3)
n (t, y) = −F̂X,n(t)Wn(y) with Wn(y) =

1√
n

n∑
i=1

(
I{ε∗i ≤ y} − F̃ε(y)

)
.

Note that conditional weak convergence of Vn,1 and Vn,2 to centered Gaussian processes,

almost surely, can be shown analogously to the proof of bootstrap validity in Birke and

Neumeyer (2013). Further conditional weak convergence of Wn is completely analogous to

Theorem 4 by Neumeyer (2009). From uniform almost sure convergence of φn, ψn and F̂X,n

to bounded functions, conditional tightness of U
(k)
n follows for k = 1, 2, 3.

It remains to consider U
(0)
n . Applying Corollary 1 from Shorack and Wellner (1986), p. 622,

(set a = n−1, b = δ = 1
2
, λ =

√
n) and the Borel-Cantelli lemma one obtains the existence

of c ∈ (0,∞) such that with probability one

|F̂X,n(t)− F̂X,n(s)| ≤ c|s− t|1/2 ∀s, t with n−1∆−11 ≤ |s− t| ≤
1

2
∆2 (S2.4)

for all but finitely many n, where ∆1 = infx fX(x) > 0, ∆2 = supx fX(x) <∞.

We proceed by applying Theorem 2.11.9 by van der Vaart and Wellner (1996). Define

F := [0, 1]× R and for f = (t, y) let

Zni(f) :=
1√
n

(
I{ε∗i ≤ y} − F̃ε(y)

)
I{Xi ≤ t}.

Let η > 0 and let N[](η,F , Ln2 ) denote the minimal number of sets Nη in a partition of F in

subsets Fnηj, j = 1, . . . , Nη, such that for every Fnηj
n∑
i=1

E
[

sup
f,g∈Fnηj

|Zni(f)− Zni(g)|2
∣∣∣Y] ≤ η2. (S2.5)

Here the subsets are allowed to depend on n. Note also that we consider the conditional

probability measure P (· | Y), so the sequence (X1, Y1), (X2, Y2), . . . is given and the subsets

are allowed to depend on it. We distinguish two cases.
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1. Let n ≥ ∆−11 η−4.

Partition [0, 1] into L = O(η−4) intervals [t`−1, t`], ` = 1, . . . , L of length η4 ≤ t` − t`−1 ≤
2η4 (∀`). Partition R into K = O(η−2) intervals [yk−1, yk], k = 1, . . . , K, with F̃ε(yk) −
F̃ε(yk−1) ≤ η2 (using quantiles of the smooth distribution function F̃ε). The Nη = LK

intervals [t`−1, t`]× [yk−1, yk] define the subsets Fnηj, j = 1, . . . , Nη.

Now fix one subset and let f, g ∈ Fnηj = [t`−1, t`]× [yk−1, yk]. Then for monotonicity reasons

Zni(f) as well as Zni(g) are elements of the bracket [Zk,`,l
ni , Zk,`,u

ni ], where

Zk,`,l
ni =

1√
n

(
I{ε∗i ≤ yk−1}I{Xi ≤ t`−1} − F̃ε(yk)I{Xi ≤ t`}

)
Zk,`,u
ni =

1√
n

(
I{ε∗i ≤ yk}I{Xi ≤ t`} − F̃ε(yk−1)I{Xi ≤ t`−1}

)
.

Thus the left hand side of (S2.5) can be bounded by

n∑
i=1

E
[
(Zk,`,u

ni − Zk,`,l
ni )2

∣∣∣Y]
≤ 2

n

n∑
i=1

(I{Xi ≤ t`} − I{Xi ≤ t`−1})2

+
2

n

n∑
i=1

E
[(
I{ε∗i ≤ yk} − F̃ε(yk−1)− I{ε∗i ≤ yk−1}+ F̃ε(yk)

)2 ∣∣∣Y]
≤ 2

n

n∑
i=1

(I{Xi ≤ t`} − I{Xi ≤ t`−1})2

+
4

n

n∑
i=1

E
[
I{ε∗i ≤ yk} − I{ε∗i ≤ yk−1}+ F̃ε(yk)− F̃ε(yk−1)

∣∣∣Y]
≤ 2(F̂X,n(t`)− F̂X,n(t`−1)) + 8(F̃ε(yk)− F̃ε(yk−1))
≤ 2(F̂X,n(t`)− F̂X,n(t`−1)) + 8η2 ≤ Cη2, (S2.6)

where we have used (S2.4) and t`−t`−1 ≥ η4 ≥ n−1∆−11 , and the constant C does not depend

on n and η.

2. Let n < ∆−11 η−4.

As before we partition R into K = O(η−4) intervals [yk−1, yk], k = 1, . . . , K, with F̃ε(yk) −
F̃ε(yk−1) ≤ η2. We partition [0, 1] into n+2 = O(η−4) intervals I` = [t`−1, t`), ` = 1, . . . , n+1,

and In+2 = {1}, where t0 = 0, t` = X(`) for ` = 1, . . . , n and tn+1 = 1. Here X(1), . . . , X(n) de-

note the order statistics of X1, . . . , Xn. Now we proceed as in case 1 but replacing Zk,`,u
ni , Zk,`,l

ni

with

Z̃k,`,l
ni =

1√
n

(
I{ε∗i ≤ yk−1}I{Xi ≤ t`−1} − F̃ε(yk)I{Xi < t`}

)
Z̃k,`,u
ni =

1√
n

(
I{ε∗i ≤ yk}I{Xi < t`} − F̃ε(yk−1)I{Xi ≤ t`−1}

)
.
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By definition, Z̃k,`,l
ni ≤ Zni(f) ≤ Z̃k,`,u

ni for f = (t, y) ∈ [t`−1, t`) × [yk−1, yk]. Noting that

F̂X,n(t`−)− F̂X,n(t`−1) = 0 for all ` = 1, . . . , n + 1, we obtain by similar arguments as used

to derive (S2.6)

n∑
i=1

E
[
(Z̃k,`,u

ni − Z̃k,`,l
ni )2

∣∣∣Y] ≤ 2(F̂X,n(t`−)− F̂X,n(t`−1)) + 8η2 = 8η2.

The partitionings in both cases depend on n, but the bracketing number N[](η,F , Ln2 ) can

be bounded by O(η−8), independent of n, such that the condition∫ δn

0

√
logN[](η,F , Ln2 ) dη −→ 0 for every δn ↘ 0

is fulfilled (this corresponds to the third condition in Theorem 2.11.9 by van der Vaart and

Wellner (1996)). Further, because |Zni(f)| ≤ n−1/2 ∀f we have

n∑
i=1

E
[

sup
f∈F
|Zni(f)|I{sup

f∈F
|Zni(f)| > η}

∣∣∣Y] −→ 0 for every η > 0

(this corresponds to the first condition in Theorem 2.11.9 by van der Vaart and Wellner

(1996)). Moreover, (F , ρ) is a totally bounded semimetric space with ρ((s, y), (t, z)) =

|t − s| + |Fε(z) − Fε(y)|. Now for δn ↘ 0 we obtain similarly to the calculation in case 1

above (for some constant c),

sup
ρ(f,g)<δn

n∑
i=1

E
[
(Zni(f)− Zni(g))2

∣∣∣Y]
≤ c

(
sup
|t−s|≤δn

|F̂X,n(t)− F̂X,n(s)|+ sup
z,y:

|Fε(z)−Fε(y)|≤δn

|F̃ε(z)− F̃ε(y)|
)

= o(1) almost surely

by uniform convergence of F̂X,n to FX and F̃ε to Fε (this corresponds to the second condition

in Theorem 2.11.9 by van der Vaart and Wellner (1996)) and uniform continuity of FX . From

Theorem 2.11.9 one obtains

lim
δ↘0

lim
n→∞

P

(
sup

ρ((s,y),(t,z))<δ

|Ũ (0)
n (s, y)− Ũ (0)

n (t, z)| > η

∣∣∣∣ Y) = 0 for all η > 0

for almost all sequences Y . This completes the proof. 2

Proof of Theorem 4.

Theorem 4 follows from Theorem 2 in the same manner as Theorem 3 follows from Theorem

1. 2
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S3 Technical results

We begin by recalling some notation from the main body of the paper that will be used

throughout the proofs.

One fact that we will use throughout is that the bootstrap residuals ε∗i can be represented

as ε∗i = F̃−1ε (Ui) where U1, ..., Un denote a sample of i.i.d. U [0, 1] random variables that are

independent of the original sample and

F̃ε(y) =

1
n

∑n
i=1 Φ

(
y−ε̂i
αn

)
I{2hn < Xi ≤ 1− 2hn}

F̂X,n(1− 2hn)− F̂X,n(2hn)

denotes the distribution function of ε∗1 conditional on the sample, see (3.4). Additionally, we

will use the abbreviation

rn :=
( log n

nhn

)1/2
.

Next, we introduce some additional notation that will be used throughout. First, introduce

the functional

QG,κ,τ,bn(F ) := G−1
( 1

bn

∫ 1

0

∫ τ

−∞
κ
(F (G−1(u))− v

bn

)
dvdu

)
which is defined for arbitrary functions F that are uniformly bounded. Some properties of

this functional are collected in Lemma 6. Additionally, define the quantities

F̂ ∗Y (y|x) :=
n∑
i=1

Wi(x)Ω
(y − Y ∗i

dn

)
, q̂∗τ (x) := QG,κ,τ,bn(F̂ ∗Y (·|x)),

F̂ ∗|e|(y|x) :=
n∑
i=1

Wi(x)Ω
(y − |Y ∗i − q̂∗τ (Xi)|

dn

)
, ŝ∗(x) := QG,κ,1/2,bn(F̂ ∗|e|(·|x)).

where the weights Wi are the same as in equation (2.3). Observe that the estimators q̂τ , ŝ

which we introduced in the main body of the paper admit the representations

q̂τ (x) = QG,κ,τ,bn(F̂Y (·|x)), ŝ(x) := QG,κ,1/2,bn(F̂|e|(·|x)).

In Section S3.1, we will introduce linearized versions of the estimators q̂τ , q̂
∗
τ , ŝ, ŝ

∗, those will

be denoted by q̂τ,L, q̂
∗
τ,L, ŝL, ŝ

∗
L. Key results there are Lemma 1 and Lemma 2 which state that

the linearized versions are uniformly close to the original estimators and that the linearized

versions have certain smoothness properties, respectively. The rest of the supplement is

organized as follows. Section S3.1 contains results about the estimators q̂τ , q̂
∗
τ , ŝ, ŝ

∗ and their

linearizations. The proofs of those results require additional technical Lemmas, that we

collect and prove in Section S3.2. Finally, some key results which are used in the main body

of the paper and whose proofs rely on findings in Sections S3.1 and S3.2 can be found in

Section S3.3.
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S3.1 Properties of q̂τ and ŝ

We start this section by introducing some notation and giving an overview of the derived

results. Our first key result is an asymptotic representation of the form

F̂Y (y|x) = F̂Y,L,S(y|x) + oP (1/
√
n), F̂|e|(y|x) = F|e|,L,S(y|x) + oP (1/

√
n),

F̂ ∗Y (y|x) = F̂ ∗Y,L,S(y|x) + oP (1/
√
n), F̂ ∗|e|(y|x) = F ∗|e|,L,S(y|x) + oP (1/

√
n),

holding uniformly over x, y where the expressions on the right-hand side of the above equa-

tions are defined as

F̂Y,L,S(y|x) := FY (y|x) + ut1M(K)−1
(
Tn,0,L,S(x, y), . . . , Tn,p,L,S(x, y)

)t
,

F̂|e|,L,S(y|x) := F|e|(y|x) + ut1M(K)−1
(
T|e|,n,0,L,S(x, y), . . . , T|e|,n,p,L,S(x, y)

)t
,

F̂ ∗Y,L,S(y|x) := FY (y|x) + ut1M(K)−1
(
T ∗n,0,L,S(x, y), . . . , T ∗n,p,L,S(x, y)

)t
,

F̂ ∗|e|,L,S(y|x) := F|e|(y|x) + ut1M(K)−1
(
T ∗|e|,n,0,L,S(x, y), . . . , T ∗|e|,n,p,L,S(x, y)

)t
,

ut1 := (1, 0, ..., 0) denotes the first unit vector in Rp+1, M(K) denotes a (p + 1) × (p + 1)

matrix with entries

M(K)ij = µi+j−2(K) :=

∫
ui+j−2K(u)du,

and

Tn,k,L,S(x, y) :=
1

nh

n∑
i=1

1

fX(Xi)
Kh,k(x−Xi)

(
Ω
(y − Yi

dn

)
− FY (y|Xi)

)
,

T|e|,n,k,L,S(x, y) :=
1

nh

n∑
i=1

1

fX(Xi)
Kh,k(x−Xi)

(
Ω
(y − |Yi − q̂τ,L(Xi)|

dn

)
− F|e|(y|Xi)

)
,

T ∗n,k,L,S(x, y) :=
1

nh

n∑
i=1

1

fX(Xi)
Kh,k(x−Xi)

(
Ω
(y − Y ∗i

dn

)
− FY (y|Xi)

)
,

T ∗|e|,n,k,L,S(x, y) :=
1

nh

n∑
i=1

1

fX(Xi)
Kh,k(x−Xi)

(
Ω
(y − |Y ∗i − q̂∗τ,L(Xi)|

dn

)
− F|e|(y|Xi)

)
.

This, and further properties as differentiability and convergence rates of F̂Y,L,S(y|x), F̂|e|,L,S, F̂
∗
Y,L,S,

F̂ ∗|e|,L,S is the subject of Lemma 3.

The results in Lemma 6 and properties of the estimators F̂Y , F̂|e|, F̂
∗
Y , F̂

∗
|e| yield representa-

tions of the form

q̂τ (x) = q̂τ,L(x) + oP (n−1/2), ŝ(x) = ŝL(x) + oP (n−1/2),

q̂∗τ (x) = q̂∗τ,L(x) + oP (n−1/2), ŝ∗(x) = ŝ∗L(x) + oP (n−1/2)
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uniformly in x [see Lemma 2] where

q̂τ,L(x) := qτ (x)− 1

fe(0|x)

∫ 1

−1

(
F̂Y,L,S(qτ+vbn(x)|x)− FY (qτ+vbn(x)|x)

)
κ(v)dv

= qτ (x)− ut1M(K)−1

fe(0|x)

∫ 1

−1
κ(v)

(
Tn,0,L,S(x, qτ+vbn(x)), . . . , Tn,p,L,S(x, qτ+vbn(x))

)t
dv

ŝL(x) := s(x)− 1

f|ε|(1|x)

∫ 1

−1

(
F̂|e|,L,S(s1/2+vbn(x)|x)− F|e|(s1/2+vbn(x)|x)

)
κ(v)dv

= s(x)− ut1M(K)−1

f|ε|(1)

∫ 1

−1
κ(v)

(
T|e|,n,0,L,S(x, s1/2+vbn(x)), . . . , T|e|,n,p,L,S(x, s1/2+vbn(x))

)t
dv

q̂∗τ,L(x) := qτ (x)− 1

fe(0|x)

∫ 1

−1

(
F̂ ∗Y,L,S(qt+vbn(x)|x)− FY (qt+vbn(x)|x)

)
κ(v)dv

= qτ (x)− ut1M(K)−1

fe(0|x)

∫ 1

−1
κ(v)

(
T ∗n,0,L,S(x, qτ+vbn(x)), . . . , T ∗n,p,L,S(x, qτ+vbn(x))

)t
dv

ŝ∗L(x) := s(x)− 1

f|ε|(1)

∫ 1

−1

(
F̂ ∗|e|,L,S(s1/2+vbn(x)|x)− F|e|(s1/2+vbn(x)|x)

)
κ(v)dv

= s(x)− ut1M(K)−1

f|ε|(1)

∫ 1

−1
κ(v)

(
T ∗|e|,n,0,L,S(x, s1/2+vbn(x)), . . . , T ∗|e|,n,p,L,S(x, s1/2+vbn(x))

)t
dv

where sα(x) := F−1|e| (α|x). Differentiability properties and convergence rates of derivatives of

these estimators can obviously be derived from the corresponding properties of the underlying

distribution function estimators, see Lemma 1.

Lemma 1 Let (K1)-(K6), (A1)-(A5), (BW) hold. Then for any k ≤ 2

sup
x∈[hn,1−hn]

|q̂(k)τ,L(x)− q(k)τ (x)| = OP

( log h−1n
nhn(hn ∧ dn)2k

)1/2
= oP (1),

sup
x∈[2hn,1−2hn]

|ŝ(k)L (x)− s(k)(x)| = OP

( log h−1n
nhn(hn ∧ dn)2k

)1/2
= oP (1),

and under (B1)-(B2) it follows that

sup
x∈[3hn,1−3hn]

|(q̂∗τ,L)(k)(x)− q(k)τ (x)| = OP

( log h−1n
nhn(hn ∧ dn)2k

)1/2
= oP (1),

sup
x∈[4hn,1−4hn]

|(ŝ∗L)(k)(x)− s(k)(x)| = OP

( log h−1n
nhn(hn ∧ dn)2k

)1/2
= oP (1).

Proof of Lemma 1 Since all claims share the same structure, we will only establish that

sup
x∈[hn,1−hn]

|q̂(k)τ,L(x)− q(k)τ (x)| = OP

( log h−1n
nhn(hn ∧ dn)2k

)1/2
= oP (1).
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Observe that by definition of q̂τ,L we have

q̂
(k)
τ,L(x)− q(k)τ (x) = − ∂k

∂xk

( 1

fe(0|x)

∫ 1

−1

(
F̂Y,L,S(qτ+vbn(x)|x)− FY (qτ+vbn(x)|x)

)
κ(v)dv

)
.

Observing that fe(0|x) = fε(0)/s(x), it suffices to show that

sup
x∈[hn,1−hn]
v∈[−1,1]

sup
m≤k

∣∣∣ ∂m
∂xm

(
F̂Y,L,S(qτ+vbn(x)|x)− FY (qτ+vbn(x)|x)

)∣∣∣ = OP

( log h−1n
nhn(hn ∧ dn)2k

)1/2
.

Now by Remark 2 in the main body of the paper, the function x 7→ qτ+vbn(x) is 2 times

continuously differentiable and its derivatives are bounded uniformly over x ∈ (0, 1), v ∈
[−1, 1]. Thus the above assertion follows from (i) of Lemma 3 combined with the chain rule

for derivatives. 2

Lemma 2 Let (K1)-(K6), (A1)-(A5), (BW) hold. Then

(i) sup
x∈[hn,1−hn]

|q̂τ (x)− q̂τ,L(x)| = oP (1/
√
n),

(ii) sup
x∈[2hn,1−2hn]

|ŝ(x)− ŝL(x)| = oP (1/
√
n),

and if additionally (B1)-(B2) hold, we also have

(iii) sup
x∈[3hn,1−3hn]

|q̂∗τ (x)− q̂∗τ,L(x)| = oP (1/
√
n),

(iv) sup
x∈[4hn,1−4hn]

|ŝ∗(x)− ŝ∗L(x)| = oP (1/
√
n).

Proof Since all assertions share a similar structure, we will only prove (iii). We begin by

stating and intermediate result which we will establish in the end.

sup
y∈R

sup
x∈[3hn,1−3hn]

|F̂ ∗Y (y|x)− FY (y|x)| = oP (1). (S3.7)

Note that, in contrast to the statements in Lemma 3 part (iii), the range for y is R instead

of a bounded set. Now let δ > 0, c0 > 0 be such that infx∈[0,1] inf |y−qτ (x)|≤2δ fY (y|x) ≥ c0 and

define

F ∗Y (y|x) := F̂ ∗Y (y|x)I{|y − qτ (x)| ≤ 2δ/c0}+ FY (y|x)I{|y − qτ (x)| > 2δ/c0}.

By the results in Lemma 3 parts (iii), (iii)’ we have

sup
y∈R

sup
x∈[3hn,1−3hn]

|F ∗Y (y|x)− FY (y|x)| = OP

( log n

nhn

)1/2
, (S3.8)
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and

sup
x∈[3hn,1−3hn]

sup
|y−qτ (x)|≤2δ/c0

|F ∗Y (y|x)− F̂ ∗Y,L,S(y|x)| = oP (n−1/2). (S3.9)

Moreover, as we shall prove later, we have

P
(
QG,κ,τ,bn(F̂ ∗Y (·|x)) = QG,κ,τ,bn(F ∗Y (·|x)) ∀x ∈ [3hn, 1− 3hn]

)
→ 1. (S3.10)

Now apply part (c) of Lemma 6 with F = F1 = FY (·|x), F2 = F ∗Y (·|x). A careful inspection

of the remainder terms in the statement of Lemma 6 part (c) shows that, uniformly in

x ∈ [3hn, 1− 3hn],

QG,κ,τ,bn(F ∗Y (·|x))−QG,κ,τ,bn(FY (·|x))

= − 1

fe(0|x)

∫ 1

−1
κ(v)

(
F ∗Y (qτ+vbn(x)|x)− FY (qτ+vbn(x)|x)

)
dv + oP (n−1/2). (S3.11)

An application of Lemma 6, part (a) with F = FY (·|x) shows that

QG,κ,τ,bn(FY (·|x)) = qτ (x) +O(b2n) = qτ (x) + o(n−1/2)

uniformly in x ∈ [0, 1]. Combining this with (S3.9), (S3.10) and (S3.11) and observing that

q̂∗τ (x) = QG,κ,τ,bn(F̂ ∗Y (·|x)) we obtain, uniformly in x ∈ [3hn, 1− 3hn],

q̂∗τ (x)− qτ (x)

= − 1

fe(0|x)

∫ 1

−1
κ(v)

(
F̂ ∗Y,L,S(qτ+vbn(x)|x)− FY (qτ+vbn(x)|x)

)
dv + oP (n−1/2).

Note that, by the definition of q̂∗τ,L(x), the leading term in this representation is equal to

q̂∗τ,L(x)− qτ (x). This implies statement (iii), and thus it remains to prove (S3.7) and (S3.10).

Proof of (S3.7) Define (with Wi the same as defined in (2.3))

F̂ ∗Y,U(y|x) :=
n∑
i=1

Wi(x)I{Y ∗i ≤ y}.

Since

F̂ ∗Y (y|x) = (F̂ ∗Y,U(·|x) ∗ 1

dn
ω(·/dn))(y)

and by the smoothness of FY , it suffices to prove that

sup
y∈R

sup
x∈[3hn,1−3hn]

|F̂ ∗Y,U(y|x)− FY (y|x)| = oP (1). (S3.12)

Now by the definition of Y ∗i we have

F̂ ∗Y,U(y|x) =
n∑
i=1

Wi(x)I{q̂τ (Xi) + ŝ(Xi)F̃
−1
ε (Ui) ≤ y} =

n∑
i=1

Wi(x)I
{
Ui ≤ F̃ε

(y − q̂τ (Xi)

ŝ(Xi)

)}
.
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From (S2.1) in the main body of the paper we obtain after a Taylor expansion

sup
x∈[3hn,1−3hn]

sup
y∈R

∣∣∣F̃ε(y − q̂τ (x)

ŝ(x)

)
− F̃ε

(y − qτ (x)

s(x)

)∣∣∣ = oP (1).

Since the conclusion of Lemma 2 in Neumeyer (2009) remains valid in our setting [see the

discussion in the beginning of Section S2], it follows that supz∈R |F̃ε(z)−Fε(z)| = oP (1) and

thus

sup
x∈[3hn,1−3hn]

sup
y∈R

∣∣∣F̃ε(y − q̂τ (x)

ŝ(x)

)
− Fε

(y − qτ (x)

s(x)

)∣∣∣ = oP (1).

Thus there exists a deterministic sequence γn → 0 such that P (Dn) → 1 where we defined

the event

Dn :=
{

sup
x∈[3hn,1−3hn]

sup
y∈R

∣∣∣F̃ε(y − q̂τ (x)

ŝ(x)

)
− Fε

(y − qτ (x)

s(x)

)∣∣∣ ≤ γn

}
.

Additionally, define the event

D̃n := {sup
i

sup
x∈[hn,1−hn]

|Wi(x)| ≤ C(nhn)−1I{|x−Xi| ≤ hn}}

and observe that P (D̃n)→ 1 by the definition of Wi(x) and Lemma 4. Thus on Dn ∩ D̃n we

have

sup
y∈R

sup
x∈[3hn,1−3hn]

∣∣∣F̂ ∗Y,U(y|x)−
n∑
i=1

Wi(x)I
{
Ui ≤ FY (y|Xi)

}∣∣∣
≤ C

nhn
sup
y∈R

sup
x∈[3hn,1−3hn]

n∑
i=1

I{|Xi − x| ≤ hn}I
{∣∣∣Ui − FY (y|Xi)

∣∣∣ ≤ γn

}
= oP (1) (S3.13)

where the last equality follows by a combination of parts 1, 4-6 of Lemma 8 with Lemma 7.

Similarly, applying Lemma 4, parts 1,2 4-6 of Lemma 8 with Lemma 7 shows that

n∑
i=1

Wi(x)
(
I
{
Ui ≤ FY (y|Xi)

}
− FY (y|Xi)

)
= oP (1) (S3.14)

uniformly in x ∈ [3hn, 1− 3hn], y ∈ R. Finally, by similar arguments as used in the proof of

(S3.22) one can show that

n∑
i=1

Wi(x)FY (y|Xi) = FY (y|x) + oP (1) (S3.15)

uniformly in x ∈ [3hn, 1 − 3hn], y ∈ R. Combining (S3.13)-(S3.15) yields (S3.12) and com-

pletes the proof of (S3.7).
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Proof of (S3.10) Define the events

Dn1 :=
{
F̂ ∗Y (y|x) = F ∗Y (y|x) ∀(x, y) ∈ {(x, y) : |F ∗Y (y|x)− τ | ≤ δ, x ∈ [3hn, 1− 3hn]}

}
Dn2 :=

{
sup

x∈[3hn,1−3hn],y∈R
|F̂ ∗Y (y|x)− F ∗Y (y|x)| ≤ δ/2

}
Dn3 :=

{
sup

x∈[3hn,1−3hn],y∈R
|F̂ ∗Y (y|x)− FY (y|x)| ≤ δ/2

}
.

Observe that on Dn1 ∩Dn2 ∩Dn3 we have F ∗Y (y|x) ≤ τ − δ ⇒ F̂ ∗Y (y|x) ≤ τ − δ/2, F ∗Y (y|x) ≥
τ + δ ⇒ F̂ ∗Y (y|x) ≥ τ + δ/2 and |F ∗Y (y|x) − τ | ≤ δ ⇒ F ∗Y (y|x) = F̂ ∗Y (y|x). Thus on

Dn1 ∩Dn2 ∩Dn3 we obtain QG,κ,τ,bn(F̂ ∗Y (·|x)) = QG,κ,τ,bn(F ∗Y (·|x)) provided that bn ≤ δ/2. It

remains to prove that P (Dn1 ∩ Dn2 ∩ Dn3) → 1. The fact that P (Dn2 ∩ Dn3) → 1 follows

from (S3.7), (S3.8), so that it remains to prove P (Dn1)→ 1 which follows from

P
(
{(x, y) : |F ∗Y (y|x)− τ | ≤ δ, x ∈ [3hn, 1− 3hn]} ⊂

{(x, y) : |y − qτ (x)| ≤ 2δ/c0, x ∈ [3hn, 1− 3hn]}
)
→ 1.

This in turn is a consequence of the fact that on Dn3 (note that |F ∗Y (y|x) − FY (y|x)| ≤
|F̂ ∗Y (y|x)− FY (y|x)|)

|F ∗Y (y|x)− τ | ≤ δ ⇒ |FY (y|x)− τ | ≤ 3δ/2⇒ |y − qτ (x)| ≤ 3δ/(2c0)

by the definition of δ, c0. This completes the proof.

2

Lemma 3 Assume that conditions (K1)-(K6), (A1)-(A5) and (BW) hold. Denote by

T̃n,0,L,S, T̃|e|,n,0,L,S, T̃
∗
n,0,L,S, T̃

∗
|e|,n,0,L,S versions of Tn,0,L,S, T|e|,n,0,L,S, T

∗
n,0,L,S, T

∗
|e|,n,0,L,S where

1/fX(Xi) is replaced by 1/fX(x).

Then for any bounded Y1 ⊂ R,Y2 ⊂ R+ such that Y2 is bounded away from zero we have

(i)′ F̂Y (y|x) = F̂Y,L,S(y|x) + oP (1/
√
n), Tn,0,L,S = T̃n,0,L,S + oP (1/

√
n),

uniformly in y ∈ Y1, x ∈ [hn, 1− hn] and

(ii)′ F̂|e|(y|x) = F̂|e|,L,S(y|x) + oP (1/
√
n), T|e|,n,0,L,S = T̃|e|,n,0,L,S + oP (1/

√
n),

uniformly in y ∈ Y2, x ∈ [2hn, 1− 2hn]. If additionally (B1)-(B2) hold,

(iii)′ F̂ ∗Y (y|x) = T̃ ∗n,0,L,S + oP (1/
√
n), T ∗n,0,L,S = T̃ ∗n,0,L,S + oP (1/

√
n),

uniformly in y ∈ Y1, x ∈ [3hn, 1− 3hn] and

(iv)′ F̂ ∗|e|(y|x) = F̂ ∗|e|,L,S(y|x) + oP (1/
√
n), T ∗|e|,n,0,L,S = T̃ ∗|e|,n,0,L,S + oP (1/

√
n).



The independence process in quantile models: supplement xx

uniformly in y ∈ Y2, x ∈ [4hn, 1− 4hn].

Moreover, (i)-(iv) hold under the assumptions of (i)′ − (iv)′, respectively.

(i) ∀k + l ≤ 2 sup
y∈Y1,x∈[hn,1−hn]

|∂kx∂lyF̂Y,L,S(y|x)− ∂kx∂lyFY (y|x)| = OP

( log n

nh2k+1
n d2ln

)1/2
,

(ii) ∀k + l ≤ 2 sup
y∈Y2,x∈[2hn,1−2hn]

|∂kx∂lyF̂|e|,L,S(y|x)− ∂kx∂lyF|e|(y|x)| = OP

( log n

nh2k+1
n d2ln

)1/2
,

(iii) ∀k + l ≤ 2 sup
y∈Y1,x∈[3hn,1−3hn]

|∂kx∂lyF̂ ∗Y,L,S(y|x)− ∂kx∂lyFY (y|x)| = OP

( log n

nh2k+1
n d2ln

)1/2
,

(iv) ∀k + l ≤ 2 sup
y∈Y2,x∈[4hn,1−4hn]

|∂kx∂lyF̂ ∗|e|,L,S(y|x)− ∂kx∂lyF|e|(y|x)| = OP

( log n

nh2k+1
n d2ln

)1/2
.

Proof of Lemma 3

We will only provide the arguments for (iv) and (iv)’ since all other assertions can be derived

analogously. Since Y2 is bounded away from zero, and since dn → 0, the fact that ω = Ω′ is

symmetric and has support [−1, 1] implies that for n sufficiently large

Ω
(y − |z|

dn

)
= Ω

(y − z
dn

)
− Ω

(−y − z
dn

)
∀y ∈ Y2, z ∈ R.

Thus we find that for n sufficiently large

F̂ ∗|e|(y|x) = F̂ ∗e (y|x)− F̂ ∗e (−y|x),

F̂ ∗|e|,L,S(y|x) = F̂ ∗e,L,S(y|x)− F̂ ∗e,L,S(−y|x),

T ∗|e|,n,0,L,S(x, y) = T ∗e,n,0,L,S(x, y)− T ∗e,n,0,L,S(x,−y),

T̃ ∗|e|,n,0,L,S = T̃ ∗e,n,0,L,S(x, y)− T̃ ∗e,n,0,L,S(x,−y),

where

F̂ ∗e (y|x) :=
∑
i

Wi(x)Ω
(y − (Y ∗i − q̂∗τ (Xi))

dn

)
,

F̂ ∗e,L,S(y|x) := Fe(y|x) + ut1M(K)−1
(
T ∗e,n,0,L,S(x, y), . . . , T ∗e,n,p,L,S(x, y)

)t
,

T ∗e,n,0,L,S(x, y) :=
1

nhn

n∑
i=1

1

fX(Xi)
Khn,k(x−Xi)

(
Ω
(y − (Y ∗i − q̂∗τ,L(Xi))

dn

)
− Fe(y|Xi)

)
,

T̃ ∗e,n,0,L,S :=
1

nhn

n∑
i=1

1

fX(x)
Khn,k(x−Xi)

(
Ω
(y − (Y ∗i − q̂∗τ,L(Xi))

dn

)
− Fe(y|Xi)

)
.

It thus suffices to establish, uniformly in y ∈ Y := Y2 ∪ (−Y2), x ∈ [4hn, 1− 4hn],

F̂ ∗e (y|x) = Fe(y|x) + ut1M(K)−1
(
T ∗e,n,0,L,S(x, y), . . . , T ∗e,n,p,L,S(x, y)

)t
+ oP (n−1/2), (S3.16)

T ∗e,n,0,L,S = T̃ ∗e,n,0,L,S + oP (n−1/2), (S3.17)

sup
y∈Y2,x∈[4hn,1−4hn]

|∂kx∂lyF̂ ∗e,L,S(y|x)− ∂kx∂lyFe(y|x)| = OP

( log n

nh2k+1
n d2ln

)1/2
. (S3.18)
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Define the quantities

T ∗e,n,k,L(x, y) :=
1

nhn

n∑
i=1

1

fX(Xi)
Khn,k(x−Xi)

(
I{Y ∗i ≤ y + q̂∗τ,L(Xi)} − Fe(y|Xi)

)
,

T̃ ∗e,n,k,L(x, y) :=
1

nhn

n∑
i=1

1

fX(x)
Khn,k(x−Xi)

(
I{Y ∗i ≤ y + q̂∗τ,L(Xi)} − Fe(y|Xi)

)
,

and note that,uniformly in y ∈ Y , x ∈ [4hn, 1− 4hn],

(T ∗e,n,k,L(x, ·) ∗ 1

dn
ω(·/dn))(y) = T ∗e,n,k,L,S(x, y) + o(1/

√
n), (S3.19)

(T̃ ∗e,n,k,L(x, ·) ∗ 1

dn
ω(·/dn))(y) = T̃ ∗e,n,k,L,S(x, y) + o(1/

√
n). (S3.20)

Also, let

F̂ ∗e,U(y|x) :=
n∑
i=1

Wi(x)I{Y ∗i − q̂∗τ (Xi) ≤ y}

=
1

nhn
ut1(X

tWX)−1


∑

iKhn,0(x−Xi)I{Y ∗i − q̂∗τ (Xi) ≤ y}
...∑

i h
p
nKhn,p(x−Xi)I{Y ∗i − q̂∗τ (Xi) ≤ y}

 ,

F̂ ∗e,L,U(y|x) := Fe(y|x) + ut1M(K)−1
(
T ∗e,n,0,L(x, y), . . . , T ∗e,n,p,L(x, y)

)t
where the weights Wi(x) are the same as in equation (2.3). At the end of the proof, we will

establish the following assertions uniformly in y ∈ Y , x ∈ [4hn, 1− 4hn]

T ∗e,n,0,L(x, y) = T̃ ∗e,n,0,L(x, y) + oP (n−1/2). (S3.21)

F̂ ∗e,U(y|x) = F̂ ∗e,L,U(y|x) + oP (n−1/2), (S3.22)

∂mx T
∗
e,n,k,L(x, y) = OP

( log n

nh2m+1
n

)1/2
, m = 0, 1, 2. (S3.23)

Now assertions (S3.16), (S3.17) follows from (S3.19), (S3.22) and (S3.21) since

(F̂ ∗e,U(·|x) ∗ 1

dn
ω(·/dn))(y) = F̂ ∗e (y|x),

(Fe(·|x) ∗ 1

dn
ω(·/dn))(y) = Fe(y|x) +O(dpωn ) = Fe(y|x) + o(1/

√
n),

uniformly in x ∈ [4hn, 1− 4hn], y ∈ Y .

On the other hand we have

∂mx F̂
∗
e,L,U(y|x) := ∂mx Fe(y|x) + ut1M(K)−1

(
∂mx T

∗
e,n,0,L(x, y), . . . , ∂mx T

∗
e,n,p,L(x, y)

)t
,
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and thus (S3.23) implies, uniformly in y ∈ Y , x ∈ [4hn, 1− 4hn],

∂mx F̂
∗
e,L,U(y|x) = ∂mx Fe(y|x) +OP

( log n

nh2m+1
n

)1/2
.

This entails (S3.18) since

∂kx∂
l
y

(
F̂ ∗e,L,S(y|x)− Fe(y|x)

)
=

1

dln

[(
∂kxF̂

∗
e,L,U(·|x)− ∂kxFe(·|x)

)
∗
( 1

dn
ω(l)
( ·
dn

))]
(y)

+
(

(∂kx∂
l
yFe(·|x)) ∗

( 1

dn
ω
( ·
dn

)))
(y)− ∂kx∂lyFe(y|x).

Now, since by assumption ∂kxFe(y|x) is r times continuously differentiable with respect to y,

the second summand is of order dr−ln = O
(

logn

nh2k+1
n d2ln

)1/2
. The first summand can be bounded

by 1
dln
OP

(
logn

nh2k+1
n

)1/2
.

The proof will thus be complete after we establish (S3.21)-(S3.23). In order to do so, observe

that there exists a set Dn such that the probability of Dn tends to one and such that on

Dn we have, for any sequence cn such that cn/rn → ∞ [this is a consequence of (S2.1) and

the uniform rates of convergence for ŝL, q̂τ,L, q̂
∗
τ,L which follow from parts (i)-(iii) of Lemma

2 and Lemma 1] ∣∣∣F̃ε( y

ŝL(Xi)
+
q̂∗τ,L(Xi)− q̂τ,L(Xi)

ŝL(Xi)

)
− Fε

( y

s(Xi)

)∣∣∣
≤ sup

y∈(1+Y/cs)
|F̃ε(y)− Fε(y)|+ 0.5cn sup

y∈(1+Y/cs)
|yfε(y)| ≤ cn

where the last bound follows from (S3.27) in Lemma 5. In particular, on Dn we have

I
{
Ui ≤ Fε

( y

s(Xi)

)
− cn

}
≤ I

{
Ui ≤ F̃ε

( y

ŝL(Xi)
+
q̂∗τ,L(Xi)− q̂τ,L(Xi)

ŝL(Xi)

)}
(S3.24)

≤ I
{
Ui ≤ Fε

( y

s(Xi)

)
+ cn

}
. (S3.25)

Proof of (S3.21)

Recall that Y ∗i = q̂τ (Xi) + ŝ(Xi)ε
∗
i and ε∗i = F̃−1ε (Ui). Observe the identity

I{Y ∗i ≤ y + q̂∗τ,L(Xi)} = I
{
Ui ≤ F̃ε

( y

ŝ(Xi)
+
q̂∗τ,L(Xi)− q̂(Xi)

ŝ(Xi)

)}
.

Moreover, a Taylor expansion shows that, with probability tending to one,∣∣∣I{Ui ≤ F̃ε

( y

ŝ(Xi)
+
q̂∗τ,L(Xi)− q̂(Xi)

ŝ(Xi)

)}
− I
{
Ui ≤ F̃ε

( y

ŝL(Xi)
+
q̂∗τ,L(Xi)− q̂τ,L(Xi)

ŝL(Xi)

)}∣∣∣
≤ I

{∣∣∣Ui − F̃ε( y

ŝL(Xi)
+
q̂∗τ,L(Xi)− q̂τ,L(Xi)

ŝL(Xi)

)∣∣∣ ≤ Cγn sup
y∈2Y/cs

|yf̃ε(y)|
}
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where γn = o(1/
√
n), and thus arguments similar to those in the proof of Lemma 9 yield

1

n

n∑
i=1

Khn,k(x− u)

hn

( 1

fX(u)
− 1

fX(x)

)(
I
{
Ui ≤ F̃ε

( y

ŝ(Xi)
+
q̂∗τ,L(Xi)− q̂(Xi)

ŝ(Xi)

)})
=

1

n

n∑
i=1

Khn,k(x− u)

hn

( 1

fX(u)
− 1

fX(x)

)(
I
{
Ui ≤ F̃ε

( y

ŝL(Xi)
+
q̂∗τ,L(Xi)− q̂τ,L(Xi)

ŝL(Xi)

)})
+oP (1/

√
n).

Next, observe that by part (i)-(iii) of Lemma 2, Lemma 1 and by (S2.1) there exists a set

Dn whose probability tends to one such that on Dn we have for some δ > 0

ŝL ∈ C̃1+δ
C ([3hn, 1− 3hn]), q̂∗τ,L, q̂τ,L ∈ C1+δ

C ([3hn, 1− 3hn]),

sup
u∈[3hn,1−3hn],y∈Y

∣∣∣F̃ε( y

ŝL(u)
+
q̂∗τ,L(u)− q̂τ,L(u)

ŝL(u)

)
− Fe(y|u)

∣∣∣ ≤ rnh
−1/4
n ,

and F̃ε ∈ D defined in (S2.2). Additionally, (S2.3) and the arguments from Proposition 3 in

Neumeyer (2009) show that for the class of functions

Gn :=
{

(u, v) 7→ I
{
u ≤ F

( y

a1(v)
+
a2(v)

a1(v)

)}
∣∣∣ y ∈ Y , F ∈ D, a1 ∈ C̃1+δ

C ([3hn, 1− 3hn]), a2 ∈ C1+δ
C ([3hn, 1− 3hn])

}
we have, denoting by P the product measure of the uniform random variable U1 and the

covariate X1, supn logN[ ](ε,Gn, L2(P )) ≤ Cε−2α for some α < 1. Next, define the class of

functions

Fn :=
{

(u, v) 7→ Khn,k(x− u)

hn

( 1

fX(u)
− 1

fX(x)

)
×

×
(
I
{
v ≤ F̃ε

( y

ŝL(u)
+
q̂∗τ,L(u)− q̂τ,L(u)

ŝL(u)

)}
− Fe(y|u)

)∣∣∣x ∈ [4hn, 1− 4hn], y ∈ Y
}
.

In particular, observe that, due to the continuous differentiability of fX and the compact

support of K, the functions in Fn are bounded uniformly over n. Additionally, combining

the bound on supn logN[ ](ε,Gn, L2(P )) with parts 1, 3 and 4 of Lemma 8, we find that on

Dn

sup
n

logN[ ](ε,Fn, L2(P )) ≤ C̃ε−2α̃

for some α̃ < 1 and finite C̃. Moreover, again on Dn, we find that for each f ∈ Fn

Ef(Xi, Ui) = O(h3/4n rn) = o(1/
√
n), Ef 2(Xi, Ui) = O(hn).
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To see the second statement, observe that every f ∈ Fn satisfies

|f(Xi, Ui)| ≤ 2
∣∣∣Khn,k(x−Xi)

hn

( 1

fX(Xi)
− 1

fX(x)

)∣∣∣,
the assertion now follows from a Taylor expansion of fX . For the bound on Ef(Xi, Ui),

observe that

|E[f(Xi, Ui)]| ≤
∫ ∣∣∣Khn,k(x− u)

hn

( 1

fX(u)
− 1

fX(x)

)∣∣∣rnh−1/4n fX(u)du,

the claimed bound now follows from a Taylor expansion of 1/fX(u) around x. Thus by

Lemma 7 supf∈Fn |
∑

i f(Xi, Ui)| = oP (1/
√
n) and (S3.21) follows.

Proof of (S3.22) Define H := diag(1, hn, ..., h
p
n) and observe that by (S3.21) we have

uniformly in x ∈ [4hn, 1− 4hn], y ∈ Y

F̂ ∗e,U(y|x)− F̂ ∗e,L,U(y|x) =
∑
i

Wi(x)(I{Y ∗i − q̂∗τ (Xi) ≤ y} − I{Y ∗i − q̂∗τ,L(Xi) ≤ y})

+
ut1(X

tWX)−1

nhn
H


∑

iKhn,0(x−Xi)Fe(y|Xi)
...∑

iKhn,p(x−Xi)Fe(y|Xi)

− Fe(y|x)

+
(
ut1(X

tWX)−1H− ut1M(K)−1

fX(x)

)
fX(x)T̃ ∗e,n,0,L(x, y)

...

fX(x)T̃ ∗e,n,p,L(x, y)



+ut1M(K)−1


T̃ ∗e,n,0,L(x, y)− T ∗e,n,0,L(x, y)

...

T̃ ∗e,n,p,L(x, y)− T ∗e,n,p,L(x, y)


=: Rn,1(x, y) +Rn,2(x, y) +Rn,3(x, y) +Rn,4(x, y).

Note that a Taylor expansion of Fe(y|Xi) with respect to Xi around the point x combined

with the fact that

1

nhn
ut1(X

tWX)−1


hkn
∑

iKhn,k(x−Xi)
...

hp+kn

∑
iKhn,p+k(x−Xi)

 = I{k = 0}

for k = 0, ..., p yields the representation

ut1(X
tWX)−1

nhn


∑

iKhn,0(x−Xi)Fe(y|Xi)
...∑

i h
p
nKhn,p(x−Xi)Fe(y|Xi)

 = Fe(y|x)+OP (hp+1
n ) = Fe(y|x)+oP (n−1/2)
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uniformly in x ∈ [4hn, 1− 4hn], y ∈ Y , so that Rn,2 is small.

Next, consider Rn,3. By Lemma 4 and observing that ut1H−1 = ut1 we find(ut1(XtWX)−1

nhn
H− ut1M(K)−1

fX(x)

)
= OP (hn),

and together with the fact that

sup
x[4hn,1−4hn],y∈Y

sup
k=0,...,p

|T ∗e,n,k,L(x, y)| = OP

( log n

nhn

)1/2
which follows by similar arguments as the proof of (S3.23), this shows that Rn,3 is small.

The negligibility of Rn,4 follows from (S3.21).

Finally, consider Rn,1. Observe that, by similar arguments as in the proof of (S3.21), there

exists a deterministic sequence ξn = o(n−1/2) such that, with probability tending to one, we

have for any Xi ∈ [3hn, 1− 3hn]∣∣∣I{Y ∗i −q̂∗τ (Xi) ≤ y}−I{Y ∗i −q̂∗τ,L(Xi) ≤ y}
∣∣∣ ≤ I

{∣∣∣Ui−F̃ε( y

ŝL(Xi)
+
q̂∗τ,L(Xi)− q̂τ,L(Xi)

ŝL(Xi)

)∣∣∣ ≤ ξn

}
.

Now arguments similar to those in the proof of Lemma 9 yield for every k = 0, ..., p

dn,k :=
1

n

n∑
i=1

|Khn,k(x− u)|
hn

1

fX(x)
I
{∣∣∣Ui−F̃ε( y

ŝL(Xi)
+
q̂∗τ,L(Xi)− q̂τ,L(Xi)

ŝL(Xi)

)∣∣∣ ≤ ξn

}
= oP (n−1/2)

uniformly over x ∈ [4hn, 1− 4hn], y ∈ Y . Moreover, by Lemma 4 we have

|Rn,1(x, y)| ≤ (p+ 1)
(

max
k=0,...,p

(ut1(X
tWX)−1H)k

)(
max
k=0,...,p

|dn,k(x, y)|
)

This shows that Rn,1 is negligible and completes the proof of (S3.22).

Proof of (S3.23) Consider the decomposition

∂mx T
∗
e,n,k,L(x, y) = A+

n,k,m(x, y) + A−n,k,m(x, y)

where

A+
n,k,m(x, y) :=

1

nhn

1

hmn

n∑
i=1

K
(m)
hn,k

(x−Xi)

fX(Xi)
I
{
K

(m)
hn,k

(x−Xi) > 0
}(
I{Y ∗i ≤ y+q̂∗τ,L(Xi)}−Fe(y|Xi)

)
and A−n,k,m is defined analogously. On the set Dn (defined in the beginning of this proof) we

have

A+
n,k,m(x, y) ≤ 1

nhm+1
n

n∑
i=1

K
(m)
hn,k

(x−Xi)

fX(Xi)
I
{
K

(m)
hn,k

(x−Xi) > 0
}
×
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×
(
I
{
Ui ≤ Fε

( y

s(Xi)

)
+ cn

}
− Fε

( y

s(Xi)

))
=:

1

nhm+1
n

n∑
i=1

g(n,m,+)
x,y (Xi, Ui, cn).

The expectation of each summand g
(n,m,+)
x,y (Xi, Ui, cn) in the above sum is of the order

O(hncn). Moreover, the class of functions{
(u, v) 7→ g(n,m,+)

x,y (u, v, cn)
∣∣∣x ∈ [4hn, 1− 4hn], y ∈ Y

}
is with probability tending to one contained in a class that satisfies the assumptions of part

2 of Lemma 7 with δn = hn, this follows from a combination of assumption (K2) with

parts 1,2,4,6 of Lemma 8 where part 6 is applied with the class of functions G := {v 7→
Fε(y/s(v)) + z|y ∈ Y , z ∈ [0, 1]}. This yields the bound

1

nhm+1
n

n∑
i=1

g(n,m,+)
x,y (Xi, Ui, cn) = o

( cnhn
hm+1
n

)
+OP

( log n

nh2m+1
n

)1/2
uniformly in x ∈ [4hn, 1 − 4hn], y ∈ Y . Since cn/rn can tend to infinity arbitrarily slowly,

the above result implies

1

nhm+1
n

n∑
i=1

g(n,m,+)
x,y (Xi, Ui, cn) = OP

( log n

nh2m+1
n

)1/2
.

Summarizing, we have obtained the bound A+
n,k,m(x, y) ≤ OP

(
logn

nh2m+1
n

)1/2
, and a correspond-

ing lower bound can be obtained by similar arguments. Analogous reasoning yields a bound

for A−n,k,m(x, y) and altogether this implies (S3.23).

Thus we have established (S3.21)-(S3.23) and the proof of the Lemma is complete. 2

Lemma 4 Under assumptions (K1) and (A1) if additionally (nhn)−1 = o(hn
√

log n) we

have the decomposition (holding uniformly in x ∈ [hn, 1− hn])

nhn(XtWX)−1 =
1

fX(x)
H−1M(K)−1H−1 +H−11(p+1)×(p+1)OP (h)H−1

where H = diag(1, hn, ..., h
p
n), and 1(p+1)×(p+1) is a matrix with 1 in every entry.

Proof The elements of the matrix XtWX are of the form

1

nhn
(XtWX)k,l =

1

nhn

∑
i

Khn,0(x−Xi)(x−Xi)
m =

hmn
nhdn

∑
i

Khn,m(x−Xi)

where m = k + l − 2. In particular, continuous differentiability of fX together with an

application of Lemma 7 and Lemma 8 implies that

1

nhn

∑
i

Khn,k(x−Xi) = µkfX(x) +OP (
( log n

nhn

)1/2
+ hn)
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uniformly in x. Thus we obtain a representation of the form

1

nhn
XtWX = H

(
M(K)fX(x) + 1N×NOP (hn)

)
H

where M0 =M(K) is invertible and H is a diagonal matrix with entries 1, hn, ..., h
p
n. Thus

for hn sufficiently small an application of the Neumann series yields the assertion with

probability tending to one. 2

S3.2 Additional technical results

Lemma 5 Let nα4
n = o(1) and assume that the conditions of (i), (i)’, (ii), (ii)’ of Lemma

3 hold. Then for any bounded Y ⊂ R and any δn → 0 we have

sup
a,b∈Y,|a−b|≤δn

∣∣∣F̃ε(a)− F̃ε(b)−
(
F̄ε(a)− F̄ε(b)

)∣∣∣ = oP (1/
√
n), (S3.26)

sup
y∈Y

∣∣∣F̃ε(y)− Fε(y)
∣∣∣ = OP

(( log n

nhn

)1/2)
, (S3.27)

where

F̄ε(a) :=

∑
k I[2hn,1−2hn](Xk)FY (q̂τ,L(Xk) + aŝL(Xk)|Xk)∑

l I[2hn,1−2hn](Xl)
.

Proof of Lemma 5 Recalling the definition of F̃ε, it is easy to see that F̃ε(y) = 1
αn

(
F̂ε(·) ∗

φ(·/αn)
)

(y) where

F̂ε(y) :=

∑
k I[2hn,1−2hn](Xk)I{Yk − q̂(Xk) ≤ yŝ(Xk)}∑

l I[2hn,1−2hn](Xl)
.

Standard calculations show that

1

αn

(
F̄ε(·) ∗ φ(·/αn)

)
(y) = F̄ε(y) + oP (1/

√
n)

uniformly in y ∈ Y . Thus it suffices to establish that, for any bounded Ỹ

sup
a,b∈Ỹ, |a−b|≤δn

∣∣∣F̂ε(a)− F̂ε(b)−
(
F̄ε(a)− F̄ε(b)

)∣∣∣ = oP (1/
√
n) (S3.28)

sup
y∈Ỹ

∣∣∣F̂ε(y)− Fε(y)
∣∣∣ = OP

(( log n

nhn

)1/2)
. (S3.29)

To simplify the notation, write Y for Ỹ .
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Proof of (S3.28) Since 1
n

∑
l I[2hn,1−2hn](Xl) = 1 + oP (1), we only need to consider the

enumerator. Since Y is bounded we have, with probability tending to one, uniformly in

y ∈ Y ∣∣∣I{Yk − q̂τ (Xk) ≤ yŝ(Xk)} − I{Yk − q̂τ,L(Xk) ≤ yŝL(Xk)}
∣∣∣

≤ I{Yk − q̂τ,L(Xk)− yŝL(Xk) ≤ γn} − I{Yk − q̂τ,L(Xk)− yŝL(Xk) ≤ −γn}

for some γn = o(1/
√
n). Moreover an application of parts 1 and 6 of Lemma 8 combined

with Theorem 2.7.1 in van der Vaart, Wellner (1996) shows that the functions

(u, v) 7→ I{v − q̂τ,L(u)− yŝL(u) ≤ γn} − I{v − q̂τ,L(u)− yŝL(u) ≤ −γn}

are, with probability tending to one, contained in a class of functions satisfying the as-

sumptions of the first part of Lemma 7 with the additional property that each element has

expectation of order o(1/
√
n). Combined with parts 1 and 4 of Lemma 8, this implies

sup
y∈Y

∣∣∣∑
k

I[2hn,1−2hn](Xk)
(
I{Yk−q̂τ (Xk) ≤ yŝ(Xk)}−I{Yk−q̂τ,L(Xk) ≤ yŝL(Xk)}

)∣∣∣ = oP (1/
√
n),

and thus it remains to consider

sup
a,b∈Y,|a−b|≤δn

1

n

∑
k

I[2hn,1−2hn](Xi)
(
I{Yk ≤ q̂τ,L(Xk) + aŝL(Xk)} − I{Yk ≤ q̂τ,L(Xk) + bŝL(Xk)}

−FY (q̂τ,L(Xk) + aŝL(Xk)|Xk) + FY (q̂τ,L(Xk) + bŝL(Xk)|Xk)
)

By arguments similar to those given above, it is easily seen that this quantity is of order

oP (1/
√
n) if one notes that the smoothness assumptions on FY imply that with q̂τ,L, ŝL ∈

C1+δ
C with probability tending to one the same holds for the function u 7→ FY (q̂τ,L(u) +

yŝL(u)|u) uniformly in y ∈ Y . This completes the proof of (S3.28).

Proof of (S3.29) Write

F̂ε(y)− Fε(y) =
n−1

∑
k I[2hn,1−2hn](Xk)

(
I{Yk − q̂τ (Xk) ≤ yŝ(Xk)} − Fε(y)

)
n−1

∑
l I[2hn,1−2hn](Xl)

.

Since n−1
∑

l I[2hn,1−2hn](Xl) = 1 + oP (1), it suffices to consider the enumerator. Observe

that

I{Yk − q̂τ (Xk) ≤ yŝ(Xk)} = I
{
εk ≤ y

ŝ(Xk)

s(Xk)
+
q̂τ (Xk)− qτ (Xk)

s(Xk)

}
and thus, for any cn/rn →∞ we have with probability tending to one, uniforly over y ∈ Y∣∣∣I{Yk − q̂τ (Xk) ≤ yŝ(Xk)} − I{εk < y}

∣∣∣ ≤ I{|εk − y| ≤ cn}.
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Thus standard

sup
y∈Y

∣∣∣n−1∑
k

I[2hn,1−2hn](Xk)
(
I{Yk − q̂τ (Xk) ≤ yŝ(Xk)} − I{εk < y}

)∣∣∣
≤ sup

y∈Y
n−1

∑
k

I[2hn,1−2hn](Xk)I{|εk − y| ≤ cn} = OP (cn),

where the last equality follows by standard empirical process arguments. This shows that,

uniformly in y ∈ Y ,

F̂ε(y)− Fε(y) =
n−1

∑
k I[2hn,1−2hn](Xk)

(
I{εk ≤ y} − Fε(y)

)
n−1

∑
l I[2hn,1−2hn](Xl)

+OP (cn) = OP (cn).

Since cn was arbitrary, this completes the proof of (S3.29) and hence also of the Lemma. 2

Lemma 6 Assume that κ is a symmetric, uniformly bounded density with support [−1, 1]

and let bn = o(1).

(a) If the function F : [0, 1] → R is strictly increasing and F−1 is k times continuously

differentiable in a neighborhood of the point τ , we have for bn small enough

Hid,κ,τ,bn(F ) = F−1(τ) +
k∑
i=1

bin
i!

(F−1)(i)(τ)µi+1(κ) +Rn(τ)

with |Rn(τ)| ≤ Ck(κ)bkn sup|s−τ |≤bn |(F−1)(k)(τ) − (F−1)(k)(s)|, µi(κ) :=
∫
uiκ(u)du and a

constant Ck depending only on k and κ. In particular, if we assume that F : R → [0, 1] is

strictly increasing and F−1 is two times continuously differentiable in a neighborhood of τ

and G : R→ (0, 1) is two times continuously differentiable in a neighborhood of F−1(τ) with

G′(F−1(τ)) > 0 we have

|F−1(τ)−QG,κ,τ,bn(F )| ≤ Cb2n sup
|s−G◦F−1(τ)|≤Rn,1

|(G−1)′(s)| sup
|s−τ |≤bn

|(G ◦ F−1)′′(s)| =: Rn,2

for some constant C that depends only on κ where Rn,1 := Cb2n sup|s−τ |≤bn |(G ◦ F−1)′′(s)|.

(b) Assume that κ is additionally differentiable with Lipschitz-continuous derivative and that

the functions G,G−1 have derivatives that are uniformly bounded on any compact subset of

R [the bound is allowed to depend on the interval]. Then for any increasing function F with

uniformly bounded first derivative we have |H(F1)−H(F2)| ≤ Rn,3 +Rn,4 and

|QG,κ,τ,bn(F1)−QG,κ,τ,bn(F2)| ≤ sup
u∈U(H(F1),H(F2))

|(G−1)′(u)|(Rn,3 +Rn,4)

where C is a constant that depends only on κ, U(a, b) := [a ∧ b, a ∨ b], and

Rn,3 :=
Ccn
bn
‖F1 − F2‖∞ sup

|v−τ |≤cn
|(G ◦ F−1)′(v)|, Rn,4 := Rn,3

‖F1 − F‖∞ + ‖F1 − F2‖∞
bn
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with cn := bn + 2‖F1 − F2‖∞ + ‖F1 − F‖∞.

(c) If additionally to the assumptions made in (b), the function F1 is two times continu-

ously differentiable in a neighborhood of F−1(τ) with F ′1(F
−1
1 (τ)) > 0 and G is two times

continuously differentiable in a neighborhood of F−11 (τ) with G′(F−1(τ)) > 0, we have

QG,κ,τ,bn(F1)−QG,κ,τ,bn(F2) = − 1

F ′1(F
−1
1 (τ))

∫ 1

−1
κ(v)

(
F2(F

−1
1 (τ + vbn))− F1(F

−1
1 (τ + vbn))

)
dv

+Rn,

where

|Rn| ≤ Rn,5 +Rn,6 +
Cbn sup|s−τ |≤bn(G ◦ F−1)′′(s)‖F1 − F2‖∞ +Rn,4

G′(F−11 (τ))

with a constant C depending only on κ and

Rn,5 :=
1

2
sup

u∈U(H(F1),H(F2))

|(G−1)′′(u)|(H(F1)−H(F2))
2

Rn,6 := sup
u∈U(H(F1),G(F−1

1 )(τ))

|(G−1)′′(u)| · |H(F1)−G(F−11 )(τ)| · |H(F1)−H(F2)|.

Proof See Volgushev et al. (2013).

Lemma 7 (Basic Lemma)

1. Assume that the classes of functions Fn consist of uniformly bounded functions (with

the bound, say D, not depending on n) with N[](Fn, ε, L2(P )) ≤ C exp(−cε−a) for every

ε ≤ δn for some a < 2 and constants C, c not depending on n. Then we have

√
n sup
f∈Fn,‖f‖P,2≤δn

(∫
fdPn −

∫
fdP

)
= o∗P (1)

where the ∗ denotes outer probability, see van der Vaart and Wellner (1996) for a more

detailed discussion.

2. If under the assumptions of part one we have N[](Fn, ε, L2(P )) ≤ Cε−a for every ε ≤ δn,

some a > 0 and C not depending on n, it holds that for any δn ∼ n−b with b < 1/2

√
n sup
f∈Fn,‖f‖P,2≤δn

(∫
fdPn −

∫
fdP

)
= O∗P

(
δn| log δn|

)
Proof See Volgushev et al. (2013).
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Lemma 8

1. Define F + G := {f + g|f ∈ F , g ∈ G},FG := {fg|f ∈ F , g ∈ G}. Then

N[](F + G, ε, ρ) ≤ N[](F , ε/2, ρ)N[](G, ε/2, ρ)

If additionally the classes F ,G are uniformly bounded by the constant C, we have

N[](FG, ε, ‖.‖) ≤ N2
[](F , ε/4C, ‖.‖)N2

[](G, ε/4C, ‖.‖)

for any seminorm ‖.‖ with the additional property that |f1| ≤ |f2| implies ‖f1‖ ≤ ‖f2‖.

2. Assume that the Kernel K has compact support [−1, 1], that K
(m)
1,k is uniformly bounded

and Lipschitz-continuous, and that fX is uniformly bounded. Then the L2(PX) brack-

eting numbers N[](Fn, ε, L2(PX)) of the set

Fn :=
{
u 7→ K

(m)
hn,k

(x− u)
∣∣∣x ∈ [hn, 1− hn]

}
are bounded by Cε−3 for some constant C independent of n.

3. Assume that the Kernel K has compact support [−1, 1], that K is uniformly bounded

and Lipschitz continuous, and that fX is uniformly bounded away from zero on [0, 1]

and Lipschitz-continuous. Then for the set of function

Fn :=
{
u 7→ 1

hn

( 1

fX(x)
− 1

fX(u)

)
Khn,k(x− u)

∣∣∣x ∈ [hn, 1− hn]
}

we have N[](Fn, ε, L2(P )) ≤ Cε−5 for some constant C independent of n.

4. For any measure P on the unit interval with uniformly bounded density f , the class of

functions

F :=
{
u 7→ I{u ≤ s}

∣∣∣s ∈ [0, 1]
}
∪
{
u 7→ I{u < s}

∣∣∣s ∈ [0, 1]
}

can be covered by Cε−(2) brackets of L2(P ) length ε.

5. Consider the class of distribution functions F :=
{
u 7→ F (y|u)

∣∣∣y ∈ R
}

with densities

f(y|u) and assume that supu,y |y|α(F (y|u) ∧ (1 − F (y|u)) ≤ D for some α > 0 and

additionally supu,y f(y|u) ≤ D. Then we have N[](F , ε, ‖ ‖∞) ≤ Cε−
α+1
α for some

constant C independent of α.

6. For any measure P on R × Rk with uniformly bounded conditional density fV |U the

class of functions

G :=
{

(u, v) 7→ I{v ≤ f(u)}
∣∣∣f ∈ F}

satisfies N[](G, ε, ‖.‖P,2) ≤ N[](F , Cε2, ‖.‖∞) for some constant C independent of ε.
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Proof

Part 1 The first assertion is obvious from the definition of bracketing numbers. For the

second assertion, note that FG = (F +C)(G +C)−CF −CG +C2. Moreover, all elements

of the classes F + C,G + C are by construction non-negative and thus it also is possible

to cover them with brackets consisting of non-negative functions and amounts equal to the

brackets of F ,G, respectively. Finally, observe that if 0 ≤ fl ≤ f ≤ fu and 0 ≤ gl ≤ g ≤ gu,

we also have flgl ≤ fg ≤ fugu. Moreover ‖flgl − fugu‖ ≤ C‖fu − fl‖ + C‖gu − gl‖. Thus

the class (F + C)(G + C) can be covered by at most ≤ N[](F , ε, ‖.‖)N[](G, ε, ‖.‖) brackets

of length 2Cε. Finding brackets for the classes CF , CG is trivial, and applying the first

assertion of the Lemma completes the proof.

Part 2+3 Without loss of generality, assume that h = hn < 1. Note that the class of

functions Fn from part 2 can be represented as Fn = {u 7→ gx(u)|x ∈ [hn, 1 − hn]} where

the functions gx satisfy supx∈[hn,1−hn] ‖gx‖∞ ≤ C, supu∈R |gx(u) − gy(u)| ≤ C̃|x − y|h−1n for

some constants C, C̃ independent of n, x, y. To see the latter inequality, observe that by

assumption u 7→ K
(m)
1,k (u) is uniformly bounded and Lipschitz continuous. Additionally, the

support of the functions gx is contained in [x− hn, x+ hn].

Similarly, Fn from part 3 can be represented as Fn = {u 7→ gx(u)|x ∈ [hn, 1−hn]} where the

functions gx satisfy supx∈[hn,1−hn] ‖gx‖∞ ≤ C, supu∈R |gx(u)− gy(u)| ≤ C̃|x− y|h−2n for some

constants C, C̃ independent of n, x, y (and possibly different from those for part 2), and the

support of the functions gx is contained in [x− hn, x+ hn].

Thus it suffices to establish that for any class of functions F of the form F = {u 7→ gx(u)|x ∈
[h, 1− h]} with 0 ≤ h ≤ 1/2 with elements gx that have support contained in [x− h, x+ h]

and satisfy supx∈[h,1−h] ‖gx‖∞ ≤ C, supu∈R |gx(u)− gy(u)| ≤ C̃|x− y|h−L for some constants

C, C̃ independent of h, x, y we have we have N[ ](F , ε, L2(PX)) ≤ cε−(2L+1) for some c that

does not depend on h.

To prove this statement, consider two cases.

1 ε > 4h1/2

Divide [0, 1] into N := 2/ε2 subintervals of length 2α := ε2 with centers rα for r =

1, ..., N and call the intervals I1, ..., IN . Note that two adjunct intervals overlap by

α > 2h. This construction ensures that every set of the form [x − h, x + h] with

x ∈ [h, 1 − h] is completely contained in at least one of the intervals defined above.

Then a collection of N brackets of L2-length Dε for some D > 0 independent of h is

given by (−CI{u ∈ Ij}, CI{u ∈ Ij}).

2 ε ≤ 4h1/2

Consider the points ti := i/(N + 1), i = 1, ..., N with N := 42L+2C̃/ε2L+1. By con-

struction, to every x ∈ [h, 1 − h] there exists i(x) with |ti(x) − x| ≤ ε2L+1/(42L+2C̃).
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This implies

sup
u
|gx(u)− gti(x)(u)| ≤ C̃ε2L+1h−L/(42L+2C̃) < ε/2

Then N ‖ · ‖∞−brackets of length ε covering F are given by (gti(·)− ε/2, gti(·) + ε/2),

i = 1, ..., N . From those one can easily construct L2(PX)-brackets.

Part 4 Follows by standard arguments.

Part 5 For any ε > 0, set yε := ε−1/αD1/α and define ti := −yε + iε/D for i = 1, ..., N

with N such that 1 + yε ≥ tN ≥ yε. Note that N ≤ Cε−
α+1
α for some fixed, finite constant

C which can depend on D but not on ε. The collection of brackets (f ≡ 0, f ≡ ε), (f ≡
1− ε, f ≡ 1), (F (yti |.)− ε/2, F (yti |.) + ε/2) with i = 1, ..., N covers the class F . To see that,

let f ∈ F . Then there exists y ∈ R such that f(·) = F (y|·). If y < −yε we have

0 ≤ F (y|u) ≤ sup
u
F (−yε|u) ≤ y−αε sup

u
yαε F (−yε|u) ≤ D(ε−1/αD1/α)−α = ε.

Similarly, y > yε implies 1 − ε ≤ F (y|u) ≤ 1 Finally, if −yε ≤ y ≤ yε, there exists

i ∈ {1, ..., N} such that |y − ti| ≤ ε/(2D). In that case

F (ti|u)− ε/2 ≤ |F (ti|u)− F (y|u)|+ F (y|u)− ε/2 ≤ F (y|u) ≤ F (ti|u) + ε/2

since |F (ti|u)− F (y|u)| ≤ D|ti − y| ≤ ε/2 by the assumption supu,y f(y|u) ≤ D.

Part 6 Follows from |I{v ≤ g1(u)} − I{v ≤ g2(u)}| ≤ I{|v − g1(u)| ≤ 2‖g1 − g2‖∞}.
2

S3.3 Main results for proofs

Define ε̂i,L as the estimated residuals based on linearized versions q̂τ,L, ŝL [see Section S3.1 for

their definition], i.e. ε̂i,L := (Yi − q̂τ,L(Xi))/ŝL(Xi), and ε̂∗i,L as the corresponding quantities

in the bootstrap setting, that is

ε̂∗i,L =
ŝL(Xi)ε

∗
i + q̂τ,L(Xi)− q̂∗τ,L(Xi)

ŝ∗L(Xi)

The following Lemma demonstrates, that the sequential empirical process based on the resid-

uals ε̂i = (Yi − q̂τ (Xi))/ŝ(Xi) computed from the initial estimators q̂τ , ŝ and the sequential

empirical process of residuals based on εi,L have the same first order expansion.

Lemma 9 Assume that (K1)-(K6), (A1)-(A5), (BW) hold. Then

sup
t∈[2hn,1−2hn],y∈R

∣∣∣ 1√
n

∑
i

I{2hn ≤ Xi ≤ t}(I{ε̂i ≤ y} − I{ε̂i,L ≤ y})
∣∣∣ = oP (1).

If additionally (B1)-(B2) hold we also have

sup
t∈[4hn,1−4hn],y∈R

∣∣∣ 1√
n

∑
i

I{4hn ≤ Xi ≤ t}(I{ε̂∗i ≤ y} − I{ε̂∗i,L ≤ y})
∣∣∣ = oP (1).
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Proof We only proof the second assertion since the first one follows by similar but easier

arguments. Start by observing that under the assumptions of the Lemma there exists a set

Dn whose probability tends to one such that on Dn we have

(i) supx∈[4hn,1−4hn] max
(
|q̂τ (x)− q̂τ,L(x)|, |q̂∗τ (x)− q̂∗τ,L(x)|, |ŝ(x)− ŝL(x)|, |ŝ∗(x)− ŝ∗L(x)|

)
≤ γn

(ii) infx∈[4hn,1−4hn] min(ŝL(x), ŝ∗L(x)) ≥ c > 0

(iii) supy∈R |yf̃ε(y)| ≤ C

for some deterministic sequence γn = o(1/
√
n) and finite constants C, c > 0. Here (i) and (ii)

follow from Lemma 2 and Lemma 1 together Assumption (A2), while (iii) is a consequence

of (S2.1) in the main body of the paper.

A standard Taylor expansion shows that on Dn∣∣∣I{ε̂∗i ≤ y} − I{ε̂∗i,L ≤ y}
∣∣∣ ≤ I

{∣∣∣Ui − F̃ε(y ŝ∗L(Xi)

ŝL(Xi)
+
q̂∗τ,L(Xi)− q̂τ,L(Xi)

ŝL(Xi)

)∣∣∣ ≤ Cγn

}
=: gn,y,Cγn(Ui, Xi),

this follows from the representations

I{ε̂∗i ≤ y} = I
{
Ui ≤ F̃ε

(
y
ŝ∗(Xi)

ŝ(Xi)
+
q̂∗τ (Xi)− q̂τ (Xi)

ŝ(Xi)

)}
,

I{ε̂∗i,L ≤ y} = I
{
Ui ≤ F̃ε

(
y
ŝ∗L(Xi)

ŝL(Xi)
+
q̂∗τ,L(Xi)− q̂τ,L(Xi)

ŝL(Xi)

)}
,

a Taylor expansion of F̃ε and (i)-(iii). In the same manner as the proof of Proposition 3 in

Neumeyer (2009) it follows from assumptions (B1) and (B2) that, with probability tending

to one

Gn :=
{

(u, v) 7→ I
{
u ≤ z + F̃ε

(
y
ŝ∗L(v)

ŝL(v)
+
q̂∗τ,L(v)− q̂τ,L(v)

ŝL(v)

)}∣∣∣ y ∈ R, z ∈ [−2, 2]
}

(S3.30)

is contained in the class

G̃n =
{

(u, v) 7→ I
{
u ≤ z + F

(
y
a3(v)

a1(v)
+
a2(v)

a1(v)

)}∣∣∣ F ∈ D, a1, a3 ∈ C̃1+δ
C ([4hn, 1− 4hn]),

a2 ∈ C1+δ
C ([4hn, 1− 4hn]), y ∈ R, z ∈ [−2, 2]

}
,

where D is defined in (S2.2). Now, denoting by P the product measure of the uniform

random variable U1 and the covariate X1,

logN[ ](ε, G̃, L2(P )) ≤ Cε−2α (S3.31)

for some α < 1 , this can be shown by similar arguments as in the proof of Proposition 3 in

Neumeyer (2009). Next, since I{|U1− a| ≤ b} = I{U1 ≤ a+ b}− I{U1 ≤ a− b} a.s., we find
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that, with probability tending to one

Fn :=
{

(u, v) 7→ I{s ≤ v ≤ t}gn,y,Cγn(v, u)
∣∣∣s, t ∈ [4hn, 1− 4hn], y ∈ R

}
⊆
{

(u, v) 7→ I{s ≤ v ≤ t}(g1(v, u)− g2(v, u))
∣∣∣s, t ∈ [4hn, 1− 4hn], g1, g2 ∈ G̃n

}
=: Gn,1.

Combining parts (1) and (4) of Lemma 8 thus yields that logN[ ](ε,Fn, L2(P )) ≤ C̃ε−2α

for some constant C̃. Moreover, standard arguments (employing Taylor expansions and the

bounds in (S2.1) from the main body of the paper) show that supg∈Fn
∫
gdP = o(1/

√
n) and

supg∈Fn
∫
g2dP = o(1). Here, P denotes the probability distribution of (Xi, Ui) and g2 = g

for all g ∈ Fn. Finally observe that, with probability tending to one,

sup
t∈[4hn,1−4hn],y∈R

1√
n

∑
i

(
I{hn ≤ Xi ≤ t}gn,y,Cγn(Ui, Xi)−

∫ t

hn

∫
gn,y,Cγn(v, u)fX(u)dvdu]

)
≤
√
n sup
g∈Fn

(

∫
gdPn −

∫
gdP ),

and the right-hand side of the inequality is of order oP (1) by part one of Lemma 7 . Moreover,

standard arguments yield∫ t

hn

∫
gn,y,Cγn(v, u)fX(u)dvdu = oP (1/

√
n).

Summarizing, we have obtained the estimate

sup
t∈[4hn,1−4hn],y∈R

1√
n

∑
i

I{4hn ≤ Xi ≤ t}gn,y,Cγn(Ui, Xi) = oP (1).

and thus the proof is complete. 2

Lemma 10 Assume that the conditions (K1)-(K6), (A1)-(A5), (BW) hold. Then∫ t

hn

q̂τ,L(x)− qτ (x)

s(x)
fX(x)fε(0)dx = − 1

n

n∑
i=1

(I{εi ≤ 0} − τ)I[hn,t](Xi) + oP (1/
√
n)

uniformly in t ∈ [hn, 1− hn] and∫ t

2hn

ŝL(x)− s(x)

ŝ(x)
fX(x) dx

= − 1

n

n∑
i=1

I[2hn,t](Xi)

f|ε|(1)

(
I{|εi| ≤ 1} − 1

2
− (I{εi ≤ 0} − τ)(fε(1)− fε(−1))

fε(0)

)
+ oP (

1√
n

)

uniformly in t ∈ [2hn, 1− 2hn].

If additionally (B1)-(B2) hold∫ t

3hn

q̂∗τ (x)− q̂τ,L(x)

ŝL(x)
fX(x)dx = − 1

n

n∑
i=1

I{ε∗i ≤ 0} − τ
fε(0)

I[3hn,t](Xi) + oP (1/
√
n)
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uniformly in t ∈ [3hn, 1− 3hn] and∫ t

4hn

ŝ∗(x)− ŝ(x)

ŝ(x)
fX(x) dx

= − 1

n

n∑
i=1

I[4hn,t](Xi)

f|ε|(1)

(
I{|ε∗i | ≤ 1} − 1

2
− (I{ε∗i ≤ 0} − τ)(fε(1)− fε(−1))

fε(0)

)
+ oP (

1√
n

)

uniformly in t ∈ [4hn, 1− 4hn].

Proof We will only prove the representation for
∫ t
3hn

q̂∗(x)−q̂τ,L(x)
ŝL(x)

fX(x)dx since all other

results can be derived by analogous arguments.

Observe the decomposition q̂∗τ (x) − q̂τ,L(x) = q̂∗τ (x) − qτ (x) + qτ (x) − q̂τ,L(x). By Lemma 1

and Lemma 2 we have

q̂∗τ (x)− q̂∗τ,L(x) = oP (1/
√
n), q̂∗τ,L(x)− qτ (x) = OP (rn), ŝL(x)− s(x) = OP (rn),

uniformly in x ∈ [3hn, 1− 3hn]. It thus suffices to establish∫ t

3hn

q̂∗τ,L(x)− qτ (x)

s(x)
fX(x)dx =

∫ t

3hn

q̂τ,L(x)− qτ (x)

s(x)
fX(x)dx− 1

n

n∑
i=1

I{ε∗i ≤ 0} − τ
fε(0)

I[3hn,t](Xi)

+oP (1/
√
n)

uniformly in t ∈ [3hn, 1 − 3hn]. By definition of q̂∗τ,L, by part (iii)’ of Lemma 3, and since

fe(0|x) = s(x)fε(0) we have

fX(x)(q̂∗τ,L(x)− qτ (x))

s(x)

= −fX(x)ut1M(K)−1

fε(0)

∫ 1

−1
κ(v)

(
T̃ ∗n,0,L,S(x, qτ+vbn(x)), . . . , T̃ ∗n,p,L,S(x, qτ+vbn(x))

)t
dv + oP (1

√
n)

where

T̃ ∗n,k,L,S(x, y) =
1

nhn

1

fX(x)

n∑
i=1

Khn,k(x−Xi)
(

Ω
(Y ∗i − y

dn

)
− FY (y|Xi)

)
.

The remaining proof is based on the following intermediate results which we will establish

later on. First of all, uniformly in t ∈ [3hn, 1− 3hn], we have

∫ t

3hn

T̃ ∗n,k,L,S(x, qτ+vbn(x))fX(x)dx (S3.32)

=
1

n

∑
i

I[3hn,t−hn](Xi)

∫ 1

−1
K1,k(u)

(
Ω
(Y ∗i − qτ+vbn(Xi + uhn)

dn

)
−FY (qτ+vbn(Xi + uhn)|Xi)

)
du+ oP (1/

√
n).
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Moreover we have uniformly in u ∈ [−1, 1], t ∈ [3hn, 1− 3hn]

1

n

∑
i

I[3hn,t−hn](Xi)Ω
(Y ∗i − qτ+vbn(Xi + uhn)

dn

)
=

1

n

∑
i

I[3hn,t−hn](Xi)
(

Ω
(ε∗i ŝL(Xi)

dn

)
+ vbnγn(Xi) +

p∑
j=1

ξj(Xi, v, n)(uhn)j
)

(S3.33)

+
fε(0)

n

∑
i

I[3hn,t−hn](Xi)
(qτ (Xi)− q̂τ,L(Xi)

ŝL(Xi)

)
+ oP (n−1/2)

=
1

n

∑
i

I[3hn,t−hn](Xi)
(
vbnγn(Xi) +

p∑
j=1

ξj(Xi, v, n)(uhn)j
)

(S3.34)

+
1

n

∑
i

I[3hn,t](Xi)I{ε∗i ≤ 0}+ fε(0)

∫ t

3hn

qτ (x)− q̂τ,L(x)

s(x)
fX(x)dx+ oP (n−1/2),

where ξj, γn denote some functions that do not depend on u. Additionally, a Taylor expansion

of (u, v) 7→ FY (qτ+vbn(Xi + uhn)|Xi) shows that

1

n

∑
i

I[3hn,t−hn](Xi)FY (qτ+vbn(Xi + uhn)|Xi)

=
1

n

∑
i

I[3hn,t−hn](Xi)
(
τ + vbn +

p∑
j=1

ζj(Xi, v, n)(uhn)j
)

+ oP (n−1/2), (S3.35)

where the remainder holds uniformly in u ∈ [−1, 1], t ∈ [3hn, 1 − 3hn] and the functions ζj

are again independent of u. Plugging (S3.34) and (S3.35) into (S3.32) we find that∫ 1

−1
κ(v)

∫ t

3hn

T̃ ∗n,k,L,S(x, qτ+vbn(x))dxdv =

p∑
j=0

µk+j(K)wj(t) + oP (1/
√
n)

where

w0(t) :=
(
fε(0)

∫ t

3hn

qτ (u)− q̂τ,L(u)

s(u)
fX(u)du+

1

n

n∑
i=1

I[3hn,t](Xi)(I{ε∗i ≤ 0} − τ)
)
,

wj(t) :=
hjn
n

n∑
i=1

I[3hn,t−hn](Xi)

∫ 1

−1
κ(v)(ξj(Xi, v, n)− ζj(Xi, v, n))dv, j = 1, ..., p.

Thus, uniformly in t ∈ [3hn, 1− 3hn],

fX(x)

∫ 1

−1
κ(v)

(
T̃ ∗n,0,L,S(x, qτ+vbn(x)), . . . , T̃ ∗n,p,L,S(x, qτ+vbn(x))

)t
dv

= M(K)(w0(t), ..., wp(t))
t + oP (1/

√
n).

Hence the proof will be complete once we establish (S3.32)-(S3.34).
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Proof of (S3.32)

Recalling that K has support [−1, 1], we obtain for any t ∈ [3hn, 1− 3hn] the decomposition

Khn,k(x−Xi)I[3hn,t](x) = Khn,k(x−Xi)I[3hn,t](x)
(
I(t−hn,t+hn](Xi)+I[2hn,3hn)(Xi)+I[3hn,t−hn](Xi)

)
.

We will now show that the contributions corresponding to the summands containing I[2hn,3hn)(Xi)

and I(t−hn,t+hn](Xi) are negligible. Since both expressions can be treated analogously, we only

provide the arguments for I(t−hn,t+hn](Xi). By similar arguments as in the proof of Lemma

3 it is easy to show that

sup
t,x∈[3hn,1−3hn],y∈Y

∣∣∣ 1

nhn

n∑
i=1

Khn,k(x−Xi)

fX(x)
I(t−hn,t+hn](Xi)

(
Ω
(Y ∗i − y

dn

)
− FY (y|Xi)

)∣∣∣
=: An(Y) = OP (rn)

for any bounded Y ⊂ R. Observe that Khn,k vanishes outside [−hn, hn], and since

I{|x−Xi| ≤ hn}I[3hn,t](x)I(t−hn,t+hn](Xi) ≤ I[t−2hn,t+2hn](x)I[t−hn,t+hn](Xi)

we obtain, for a suitably chosen Y ,∣∣∣ ∫ t

3hn

1

nhn

n∑
i=1

Khn,k(x−Xi)

fX(x)
I[t−hn,t+hn](Xi)

(
Ω
(Y ∗i − qτ+vbn(x)

dn

)
− FY (qτ+vbn(x)|Xi)

)
dx
∣∣∣

≤
∫ t+2hn

t−2hn
An(Y)dx = OP (hnrn) = oP (1/

√
n)

uniformly in t ∈ [3hn, 1− 3hn], v ∈ [−1, 1]. This completes the proof of (S3.32).

Proof of (S3.33) Throughout this part of the proof, let Y ⊂ R denote a fixed, bounded

set containing the interval [−dn, dn] for sufficiently large n. The following statement will be

proved later

1

n

∑
i

I[3hn,t−hn](Xi)
(
I{Y ∗i ≤ qτ+vbn(Xi + uhn) + y} − I{ε∗i ≤ y/ŝL(Xi)}

)
(S3.36)

=
1

n

∑
i

I[3hn,t−hn](Xi)
(
F̄ε

(qτ+vbn(Xi + uhn)− q̂τ,L(Xi) + y

ŝL(Xi)

)
−F̄ε

(qτ (Xi)− q̂τ,L(Xi) + y

ŝL(Xi)

)
+ fε

( y

ŝL(Xi)

)qτ (Xi)− q̂τ,L(Xi)

ŝL(Xi)

)
+ oP (1/

√
n)

uniformly in t ∈ [3hn, 1 − 3hn], u, v ∈ [−1, 1], y ∈ Y where F̄ε is defined in Lemma 5.

Now convolving both sides of (S3.36) [with respect to the argument y] with 1
dn
ω(·/dn) and

evaluating the result in 0 yields the identity

1

n

∑
i

I[3hn,t−hn](Xi)
(

Ω
(Y ∗i − qτ+vbn(Xi + uhn)

dn

)
− Ω

( ŝL(Xi)ε
∗
i

dn

))
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=
1

n

∑
i

I[3hn,t−hn](Xi)
(
F̄ε

(qτ+vbn(Xi + uhn)− q̂τ,L(Xi)

ŝL(Xi)

)
− F̄ε

(qτ (Xi)− q̂τ,L(Xi)

ŝL(Xi)

)
+fε(0)

qτ (Xi)− q̂τ,L(Xi)

ŝL(Xi)

)
+ oP (1/

√
n).

Observe that the smoothness properties of F̄ε (defined in Lemma 5) yield the representation

F̄ε

(qτ (Xi)− q̂τ,L(Xi)

ŝL(Xi)

)
− F̄ε

(qτ+vbn(Xi + uhn)− q̂τ,L(Xi)

ŝL(Xi)

)
= vbnγn(Xi) +

p∑
j=1

ξj(Xi, v, n)(uhn)j + rn,1

where the remainder terms rn,1 is of order O(b2n + hp+1
n ) = o(1/

√
n) uniformly in u, v and

ξj, γn denote some functions that do not depend on u. Thus the proof of (S3.33) will be

complete once we establish (S3.36). To this end, observe that

I
{
Y ∗i ≤ qτ+vbn(Xi + uhn) + y

}
= I
{
ε∗i ≤

qτ+vbn(Xi + uhn)− q̂τ (Xi) + y

ŝ(Xi)

}
and

1

n

∑
i

I[3hn,t−3hn](Xi)
(
I
{
ε∗i ≤

qτ+vbn(Xi + uhn)− q̂(Xi) + y

ŝ(Xi)

}
− I
{
ε∗i ≤

y

ŝL(Xi)

})
=

1

n

∑
i

I[3hn,t−3hn](Xi)
(
I
{
ε∗i ≤

qτ+vbn(Xi + uhn)− q̂τ,L(Xi) + y

ŝL(Xi)

}
− I
{
ε∗i ≤

y

ŝL(Xi)

})
+ oP (1/

√
n)

=
1

n

∑
i

I[3hn,t−3hn](Xi)
(
F̃ε

(qτ+vbn(Xi + uhn)− q̂τ,L(Xi) + y

ŝL(Xi)

)
− F̃ε(y/ŝL(Xi))

)
+ oP (1/

√
n)

uniformly in t, v, u, which follows by arguments similar to those used in the proof of Lemma

9. Consider the decomposition

F̃ε

(qτ+vbn(Xi + uhn)− q̂τ,L(Xi) + y

ŝL(Xi)

)
− F̃ε

( y

ŝL(Xi)

)
= F̃ε

(qτ+vbn(Xi + uhn)− q̂τ,L(Xi) + y

ŝL(Xi)

)
− F̃ε

(qτ (Xi)− q̂τ,L(Xi) + y

ŝL(Xi)

)
+F̃ε

(qτ (Xi)− q̂τ,L(Xi) + y

ŝL(Xi)

)
− F̃ε

( y

ŝL(Xi)

)
.

For the first term in this decomposition, an application of Lemma 5 yields

1

n

∑
i

I[3hn,t−3hn](Xi)
[
F̃ε

(qτ+vbn(Xi + uhn)− q̂τ,L(Xi) + y

ŝL(Xi)

)
− F̃ε

(qτ (Xi)− q̂τ,L(Xi) + y

ŝL(Xi)

)]
=

1

n

∑
i

I[3hn,t−3hn](Xi)
[
F̄ε

(qτ+vbn(Xi + uhn)− q̂τ,L(Xi) + y

ŝL(Xi)

)
− F̄ε

(qτ (Xi)− q̂τ,L(Xi) + y

ŝL(Xi)

)]
+oP (1/

√
n),
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where F̄ε is defined in Lemma 5. Noting that

F̃ε

(qτ (Xi)− q̂τ,L(Xi) + y

ŝL(Xi)

)
− F̃ε

( y

ŝL(Xi)

)
= f̃ε

( y

ŝL(Xi)

)qτ (Xi)− q̂τ,L(Xi)

ŝL(Xi)
+ oP (1/

√
n),

and recalling that f̃ε converges to fε uniformly with rate oP ((hn/ log n)1/2) [see (S2.1)] com-

bined with rn(hn/ log n)1/2 = o(1) yields

F̃ε

(qτ (Xi)− q̂τ,L(Xi) + y

ŝL(Xi)

)
− F̃ε

( y

ŝL(Xi)

)
= fε

( y

ŝL(Xi)

)qτ (Xi)− q̂τ,L(Xi)

ŝL(Xi)
+ oP (1/

√
n)

which completes the proof of (S3.36) and thus (S3.33) is also established.

Proof of (S3.34) It suffices to show that, uniformly in t ∈ [3hn, 1− 3hn]

1

n

∑
i

I[3hn,t−hn](Xi)
(

Ω
( ŝL(Xi)ε

∗
i

dn

)
− I{ε∗i ≤ 0}

)
= oP (

1√
n

), (S3.37)

1

n

∑
i

I[3hn,t−hn](Xi)(I{ε∗i ≤ 0} − τ) =
1

n

∑
i

I[3hn,t](Xi)(I{ε∗i ≤ 0} − τ) + oP (
1√
n

), (S3.38)

1

n

∑
i

I[3hn,t−hn](Xi)
qτ (Xi)− q̂τ,L(Xi)

ŝL(Xi)
=

∫ t

3hn

qτ (u)− q̂τ,L(u)

s(u)
fX(u)du+ oP (

1√
n

). (S3.39)

The statement in (S3.39) follows since, for t ∈ [4hn, 1− 3hn],

1

n

∑
i

I[3hn,t−hn](Xi)
qτ (Xi)− q̂τ,L(Xi)

ŝL(Xi)
=

1

n

∑
i

I[3hn,t−hn](Xi)
qτ (Xi)− q̂τ,L(Xi)

s(Xi)
+ oP (1/

√
n)

=

∫ t−hn

3hn

qτ (u)− q̂τ,L(u)

s(u)
fX(u)du+ oP (1/

√
n)

=

∫ t

3hn

qτ (u)− q̂τ,L(u)

s(u)
fX(u)du+ oP (1/

√
n),

where the first equality follows from the rates of convergence for q̂τ,L− qτ , ŝL− s [see Lemma

1 and Lemma 2], the second equality is a consequence of the fact that q̂τ,L ∈ Cδ
C with

probability tending to one [see Lemma 1] combined with Lemma 7. For t < 4hn, the left-

hand side of (S3.38) is zero and the right-hand side of order oP (n−1/2) by Lemma 1 and

Lemma 2.

For a proof of (S3.37), observe that

Ω
( ŝL(Xi)ε

∗
i

dn

)
− I{ε∗i ≤ 0} =

1

dn

∫ dn

−dn

(
I{ε∗i ≤ a/ŝL(Xi)} − I{ε∗i ≤ 0}

)
ω
( a
dn

)
da.

Define the sequence of sets

S(δn) := {(t, yn, zn)|t ∈ [3hn, 1− 3hn], yn, zn ∈ Y , |yn − zn| ≤ δn}
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for some δn = o(1). Observe that, with probability tending to one,

sup
(t,yn,zn)∈S(δn)

∣∣∣ 1
n

n∑
i=1

I[3hn,t−3hn](Xi)
(
I{ε∗i ≤ yn} − I{ε∗i ≤ zn}+ F̃ε(zn)− F̃ε(yn)

)∣∣∣
= sup

(t,yn,zn)∈S(δn)

∣∣∣ 1
n

n∑
i=1

I[3hn,t−3hn](Xi)
(
I{Ui ≤ F̃ε(yn)} − I{Ui ≤ F̃ε(zn)}+ F̃ε(zn)− F̃ε(yn)

)∣∣∣
≤ sup

(t,yn,zn)∈S(Cδn)

∣∣∣ 1
n

n∑
i=1

I[3hn,t−3hn](Xi)
(
I{Ui ≤ yn} − I{Ui ≤ zn}+ zn − yn

)∣∣∣
= oP (1/

√
n).

Here, for the first inequality we made use of (B.1). This implies that, with probability

tending to one, F̃ε has a uniformly bounded derivative which shows that, with probability

tending to one, |yn−zn| ≤ δn implies |F̃ε(yn)−F̃ε(zn)| ≤ Cδn for some finite constant C. The

last bound above follows by standard empirical process arguments provided that δn = o(1).

Thus

1

n

∑
i

I[3hn,t−hn](Xi)
(

Ω
( ŝL(Xi)ε

∗
i

dn

)
− I{ε∗i ≤ 0}

)
=

1

n

∑
i

I[3hn,t−hn](Xi)
1

dn

∫ dn

−dn

(
F̃ε(a/ŝL(Xi))− F̃ε(0)

)
ω
( a
dn

)
da+ oP (n−1/2)

=
1

n

∑
i

I[3hn,t−hn](Xi)
1

dn

∫ dn

−dn

(
F̄ε(a/ŝL(Xi))− F̄ε(0)

)
ω
( a
dn

)
da+ oP (n−1/2)

= oP (n−1/2)

where the second to last line follows by Lemma 5 and the last line is a consequence of the

smoothness properties of F̄ε.

Thus (S3.37) follows and it remains to establish (S3.38). To this end, observe that it suffices

to establish

sup
t∈[3hn,1−3hn]

∣∣∣ 1
n

n∑
i=1

I[t−hn,t](Xi)(I{ε∗i ≤ 0} − τ)
∣∣∣ = oP (n−1/2).

Now

1

n

n∑
i=1

I[t−hn,t](Xi)(I{ε∗i ≤ 0} − τ) =
1

n

n∑
i=1

I[t−hn,t](Xi)(I{Ui ≤ F̃ε(0)} − τ),

and by (S3.27) in Lemma 5 we have F̃ε(0) − τ = F̃ε(0) − Fε(0) = OP (rn). Thus we have

with probability tending to one |F̃ε(0)− τ | ≤ rnh
−1/4
n and in particular

sup
t∈[3hn,1−3hn]

∣∣∣ 1
n

n∑
i=1

I[t−hn,t](Xi)(I{ε∗i ≤ 0} − τ)
∣∣∣

≤ sup
t∈[3hn,1−3hn]

sup
|y|≤rnh−1/4

n

∣∣∣ 1
n

n∑
i=1

I[t−hn,t](Xi)(I{Ui ≤ y} − τ)
∣∣∣ = oP (n−1/2)
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where the first inequality holds with probability tending to one and the equality follows by

standard empirical process arguments. Thus (S3.37) follows. This completes the proof of

Lemma 10.

2
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