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Supplementary material.

The supplementary material contains all proofs. The proofs of the main results (Theorem 1,
Corollary 1 and Theorem 3) and the bootstrap versions (Theorems 2 and 4) are contained in
Sections S1 and S2, respectively. Technical details needed in the proofs of those results can
be found in Section S3.3. Finally, Section S3.1 contains basic results on linearized versions
and differentiability of the quantile estimator §¢,, scale estimator § and the corresponding

bootstrap versions, while Section S3.2 contains additional technical details.

S1 Proof of weak convergence results

Proof of Theorem 1. For the numerator vag,n(t,y) = Fx,an(t,y)(ﬁ’xm(l — 2h,) —
Fxn(2hy)) of the joint empirical distribution function defined in (3.2) we have
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Note that in Lemma 9 it is shown that without changing the asymptotic distribution of the

process the residuals é; can be replaced by their versions obtained from linearized estimators

Gr.1, 81 instead of ., § (see Section S3.1 for the definitions). Thus we have
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From this we obtain the expansion
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uniformly with respect to t € [2h,,1 — 2h,] and y € R by the following argumentation.

Consider the empirical process
1 n
Gulp) = o= 3 (P(Xises) = Elo(Xiyei)]), € F,
indexed by the following class of functions,

F = {(X, e) s I{e < ydo(X) + dy(X)M{h < XY{X <t} — I{e <y} {h < X}{X <t}

‘ y R At € [0,1],dy € CIH([0, 1)),y € CI((0,1])},

for some arbitrary § € (0, 1), where the function class C}*9([0,1]) is defined as the set of
differentiable functions g : [0, 1] — R with derivatives ¢’ such that

+ sup 3
z,2€[0,1] |[L’ - Z|

maxx{ sup |g(e)]. sup [g'(x)]} W gl

z€[0,1] z€(0,1]
[see van der Vaart and Wellner (1996, p. 154)]. We further by slight abuse of notation define
the subset C3 ([0, 1]) of C179([0, 1]) by the additional constraint inf,ep, 1 g(z) > 1/2. Now F
is a product of the uniformly bounded Donsker classes {(X,¢) — I[{h < X}I{X < t}|h,t €
0,1} and {(X,¢) — I{e < ydy(X) + di(X)} — I{e < y}ly € R,dy € CI([0,1]),ds €
C1+9(]0,1])} [the Donsker property for the second class is shown in Lemma 1 by Akritas
and Van Keilegom (2001)] and is therefore Donsker as well (Ex. 2.10.8, van der Vaart and
Wellner (1996), p. 192). The remaining part of the proof for equality (S1.1) follows exactly
the lines of the end of the proof of Lemma 1, Akritas and Van Keilegom (2001), p. 567, using

the inequality
Var([{gl < ydo(X1) + di(X)M{h < XM {X) < s} — [{e < g} {h < XX, < s})
< B[(1{a <ydo(X0) + dr(X0)} — I{21 <w}) |-

Here one also needs 3, /s € Ca°([0,1]), (¢r.r. —q-)/s € C1+9([0,1]) with probability converg-
ing to one, which follows from uniform consistency results in Lemma 1. For ¢ = @144,

we obtain

sup ‘Gn<g0 4o p—ar s )‘ = op(1)
JeR, 2hn,ty, =, =L
t€[2hn,1—2hn]

and thus (S1.1).
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Further, by a Taylor expansion we obtain from (S1.1) together with assumption (A4) that

2 54 () — s(o)

. s(x)

172 g 1 (2) — g () 1
wrty) [ < ) (a) do 4 onl )

Pealton) = 3 He < {20, < X< ) +ti(o) | Ha < t)fx(@) da
=1

uniformly with respect to ¢t € [2h,,1 — 2h,] and y € R. In Lemma 10 expansions of the

integrals in this decomposition are derived and it follows that

FX,s,n(tay> (812)

n

= %if{fi <y HA{2h, < X; <t} - ¢(y)% > (I{e; <0} = 7)I{2h, < X; < t}

=1

1 < 1 1
=)y 3 (el < 1) = ) H2ha < Xi S 0} +0p(—),

=1

where ¢ and 1) are defined in the assertion of the theorem. Thus noting that F xn(l—2hy,)—
Fx,n(th) = Fx(1—=2h,)— Fx(2h,)4+o0p(1) = 1+ 0p(1), from the definition (3.3) we obtain
by Slutsky’s lemma that

S.(t.9) = <=3 (He < vy = o) — o) (e < 0} =) —wiw)(Hlail < 1) - 5))

Fxn(t) — Fxn(2h
X (I{th < X; <t} —I{2h, < X; <1—2h,}~ xanll) = Foxn(2hn) )
EFx (1 = 2hy,) — Fy . (2hy,)

+ OP(l).

uniformly with respect to t € [2h,,1 — 2h,| and y € R. Note that the dominating part

of this process vanishes in the boundary points ¢t = 2h,, and t = 1 — 2h,,. Further, from
Fxn(t) = Fx(t) + Op(n~'/?) uniformly in ¢ € [0,1] and Fx(2h,) = 0, Fx(1 — 2h,) = 1 we
have

Sn(t7y> - Sn,1<t7y) + OP(1)7

uniformly with respect to t € [0,1], y € R, where S, 1(¢,y) =0 for ¢t € [0,2h,,) U (1 — 2h,, 1]

and
1 n
Sna(t,y) = 7n Zg(&,y) (I{th <X <t} —I{2h, < X; <1- th}FX(t)>
i=1

for t € [2h,,1 — 2h,] and y € R, where g(g;,y) = I{e; <y} — F.(y) — o(y)(I{e; <0} —7) —
Y(y)(I{le;] <1} — 1) is centered and independent of X;. The first assertion of the theorem
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now follows if we show that for
1 n

Sn,Q(ta y) = % Zg({flay) (I{XZ S t} - FX(t>> ) te [07 1]a ) € R>
i=1

we have sup,e(o 1] yer [Sn1(ty) — Sna(t, y)| = op(1), which is equivalent to

sup [Sna(t,y) — Sna(t,y)| = op(1) (S1.3)
te[2hy,1—2hy,],yER
together with
sup |Sn2(t,y)| = op(1). (S1.4)

t€[0,2hpn)U(1—2hy,1],yER

We will only show (S1.3); (S1.4) follows by similar arguments. Note that S, (t,y) —
Sna(t,y) = Gp(hy, t,y) for t € [2h,,1 — 2h,], y € R, where the process

Gn(h,t,y) = \_/—% ig(si, y)(I{X; <t} — Fx(t)I{X; € [0,2h) U (1 — 2R, 1]}

indexed in h € [0,1], ¢t € [0,1], y € R, converges weakly to a centered Gaussian process G

with asymptotic variance
Var(G(h,t,y)) = Elg*(e1,9)] ((FX(t A2h) + Fx(t) — Fx(t A (1 —=2h)))(1 —2Fx(t))
4 F2(#)(Fx(2h) +1— Fx(1— 2h))).

For h = h,, — 0 this asymptotic variance vanishes uniformly with respect to y and ¢. From
asymptotic equicontinuity of G,, (confer van der Vaart and Wellner, 1996, p. 89/90), using the
asymptotic variance as semi-metric, with G, (0,¢,y) = 0 it follows that sup, , |Gy (hn,t,y)| =
op(1) and thus (S1.3).

Hence, we have shown the first assertion of the theorem, i.e. S, = S, 2 + op(1) uniformly.
Weak convergence of S, 5 (and thus of 5,,) to a centered Gaussian process with the asserted

covariance structure follows by standard arguments. ]

Proof of Corollary 1. The asymptotic distribution of K, directly follows from Theorem

1 and the continuous mapping theorem. From those theorems also follows that
Co= [ [ Sitt) Fxtr) Fdy)
R J[0,1]

converges in distribution to the desired limit. It therefore remains to show that C, — C, =
op(1). To this end denote

~

CO = [ [ S Pt P (Frnl)) Pt Prnldy)
R J[0,1]
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and let o, be some sequence specified later with g, — oo for n — oco. Then
Cn \/‘ ][] (S2(t.) — S2FR (Fx a0, F (Fow)))) P n(dt) Fr ()
On,0n 0,1

+2sup [S;(t,y)] FL o (dy).
ty R\[_angn]
The second term on the right hand side is Op(1)(1 — F.p(0n) + Frn(—0n)) = 0p(1) due to
the results from Theorem 1 and because g, — oo and Fm converges to F. uniformly in
probability (this follows from the proof of Theorem 1). The first term on the right hand side
can further be bounded by
2sup [Su(t,y)| - sup | St y) = Su(Fx (Fxn(), B (Fen(y))))
7y

t€(0,1]
yE€[—on,on]

From Theorem 1 it follows that the process S, is asymptotically stochastic equicontinuous
such that we obtain the desired rate op(1) from

sup [t — Fx'(Fxn(t)] < sup ——— sup |Fx.(t) — Fx(t)| = op(1)
tefo,1]] ec0.1] [x(&) tep.]

by assumption (A1) and

sup  |y—F, ' (Fen(y))| < sup sup Fa sup [P (y) — Fe(y)| = op(1).
YE[—0n,0n] YE[—0on,0on] Fsé) ZZ;WZ"M@ fs( € (O) yeR

The latter rate follows because sup, g |F-(y) — Fe(y)| = Op(n~/2) (which can be deduced
by Fan() = FX7a7n(1—2hn, -)/(FXm(l—th) —FXm(th)) and (S1.2) in the proof of Theorem

1) if we choose a sequence g, such that n'/?

infyci—20,,200] fo(y) — 00 for n — oco. This is
possible by assumption (A4).
We have shown C, — C\V) = op(1) and it remains to show that C,, — i = op(1). To this

end, note that almost surely

_ /{01 /01] S2(FLl(s), Fl (= ))dsdz——;ZlSQ ()
-3

12—
=1 j5=1

Lo /[ . (S35 (), B () = S2(FR (), F1(2)) ds

We decompose the second sum into ?”:1 R Z?: T4l T Z il 41 for sequences of
integers with 1 < j, < J, <n and j,/n — 0, J,/n — 1 for n — oco. We obtain

= ~ .n - Jn

G = C] < 222 T T G 521, y)|

t’y

+2sup [Su(t,y)| sup  sup  |Su(Fx'(s), F-H(2)) = Su(Fx' (w), F7H ()],
Ly \sfu|§1 |z— ’L)|<1

sweld] e[z, Jn]
n
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By asymptotic stochastic equicontinuity of S, this converges to zero in probability if

sup_ |Ft(s) — Ft(u)] — 0
o

which follows from assumption (A1) and the mean value theorem, and

sup |F_1(z) — Fs_l(v)| —0

€
lz—v|<d

z,ve[%,%]
which can be guaranteed by assumption (A4) and the mean value theorem if j,/n and J,/n

converge slowly enough. O

Proof of Theorem 3. The assertion follows from Theorem 1 if we show that uniformly
with respect to ¢ € [0,1] and y € R, S,(t,y) = S,s(t,y) + op(1). To this end, observe
that as in the proof of Theorem 1 we can replace the estimators ¢, and § by their linearized
versions ¢,z and $; in the definition of S, without changing the asymptotic properties.
Denote the corresponding version of the process by S, . Similarly, in the definition of S5, s
the estimators ¢, ; and § can be replaced by ¢, r; = I'n(¢rr) and Sr, where ¢, 1 ; denotes
the increasing rearrangement of the linearized estimator ¢, . More precisely, denoting this
version of the process by S, 11, we will show that

sup  |Snrs(t,y) — Sns(t,y)| = op(1). (S1.5)

te[0,1],yeR
To see this, let ¢ = inf,cp17 ¢, (x) and note that by our assumptions ¢ > 0 and by Lemma 1
we have for the set (), := {sup iy, 121,114, (z) — ¢, ()| < 5} that P(Q,) — 1 for n — oo,
Observe that by a straightforward modification of the proof of Theorem 3.1 (a) in Neumeyer
(2007), we have on the set 2,

sup |Fn(cjr,L>($) - FH(QT)(I)| <C sup |QT,L($) - (jr($>|
2€[hn,1—hn] z€[hn,1—hnp]

for a universal constant C' which is independent of n. Thus Lemma 2 together with P(,,) —

1 implies that

sup  |Tn(Grr) (@) — Tn(dr) ()] = op(n~1/?).
2€[hn,1—hn]

Additionally, observe that the estimator ¢, ;, is strictly increasing provided that the event 2,,
holds, which implies that P(¢,; = I',(¢-1)) > P(£2,) — 1. Now similar arguments as those
used in the proof of Lemma 9 show that, defining Fx., ,, in the same manner as F Xern
but with &, 1 := (Y; = I'w(¢r.)(2))/5(X;) instead of ¢; ;, we have

FX7517n(t7 y) = FX,aLJ,n(t, y) + Op(n_l/Q)
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uniformly on z € [2h,, 1 — 2h,],y € R. Combining this with arguments which are similar to
those in the proof of Theorem 1, this shows the validity of (S1.5). Next, note that on €,

the estimator ¢, is strictly increasing. For every € > 0 it follows that

P( sup |Sn,L,I(t7 y) - Sn,L(ta y)’ > 6)

t€[2hn,1—2hy],y€R

=P sup |Sn.L.r(t,y) — Snr(t,y)| > 6) +o(1)
t€[2hn,1—2hy],yER

N c

< P( s (St y) = Sarty)l >, swp @y (0) = @) < 5) +ol1)
t€[2hn,1—2hy],y€R z€lhn,1—hn)

()

<P sup |S'ﬂ,LJ(t7y) - Sn,L(t7y>| > €, inf Q;—L(x) > O) + 0(1)
tE€[2hn,1—2hn],y€R z€[hn,1=hn]

o(1).

Here the last equality is due to the following argumentation. If inf,ejp, 1-n,) @ (%) > 0,
then ¢, is strictly increasing, and for any increasing function the increasing rearrangement
equals the original function function and we have ¢, ; = ¢, (see Section 4). But then,
Snrn(t,y) = Spri(t,y) for all t € [2h,,1 — 2h,],y € R and the probability in (x) is zero.
Finally, similar arguments as those in the proof of Theorem 1 show that, uniformly with
respect to ¢t € [0,2h,) U (1 — 2h,, 1],y € R, we have S, 1 (t,y) = Snr(t,y) + op(1). This
completes the proof. O

S2 Validity of bootstrap

Preliminaries.
Let fE denote the density corresponding to F.. Then under assumptions (B1) analogous to

Lemma 2 in Neumeyer (2009) it can be shown that

hin

gs/lelﬂg |f€<y> - fa(y)l = OP((logn)1/2)7 zLEl]E |yf~6<y> - yfs(y)| = OP(1> (82'1)
sy IO _ o1y g )~ )] = o)

(with § from assumption (B1)). Further note that under assumption (B2), Proposition 4
in Neumeyer (2009) is valid (with v from assumption (B2)) and it follows that (for some
constants d and L) we have F. € D with probability converging to one. Here the function

class is defined as

D= {F :R —[0,1] | F increasing and continuously differentiable with derivative

@) = 1@ _

f such that sup|f(x)] +qu$1? iz — a2 =7

zeR
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d d
1= Fla)] < 5ve > 0 and |F(2)| < v < o}. (52.2)
v x|Y
From Lemma 4 in Neumeyer (2009) and the conditions on § and v in assumption (B2) it
follows that
log N(e, D, || - ||oo) = O(e™?) for some a < 1. (52.3)

Proof of Theorem 2.

In Lemma 9 it is shown that in the process F’ X e the residuals €7 can be replaced by linearized
versions 7 ; (see Section S3.1 for the definitions). Using this, the preliminaries above as well
as Lemma 1 (instead of Lemma 3 in Neumeyer (2009)) we obtain analogously to the proofs

of Lemma 1(i) and Theorem 2 in the reference that

Fy o a(ty)

1 n
= - > I, < yH{4h, < X; <t} + op(—=)
=1

1
Vn
1 n
= =Y Hej <y} {dh, < X; <t}
n
=1

+/ (ps (ﬁi(@ N G () — C?T,L(:E)> B Fe(y)>l{4hn < o <t (e do

Sr(x) Sp(z)

1
7

uniformly with respect to t € (4h,,, 1—4h,], y € R. One can further apply a Taylor expansion

+ OP(

for F.. Lemma 10 gives expansions for the remaining integrals and we obtain
1% 1 - * 7 * 1
Finlty) = =3 Haha < X; < t}(He; < g} = daly) (Hle1 < 13 - 5)
i=1

~dulw) (e <0} 7))

+op(—=)

vn

uniformly with respect to ¢t € (4h,,1 — 4h,], y € R, where

7 o yfa(y) 1 _ fa(y) . fa(l) — fa(_l)
Yaly) = fie (1) Puly) = f=(0) (1 fier(1) )

By the definition of the process S one now directly has

S(t,y)
_ %; (Her < wd = daly) (111 <1} - %) ~dulw) (Il <0} = 7))
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X (I{4hn < X, <t — I{dh, < X, <1 — dp,}— Tt = Fxn(dha) )
Fyn(1 — dhy) — Exn(4hy)

+op(1)

1 — Fx (t) — Fyxn(4h
= —Y g.(ey) (I{4hn < Xi <t} — [{4h, < X; < 1 — dpy 10 () = Fxn(dha) )
Vn = Fx.n(1—4h,) — Fx,(4h,)

+ Op(l)

uniformly with respect to t € (4h,,, 1 — 4h,], y € R, with

gn(‘?;‘k?y)
= Hel <y} — Fly) = uly) (Her < 0} = £(0)) = daly) (H{Jef] < 1} = Bo(1) + (1)),

Note that E[g,(ef,y) | V] = 0 and the dominating part of the process S} vanishes in the
boundary points ¢t = 4h,, and t = 1 — 4h,, for all y € R. Similarly to the corresponding
arguments in the proof of Theorem 1 (but with more technical effort) it can be shown
that this process is equivalent in terms of conditional weak convergence in £*([0, 1] x R) in

probability to the process

Sraltn) = 2= S g (HX <1 = Fo0). teblyeR

Details are omitted for the sake of brevity.

To finish the proof we have to show that (conditional on Y = ((X1, Y1), (X, Y2),...)) the
process Sy , converges weakly to S in probability (n — oo). To this end we may show that
for each subsequence (ny)x there exists a further subsequence (ny,), such that (conditional
on )) S;:kev? converges weakly to S almost surely (¢ — o0), cf. Sweeting (1989), p. 463. To
this end we choose a subsequence (ng,), such that along this subsequence the convergences
in (S2.1) hold almost surely (¢ — oo). To simplify notation for the remainder of the proof
we simply assume that the sequences in (S2.1) converge almost surely (n — oo) and show
that then S} , converges weakly to S almost surely (n — 00).

It is easy to see that the conditional covariances Cov(S; 5(s, ), Sy o(t, 2) | V) converge almost
surely to Cov(S(s,y),S(t, z)) as defined in Theorem 1. Thus it remains to show conditional
tightness and conditional fidi convergence of S;,. To obtain the latter we use Cramér-
Wold’s device. Let k € N, (y1,t1),...,(ye,tx) € R x [0,1], a1,...,a;, € R and Z, =
25:1 a;S;(tj,y;) = n 23" | 2., Note that for some constant ¢, |g, (e}, y)(I{X; < t} —
Fx,(t)| < 14c¢(1+y)f-(y), which converges almost surely to 1+c¢(1+y)f-(y) due to (52.1)
and thus is almost surely bounded. From this the validity of the conditional Lindeberg

condition easily follows, i. e.

1 n
L,(6) = - ZE[ZZz[{’an’ > n'25} | Y] — 0 almost surely, for all § > 0.
i=1
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Finally, to prove conditional tightness we use the decomposition S} »(t,y) = Zi:o o (t,y),

where

UO(ty) = —= 3 (e < yb— () ) H{X < )

Ur(zl)(tay) = _¢n<y)vn,1(t)

3

with V(1) = Ln ([{e;‘ <0} - FE(O)> (I{Xi <ty - ﬁx,n(t)>
UD(E) = —GuVeal®
with Via(t) — Ln (F{lt] < 1} = 2o0) + Bu(-1)) (10X < 1) = Fa(1)

A

U (t9) = ~FraldW(0) with Walo) = <=3 (el <o} = R(0).

Note that conditional weak convergence of V,,; and V, 2 to centered Gaussian processes,
almost surely, can be shown analogously to the proof of bootstrap validity in Birke and
Neumeyer (2013). Further conditional weak convergence of W, is completely analogous to
Theorem 4 by Neumeyer (2009). From uniform almost sure convergence of ¢, 1, and F X'n
to bounded functions, conditional tightness of U follows for k = 1,2, 3.

It remains to consider UL, Applying Corollary 1 from Shorack and Wellner (1986), p. 622,
(set @ =n~', b=46 =3, A = /n) and the Borel-Cantelli lemma one obtains the existence
of ¢ € (0,00) such that with probability one

. N 1
|Fxn(t) — Fxn(s)| <c|s— zf|1/2 Vs, t with n_lAl_l <ls—t| < §A2 (52.4)

for all but finitely many n, where A; = inf, fx(z) > 0, Ay = sup, fx(z) < oc.
We proceed by applying Theorem 2.11.9 by van der Vaart and Wellner (1996). Define
F:=10,1] x R and for f = (¢,y) let

Zualf) = %(I{ay <y}~ B(w))I{X, < 1},

Let > 0 and let Npj(n, F, L3) denote the minimal number of sets NV, in a partition of F in
subsets F., j = 1,..., Ny, such that for every Fp.

n

E{ sup | Zni(f) = Zni(g)|?

i=1 f9€Fy;

| <t (52.5)

Here the subsets are allowed to depend on n. Note also that we consider the conditional
probability measure P(- | )), so the sequence (Xi,Y7),(Xs,Y3),... is given and the subsets

are allowed to depend on it. We distinguish two cases.
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1. Let n > Ay'n

Partition [0, 1] 1nto L = O(n™) intervals [t, 1,t], £ = 1,...,L of length n* < ¢, —t,; <
4 (V). Partition R into K = O(n~?) intervals [yp_1, %), k = 1,..., K, with F.(y) —

F.(yr_1) < n* (using quantiles of the smooth distribution function F.). The N, = LK

intervals [t;—1,t¢] X [yk—1, yx] define the subsets Frisj=1,...,Ny.

Now fix one subset and let f,g € F = [to_1,te] X [yr—_1, yk] Then for monotonicity reasons

Zni(f) as well as Z,;(g) are elements of the bracket [Z"% Z"5¥) where

nt

ZE = (el <y M (X < tea} — Fo(y) I{X; < tg}>

vl
2 = = (e < b <10} = Fn) X < 101},

Thus the left hand side of (S2.5) can be bounded by

ZE[ k:Zu _ ku)

)]

< - Z(I{Xi <t} — I{X; <tra})’
+ 23 B[(Her S wd - Felnr) — He Sy + Falwn) [
< 2SN < - 1Y < 1))
+ % zn:E[]{éff <yt — el <y} + Folyn) — Fe(ye) ‘y]
< 2(Fxnlte) = Fxn(tet)) +8(F(yn) — Fu(ye))
< 2Fxn(te) = Fxal(ten)) +87° < Cnf, (52.6)

where we have used (52.4) and t,—t,_; > n* > n~'A;', and the constant C does not depend
on n and 7.

2. Let n < A

As before we partition R into K = O(n~*) intervals [y_1, ], k = 1,..., K, with F.(y;) —
F.(ys—1) < n?. We partition [0, 1] into n+2 = O(n~*) intervals I = [t,_1,t;), £ =1,...,n+1,
and I, = {1}, where ty = 0, t, = Xy for £ =1,... ,nand t, ;4 = 1. Here Xpy),..., X(n) de-

note the order statistics of X1,...,X,,. Now we proceed as in case 1 but replacing Z];f’“, Z’;;“
with
. 1 .
et = — (f{gf Sy HAXs <tea} — Fe(yn) I{XG < te})
NLD
- 1 . N
Zit* = (et S bK< = Ry ) TXG < ).
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By definition, Z% < Z,(f) < Z5" for f = (t,y) € [te—1,te) X [ys—1,yx]. Noting that
FX,n(te—) — ﬁ’X,n(tg,l) =0forall =1,...,n+ 1, we obtain by similar arguments as used
to derive (S2.6)

Y E [(ZSQZ’U — Zyy? y} < 2(Fxn(te=) — Fxnlte1)) + 87 = 87
i=1

The partitionings in both cases depend on n, but the bracketing number Ny(n, F, L) can
be bounded by O(n~8), independent of n, such that the condition

6n
/ \/log Ny(n, F, Ly) dn — 0 for every d, \, 0
0

is fulfilled (this corresponds to the third condition in Theorem 2.11.9 by van der Vaart and
Wellner (1996)). Further, because | Z,;(f)| < n~'/? ¥Vf we have

ZE[sup | Zni (F)I{sup | Zpi(f)] > n} ‘y] — 0 for every n > 0
‘= Llrer feF
(this corresponds to the first condition in Theorem 2.11.9 by van der Vaart and Wellner
(1996)). Moreover, (F,p) is a totally bounded semimetric space with p((s,y), (t,2)) =
|t — s| 4+ |F-(2) — F-(y)|. Now for &, \, 0 we obtain similarly to the calculation in case 1

above (for some constant c),

n

sup >~ B((Zui(f) = Zuul9))

p(f79)<6n i=1

<o s [Fxa(®) = Fxals)l+  sup |F(2) - Bo(y))

_sl< z,y:
|t—s|<0n |Fe (=)~ Fe ()] <,

q

= o(1) almost surely

by uniform convergence of F xn to Fly and FE to F. (this corresponds to the second condition
in Theorem 2.11.9 by van der Vaart and Wellner (1996)) and uniform continuity of Fx. From

Theorem 2.11.9 one obtains

lim lim P( sup  [UW(s,y) — UO(t, 2)| > n ‘ y) =0foraln>0
ONOm=o0 X p((s,9),(t:2)) <8
for almost all sequences ). This completes the proof. O

Proof of Theorem 4.
Theorem 4 follows from Theorem 2 in the same manner as Theorem 3 follows from Theorem
1. O
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S3 Technical results

We begin by recalling some notation from the main body of the paper that will be used
throughout the proofs.

One fact that we will use throughout is that the bootstrap residuals €] can be represented
as ef = F~1(U;) where Uy, ..., U, denote a sample of i.i.d. [0, 1] random variables that are

independent of the original sample and
LY @155 ) {20, < X; <120}

F, = — ~
) Fren(1—2h,) — Exn(2hn)

denotes the distribution function of €} conditional on the sample, see (3.4). Additionally, we

o <logn>1/2
Ty = nh .

Next, we introduce some additional notation that will be used throughout. First, introduce

QG (F) / / ))_”)dudu)

which is defined for arbitrary functions F' that are uniformly bounded. Some properties of

will use the abbreviation

the functional

this functional are collected in Lemma 6. Additionally, define the quantities

Fy(ylx) = ZW (y Y*>, 1(7) == Qarn (B (-|2)),

e\ (ylz) = ZW ( d )a 8% () = QG,H,1/2,bn(ﬂe\('|I))‘
where the weights W, are the same as in equation (2.3). Observe that the estimators ¢,, §

which we introduced in the main body of the paper admit the representations

QT('T> - QG,/{,T,bn<FY('|x))7 §(ZL’) = QG,H,I/Z,I)” (ﬂe\(|x>>

In Section S3.1, we will introduce linearized versions of the estimators ¢, ¢, s, s*, those will
be denoted by ¢- 1, q; 1, S1, 8. Key results there are Lemma 1 and Lemma 2 which state that
the linearized versions are uniformly close to the original estimators and that the linearized
versions have certain smoothness properties, respectively. The rest of the supplement is
organized as follows. Section S3.1 contains results about the estimators ¢,, ¢}, 3, s* and their
linearizations. The proofs of those results require additional technical Lemmas, that we
collect and prove in Section S3.2. Finally, some key results which are used in the main body
of the paper and whose proofs rely on findings in Sections S3.1 and S3.2 can be found in
Section S3.3.
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S3.1 Properties of ¢, and s

We start this section by introducing some notation and giving an overview of the derived

results. Our first key result is an asymptotic representation of the form

Fy(ylz) = Fyos(ylz) +op(1/vn),  Flyle) = Fers(yle) + op(1/v/n),
Fy(yle) = ?,L,s(y\x)JrOp(l/\/ﬁ)? Fiy(yle) = Fyy Ls(ylz) +op(1/v/n),

holding uniformly over x,y where the expressions on the right-hand side of the above equa-

tions are defined as

-1

~ t
Fyps(yle) = Felyla) + e M) (Toors(@,9), - Tuprs(@1)) -

~ t
F|e|,L,S(y‘x) = FIeI(Z/’x) +u1 ( eInOLS z y T\e|,n,p,L,S<xvy)) ’

-1
~ t
FsWle) == Fr(yle) + ut M) (T, v), ..,T;,p,L,my)) ,
A t
‘F|:|,L,S(y‘x> = F1|€|<y|$) +u1 1( e|nOLS z y : iT\ZLn,p,L,S(x’y)) ’

ut = (1,0,...,0) denotes the first unit vector in RP*! M(K) denotes a (p+ 1) x (p + 1)

matrix with entries
MUK)y = piej-alK) i= [ 2K ),

and

1
Tonkrs(@,y) = — > =
nh i—1 fX(Xz)

Tie|mpLs(T,y) = h Z (X))

y— Y ;:j:L(X )I) B F|e|(y|Xz-)).

(9
(9
Transton) = o030+ fkaate = X) (225 5) - Rix),
Thnanse) = o 3 e nate = X0 (o

This, and further properties as differentiability and convergence rates of Fy L S(y\:r;) lel,L,S F{% LS5
FIeI,LS is the subject of Lemma 3. o
The results in Lemma 6 and properties of the estimators Fy, Fj, F F| | yield representa-

tions of the form

~1/2

~—

Q@) = Guule) +op(n™?),  8(x) = du(2) + op(n2),
Q@) = @) top(n ™), (@) = 5 () +op(n )
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uniformly in  [see Lemma 2] where

(@) 1= 0:0) = s [ (Bt @i @)1e) = Py i, (2)) ) 0) o
= 00) = G [0 (T ), Do, () o
$1(2) = s(@) - W / (Bt (orzean, (@) = Fs1/2:, (@2)|) ) s()de
— S(ZL‘) — % /1 /{(U) (,T\e|,n70,L,S(x7 31/2+vbn (:L’)), . 771‘6‘7717177[,75(5(], 31/2+vbn (ZE)))th
2a0) = 1) = s [ (Bt (9l0) = Filan, () )

= 40 - “M( S [ w0 (s @), T 0t )

i) 1= o)~ 5 [ (Fisatorsenn (@10) = F(syaeon, (0)l2) )

W M(K)™ [t . i t
= o) = WA [ ) (T ssisian, ) T sy, (7)) o
fa() o

where s,(x) := F_'(a|z). Differentiability properties and convergence rates of derivatives of

lel
these estimators can obviously be derived from the corresponding properties of the underlying

distribution function estimators, see Lemma 1.

Lemma 1 Let (K1)-(K6), (A1)-(A5), (BW) hold. Then for any k < 2

-1 1/2
~(k) (k) -0 ( log hn ) _ 1
xe[hsnl}ghn} |47, (2) — 477 ()] P 2l (o A ) op(1),
-1 1/2
sy — B () = O ( log h,, ) ol
su 57 (x) —s(x)| = =0 ,
xE[Zhn,R2hn]‘ L ( ) ( )’ P nhn(hn/\dn)zk P( )

and under (B1)-(B2) it follows that

o log bt 1/2
swp 1(60)0(0) — @) = Op (i) = oell),

2€[3hn,1—3hn)
log h! 1/2
xe[4hsn1,llpl4hn]‘(sL) (z) = 5 (@)l P nhy (b A dy)?* op(1)

Proof of Lemma 1 Since all claims share the same structure, we will only establish that

-1 1/2
(k) (k) — 0 < log h,, ) . 1
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Observe that by definition of ¢ ; we have

‘jikz(@") —¢V(z) = _8a_;<f€((1)|x) /_11 (FY,L,S(C]rJrvbn(IIC)\JJ) — Fy (Grsobn ((E)liL’))H(U)d’U)

Observing that f.(0|x) = f.(0)/s(z), it suffices to show that

mo log h ! 1/2
g (Brastarean (Dl2) = Fr(grn, (0l))| = Op (80 r)

sup sup
z€[hn,1-hn] m<k
ve[—1,1]

Now by Remark 2 in the main body of the paper, the function x — ¢ 1w, () is 2 times
continuously differentiable and its derivatives are bounded uniformly over z € (0,1),v
[—1,1]. Thus the above assertion follows from (i) of Lemma 3 combined with the chain rule

for derivatives. O
Lemma 2 Let (K1)-(K6), (A1)-(A5), (BW) hold. Then

(i) sup  |g:(x) = Grol@)] = op(1/Vn),

z€[hn,1—hy]

(i) sup  |s(x) = sp(z)| = op(1/V/n),

2E€[2hn,1—2hy]

and if additionally (B1)-(B2) hold, we also have

(ii)  sup |g7(x) = G; p(2)] = op(1/V/n),

2€[3hn,1—3hn]

(iv)  sup  [5%(x) = $(2)] = op(1/V/n).

2€[4hy, 1—4hy]

Proof Since all assertions share a similar structure, we will only prove (iii). We begin by

stating and intermediate result which we will establish in the end.

sup  sup |y (ylr) — Fy(ylz)| = op(1). (S3.7)
YER 2€[3hn,1—3hy)]

Note that, in contrast to the statements in Lemma 3 part (iii), the range for y is R instead
of a bounded set. Now let § > 0,co > 0 be such that infycp 1 infj, g (2))<25 fy (y|x) > co and
define

Fy(ylz) == Fy(ylo) {ly — . (x)] < 20/co} + Fy (yla) I{]y — ¢ (x)| > 26/co}.

By the results in Lemma 3 parts (iii), (iii)” we have

logny 1/2
sup sup |Fy-(y|z) — Fy(y\:c)|—0p< & > , (S3.8)

YER z€[3hyn,1—3hy] hn
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and

sup sup  |Fy(yla) — F¥p s(yle)] = op(n™ ). (53.9)
x€[3hn,1—3hn] ly—qr (z)| <26 /co

Moreover, as we shall prove later, we have

P( Qe (B3 (1)) = Qi (Fy(-|2)) ¥ € [3ho, 1= 3h,]) = 1, ($3.10)

Now apply part (¢) of Lemma 6 with F' = I} = Fy(-|x), F5 = Fy(-]x). A careful inspection
of the remainder terms in the statement of Lemma 6 part (c) shows that, uniformly in
x € [3hy,, 1 — 3h,],

Qb (Fy (7)) = Qonrs, (Fy (-|7))
1

= _fe(O’;C) /_1 /f('U) (F;(qT-i-vbn(x”-I) _FY<qT+vbn(-T)|-T)>d’U—|—0P(n_1/2)' (8311)

An application of Lemma 6, part (a) with F' = Fy(-|x) shows that

Q6.nrs, (Fy (|2)) = ¢-(2) + O(B7) = ¢:-(2) + o(n™"?)
uniformly in = € [0, 1]. Combining this with (53.9), (S3.10) and (S3.11) and observing that
G:(2) = Qanrs, (Fi(-]x)) we obtain, uniformly in z € [3h,, 1 — 3h,),

(ji(x) - QT('T)
1

AT /_1 ~(v) (F;L’S(q””bn (@)|2) = Fy (¢rvb, (x)’9€)>dv +op(n?).

Note that, by the definition of ¢; . (x), the leading term in this representation is equal to
¢y 1.(x) — q-(z). This implies statement (iii), and thus it remains to prove (S3.7) and (S3.10).

Proof of (S3.7) Define (with W; the same as defined in (2.3))
Fyy(yle) - ZW VI{Y; <y}

Since
Ey(yle) = (B (-|x) * iw«/dn))(y)

and by the smoothness of Fy, it suffices to prove that

sup  sup ]F{;U(y\:v) — Fy(y|z)| = op(1). (S3.12)
YER 2€[3hn,1—3hy]

Now by the definition of Y;* we have

B o ylo) = Zw () + S(X)EZ (1) < ) = ZW v < m (PS5
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From (S2.1) in the main body of the paper we obtain after a Taylor expansion

ESED) - £ () | o),

Since the conclusion of Lemma 2 in Neumeyer (2009) remains valid in our setting [see the

sup sup
z€[3hn,1-3h,] yER

discussion in the beginning of Section S2], it follows that sup,p |F.(2) — F.(2)| = op(1) and

thus .
D) () |y

Thus there exists a deterministic sequence 7, — 0 such that P(D,,) — 1 where we defined

() () <k

sup sup
2€[3hy,1-3hy] yER

the event

D, = { sup
2€[3hn,1-3h,] yER

Additionally, define the event

D, :={sup sup |Wi(x)| < C(nh,) ' I{|lz — X;| < h,}}
it x€[hn,1—hy]

and observe that P(Dn) — 1 by the definition of W;(x) and Lemma 4. Thus on D,, N D,, we

have

sup  sup ‘ volyle) — ZW {Ui < Fy(y|XZ)H

YER z€[3hy,1—3hn)

IN

¢ sup  sup ZI{|X —z|<h }I{ (y| Xi)

T nhy yeR ze[3hn,1-3h,) i—1

< %} —op(1) (S3.13)

where the last equality follows by a combination of parts 1, 4-6 of Lemma 8 with Lemma 7.

Similarly, applying Lemma 4, parts 1,2 4-6 of Lemma 8 with Lemma 7 shows that
> W) (1{U: < Fr(ylX) } = Fr(y1X) = op(1) (53.14)
i=1

uniformly in z € [3h,,1 — 3h,],y € R. Finally, by similar arguments as used in the proof of
(S3.22) one can show that

ZW VEy (y]|X,) = Fy (y|z) + op(1) (S3.15)

uniformly in z € [3h,,1 — 3h,],y € R. Combining (S3.13)-(S3.15) yields (S3.12) and com-
pletes the proof of (S3.7).
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Proof of (S3.10) Define the events

D = { B yle) = Fi (ko) ¥(a.y) € {(0,9) < By ko) — 7] < 6,0 € [3h,,1 = 30}

Dii={ sw  |Fylk) - R yle) <6/2}
2€[3hn,1-3hy],yeR

Dusi={ sw |F(ylr) - Fr(yl)| < 6/2}.
2€[3hn,1—3hy],yER

Observe that on D,,; N Dyps N Dys we have F(yla) < 7—0 = Fi(ylz) < 7—6/2, Fi(ylz) >
T+ = Fi(ylr) > 7 +6/2 and |Fi(ylz) — 7] < § = Fi(y|lz) = Fi(ylz). Thus on
D1 N Dyy N Dyg we obtain Qg perp, (FE(|2)) = Qanrs, (Fi(-|z)) provided that b, < 6/2. Tt
remains to prove that P(D,; N Dp2 N Dy3) — 1. The fact that P(D,2 N Dy3) — 1 follows
from (S3.7), (S3.8), so that it remains to prove P(D,;) — 1 which follows from

P({(@,9) : IF (yle) = 7| < 6.2 € [3hn, 1= 3R]} C
{(2,9) : |y — ¢ ()] < 20/, € [3hn, 1 — 3hn]}> S

This in turn is a consequence of the fact that on D,3 (note that |Fy(y|x) — Fy(y|z)| <
|F5 (ylz) — Fy (yl)])

[Fy (ylz) — 7] <6 = [Fy(ylz) — 7] < 36/2 = [y — ¢-(x)] < 30/(2c0)

by the definition of ¢, ¢g. This completes the proof.
O

Lemma 3 Assume that conditions (K1)-(K6), (A1)-(A5) and (BW) hold. Denote by
Tn,O,L,Sa j_ie|,n,0,L,Sa T:7O,L,S7 T‘|Z\7n707L75 versions Of Tn,O,L,S» T1|e|,n,D,L,S7 T;,07L,S7 T‘\Z\,n,O,L,S where
1/ fx(X;) is replaced by 1/ fx(z).

Then for any bounded Y, C R, Yo C R such that Yy is bounded away from zero we have

(i) Fy(ylr) = Fyrs(yle) +op(1/vn), Tuors = Thors+op(l/vn),
uniformly iny € V1,2 € [hy, 1 — hy,] and
(it)  Fel(ylr) = Fers(yle) +op(1/v/n),  Tiepnors = Temors +op(1/vn),
uniformly in y € Vo, x € [2h,, 1 — 2h,]. If additionally (B1)-(B2) hold,
(Y Fy(yle) = Thops+or(UVA). Tins = Tions +or(1/vA)
uniformly iny € Y1,x € [3h,,1 — 3h,] and

(iv)  Fy(yle) = By pslyle) +op(L/vn), Tinons = Timoss + or(1/Vn).
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uniformly iny € Yo, v € [4h,, 1 — 4h,,).

Moreover, (i)-(iv) hold under the assumptions of (i) — (iv)’, respectively.

, - logn \1/2
@ a2 s s~ 00 )] = Or ()
.. kal £ kAl logn 1/2
(ZZ) sz yEY: es[;lhp 1—2h,] |axayﬂe|’L7S(y|x) o 8m8yﬂe\(y|x)\ - OP(W) ’
2,T n,l—2aln n n
kAl P L Al logn 1/2
i) Vk+1<2  sup (00, F (i) = L0, Fr(ylo)] = Or (=)
1,T n,l—oln n n
, ~ logn \1/2
() Vhrl<z w00 (k) 0RO R ple)] = Or (=)
2,T n,l—%Nn n n

Proof of Lemma 3
We will only provide the arguments for (iv) and (iv)’ since all other assertions can be derived
analogously. Since ), is bounded away from zero, and since d,, — 0, the fact that w = Q' is
symmetric and has support [—1, 1] implies that for n sufficiently large

y — || y—= —y—z

Q<—):Q<—>—Q( ) Vy € Vs, 2 €R.
. d, d, ve 2
Thus we find that for n sufficiently large
Fiy(ylz) = FZ(yle) — F7 (—yla),
FoosWle) = Fops(yle) — F7p s(—ylz),
,‘Z—‘\Z\,n,O,L,S(I’7 y) = Te*,n,O,L,S(xv y) - T;n,O,L,S(mv _y)a

CZTZI,TL,O,L,S = Te*,n,O,L,S(I7 y) - Te*,n,O,L,S(x7 _y)J

where

Byl = Y WY B,

~ t
FirsWla) = Fulyle) + ut M) ™ (T Ls@ ), o Toprs(@ 1)) |

ot y) = 1 fol Kh"”“(m_Xi)@(y & d Eal ))> _Fe(mXi))’
i=1 n

O 310.9))
dy,

n

T =
e,n,0,L,8 nhy, — fx(x)

It thus suffices to establish, uniformly in y € Y := Yo U (=s),x € [4h,, 1 — 4h,],

A t
Fi(yle) = Flyle) + ws M) ™ (T 5@ ), - Toprs(@1)) +o0p(n™2), (83.16)

) = (X)),

K w( — X)) <Q<y —

17008 = Te*,n,o,L,s + OP(”A/Q), (S3.17)
~ logn \1/2

sup OO, L(ylz) — OFOLFL(ylz)| = Op (—) $3.18

YEV2,xE€[4hn,1—4hy] | Y ’L’S( [2) Y (i)l nh2k+1g2l ( )
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Define the quantities

I «— 1
T* ) = Ky oz — X, (1Y*< (X)) — F. X)
o 50) = S Rt = X0 (HY S5+ 3,060} — F0IX)
1 n

Tonnr(®y) = 2} fxl(w) Kz = X) (Y7 < y+@,(X0} - F(ylX)),

nh
=1

and note that,uniformly in y € Y, x € [4h,,1 — 4h,],

(T, 5 G/ A)0) = Tons(avy) + o1/ V), (53.19)
(T ) % /A ) = Toprs(o) +0(1/v). ($3.20)

n

Also, let
Ery(yle) = Z Wi(z)I{Y;" = ¢:(Xi) <y}

=1
X > i K ole — X)) I{Y — @3 (Xi) <y}
= n_hnui (XtWX)il )
> i bE K, p( — X)) I{Y;" — 2 (X;) <y}

A

t
Fluo(0le) = Flylo) + ad M) (T 000 T 0)

where the weights W;(z) are the same as in equation (2.3). At the end of the proof, we will
establish the following assertions uniformly in y € Y,z € [4h,, 1 — 4h,)]

T oor(@y) = Tl r(e,y) +op(n'/?). (83.21)
Frp(yle) = Erpp(yle) +op(n™'7?), (S3.22)

S— logn \1/2
az Te,n,k,L<x7y) = OP(,nh%m—s—l) ’ m = 07 17 2. (8323)

Now assertions (S3.16), (S3.17) follows from (S3.19), (S3.22) and (S3.21) since

(Ezy () * -l /d))() = EX(yle).

1
(Fe(-]x) * d—w(-/dn))(y) = Fu(ylz) + O(dh?) = Fe(ylz) 4+ o(1/v/n),
uniformly in = € [4h,,1 — 4h,],y € V.
On the other hand we have

~ t
0 F k) = O Fulyle) + i MOK) ™ (0 T 1 (09), -+ 00 T ()

T
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and thus (S3.23) implies, uniformly in y € Y,z € [4h,, 1 — 4h,],

. - logn \1/2
07 F0le) = O F.lole) + O (s

This entails (S3.18) since

00, (Frustule) = (o) = [ (920t = EEC)) + (70 (1) )] )

@) = ((5))) ) - B0l

n
Now, since by assumption % F,(y|r) is r times continuously differentiable with respect to ,

1/2
the second summand is of order d"~! = O <1°¢> . The first summand can be bounded

nh2F+lg2l
1 logn 1/2
by 3 Or ()

The proof will thus be complete after we establish (S3.21)-(S3.23). In order to do so, observe
that there exists a set D,, such that the probability of D, tends to one and such that on
D,, we have, for any sequence ¢, such that ¢,/r, — oo [this is a consequence of (S2.1) and
the uniform rates of convergence for 3, ¢ 1, ¢}, which follow from parts (i)-(iii) of Lemma

2 and Lemma 1]

~ I 0(Xi) = G, (X5)
ity St

< sup |F(y)— F(y)|+05¢, sup |yfe(y)] < e
ye(14+Y/cs) ye(1+Y/cs)

where the last bound follows from (S3.27) in Lemma 5. In particular, on D,, we have
y (Y G5 1 (Xi) = 4ro(Xi)
INUi S Fel 7= ) —6np < 19U < F2 - — 24
{v:< <5(Xi)) any < 1{U <3L<Xi) LX) )} (s324

< I{Ui < FE(S&)) + cn}. (53.25)

Proof of (S3.21)
Recall that Y;* = G,(X;) + 5(X;)er and & = F~'(U;). Observe the identity

£

1Y Sy (X0} = H{U < B + qA:,Log()X—i)qA(Xi)) |

Moreover, a Taylor expansion shows that, with probability tending to one,

~ ISICOEN0.6) ~ 77 0 (Xi) = - (X5)
‘I{UiSFE(g(gg) e §(Xi)q >}_I{Ui§F€(§L(yXi) 0 §L(X(j) )]
< 1

i_Fe N ~
U (SL<X1> + SL(Xi)

y @ (Xi) — dT,L(Xi>) ’

< Cv, sup nya(y)|}

yezy/cs
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where v, = 0o(1/4/n), and thus arguments similar to those in the proof of Lemma 9 yield

n

By, kT — U ~ A;E,L(Xi) - A(Xz‘)
%ZK l(zn ><fX1u) B fxl(x))<[{Ui < Ff(g(gg) + g(xi)q )})
1 i
( :

=1

- I7.0(Xi) — Gr,0(X;)
0 Ix @)(I{Ui = F€<§L(yXi) o (%) )})

Next, observe that by part (i)-(iii) of Lemma 2, Lemma 1 and by (S2.1) there exists a set

D,, whose probability tends to one such that on D, we have for some § > 0

81, € O ([Bhn, 1 = 3hy)), @1, drr € CE([3hn, 1 — 3h,)),

Lw T ww

and F. € D defined in (S2.2). Additionally, (S2.3) and the arguments from Proposition 3 in
Neumeyer (2009) show that for the class of functions

5. = {lwo) - afs r (G5 205))

‘ y €V, F €D, a; € C5°([3h,,1 — 3hy)), a2 € C5°([3h,, 1 — 3hn])}

sup

- ( Y .. (u) = Gr,(u)
U€E[3hp,1—3hn],y€Y §L

) = Flyhw)| < b,

we have, denoting by P the product measure of the uniform random variable U; and the

covariate X1, sup, log N[ (¢, Gy, L*(P)) < Ce* for some o < 1. Next, define the class of

functions

Khn,k(x — U) ( 1 1 )
hn fx(u)  fx(z)

(1o < (4 BN ) o e 1~ 4]y € V),

A

Sr(u) S, (w)

X

Fn = {(u,v) —

In particular, observe that, due to the continuous differentiability of fx and the compact
support of K, the functions in F, are bounded uniformly over n. Additionally, combining
the bound on sup,, log N (¢, G,, L*(P)) with parts 1, 3 and 4 of Lemma 8, we find that on
D,

suplog N |(¢, Fy,, L*(P)) < Ce™2®

for some & < 1 and finite C'. Moreover, again on D,,, we find that for each f € F,

Ef(X;,U;) = O(h¥*r,) = o(1/v/n), Ef*X;,U;) = O(hy).
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To see the second statement, observe that every f € F, satisfies

v <o Rt (e - )|

the assertion now follows from a Taylor expansion of fx. For the bound on Ef(X;, U;),

'I’L

observe that
Kh k(ZL' — u) 1 1
B, U < [ Rt (- )
EL( 2 B fx(u)  fx(z)
the claimed bound now follows from a Taylor expansion of 1/fx(u) around x. Thus by
Lemma 7 sup;cz, | >, f(Xi, Ui)| = op(1/4/n) and (S3.21) follows.

rnh;1/4fx(u)du,

Proof of (S3.22) Define H := diag(1, hy, ..., h) and observe that by (S3.21) we have
uniformly in = € [4hn, 1—4h,),ye)y

Fry(yle) = Frpp(yle) ZW YUY — ¢ (Xy) <yb — Y = ¢7 . (X5) < w})
> Kno(z — Xi) Fe(y| X;)

H - Fe(y|x)
> i Khp(r — Xi) Fo(y| X5)

fx(x) enOL(fE Y)

LHXEW X)L
+“1( )

nh,

U§M(K>‘1)

+(u§ (X'WX) "1 — e

fX<x)T:,n7p7L(l‘7 y)
T:,n,O,L(aj7 y) - Te*,n,(),L (.f, y)
+ut M(K)™ :
Te*np L( T, y) - Te*,n,p,L(xv y)
= le(%, y) + Rn,2(x7 y) + Rn,i’)(xa y) + Rn,4<x> y)

Note that a Taylor expansion of F,(y|X;) with respect to X; around the point x combined
with the fact that

o > K, (2 — X)

1

— ul (XTWX) ™ : =I{k=0}
Wk Ky i (z — X5)

for k =0, ..., p yields the representation

> Kol — X5) Fo(y] X)
ut (XEWX)~! |

— = F(yl2)+O0p (™) = Fu(yle) +op(n ")

> i Wb K, (7 — Xi) Fe(y] Xi)
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uniformly in = € [4h,,1 — 4h, ),y € Y, so that R, is small.

Next, consider R, 3. By Lemma 4 and observing that u{H ' = ! we find

t XtWX —1 tM K —1
<u1< ) H—UI ( ) > :OP(hn>7
nhy, fx(x)
and together with the fact that
. logn\1/2
sup sup |17, 5 0(2,y)| = OP( . )
z[4hp,1—4hy],y€Y k=0,....p Ny

which follows by similar arguments as the proof of (53.23), this shows that R, 3 is small.
The negligibility of R, 4 follows from (S3.21).
Finally, consider R, ;. Observe that, by similar arguments as in the proof of (S3.21), there

exists a deterministic sequence &, = o(n~'/?) such that, with probability tending to one, we
have for any X; € [3h,, 1 — 3h,]

U,-—F}( Y (.7:7L(Xz‘) - C%,LQQ))‘ < §n}-

Y =3 () < yh—H{Y; = (%) < v}| < 1] 50(X)) 50(X3)

Now arguments similar to those in the proof of Lemma 9 yield for every k£ =0, ..., p

1 Bk —w)| 1 ~ y G (Xi) = Grn(X) _ L1y
e = ﬁ; hy fX(a:)]{ Ui_FE(éL(Xi)+ 51.(X;) )‘ = 5”} = op(n=")

uniformly over = € [4h,,1 — 4h,|,y € V. Moreover, by Lemma 4 we have

(R, y)] < (04 1) max (uf(XWX)"H), ) (max |d,(.9)])

This shows that R, ; is negligible and completes the proof of (53.22).
Proof of (S3.23) Consider the decomposition

a;nTe*,n,k,L(x7 y) = A’Vtk,m('x7 y) + A;,k,m(x7 y)
where

n (m)
1 K, (= X;)
+ — E Cha kT Y e m) o gt (X )V — X
An,k,m(xvy) : nhn h? p fX(Xi> I{ hn,k<‘r l) > 0}(1{}/; = y+qT,L( l>} Fe(y| l))

and A}, . is defined analogously. On the set D,, (defined in the beginning of this proof) we
have

1 i I(zT)k(x — Xi)
nhptt = fx(X;)

1=

AL pm(Ty) < I{Kf(LTL(x - X;) > O} x
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(Hues () red -2 )

Zg””” (Xi, Ui, cn).

nhm—‘rl

The expectation of each summand gner (Xi,U;,c,) in the above sum is of the order

O(hncy). Moreover, the class of functions
{(u v) gg(cnym B u,v, )|z € [Ahn, 1 — 4hy],y € y}

is with probability tending to one contained in a class that satisfies the assumptions of part
2 of Lemma 7 with 6, = h,, this follows from a combination of assumption (K2) with
parts 1,2,4,6 of Lemma 8 where part 6 is applied with the class of functions G := {v —
F.(y/s(v))+ zly € ¥,z € [0,1]}. This yields the bound

(nm+)( [ Cuhy logn \1/2
nhm+1 Zg (Xi, Ui, en) = O<hgz+1> T OP<nh$Lm+1

uniformly in « € [4h,,1 — 4h,]|,y € Y. Since ¢, /r, can tend to infinity arbitrarily slowly,

the above result implies

logn \1/2
(n,m,+) et
nhm+1 Zg (Xi, Ui, en) = Op(nh%m—i-l) :

1/2
Summarizing, we have obtained the bound A, (z,y) < Op (%) , and a correspond-

ing lower bound can be obtained by similar arguments. Analogous reasoning yields a bound
for A, ;. (7,y) and altogether this implies (53.23).
Thus we have established (S3.21)-(53.23) and the proof of the Lemma is complete. O

Lemma 4 Under assumptions (K1) and (A1) if additionally (nh,)™' = o(h,/logn) we
have the decomposition (holding uniformly in x € [hy,1 — hy])

B 1
- fx(x)

where H = diag(1, hy,, ..., hE), and Lpi1yx(pt1) 95 a matriz with 1 in every entry.

nh,(X'WX)™* HAME) T H T + H L pryx o) Op(R)H !

Proof The elements of the matrix X!*WX are of the form

(X'WX);,, = h Z Kol = Xi)(z = Xp)" = — > Kpyml(z - X;)

nh

where m = k + [ — 2. In particular, continuous differentiability of fx together with an

application of Lemma 7 and Lemma 8 implies that

logn\1/2
nh ZKhn = Xi) = mefx (@ )+OP(<nhn) + )
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uniformly in x. Thus we obtain a representation of the form

1

nhy,

XWX = ’H(M(K) Fx(@) + 1NxNOp(hn)>’H,

where My = M(K) is invertible and H is a diagonal matrix with entries 1, hy,, ..., k2. Thus
for h, sufficiently small an application of the Neumann series yields the assertion with

probability tending to one. O

S3.2 Additional technical results

Lemma 5 Let nal = o(1) and assume that the conditions of (i), (i)', (i), (ii)’ of Lemma
3 hold. Then for any bounded Y C R and any 6, — 0 we have

swp | Fefa) = F(b) — (Fela) = 1)) | = op(1/v/) (53.26)

a,beY,|a—b|<dn

sup
yey

Fuly) — )| = op((lﬁf)m), (83.27)

where . .
— _ >k Lonn 1—2m0) (Xi) By (Gr.0.(Xk) + a8 (X5)| Xk)

F.(a):
(@) > Lonna—2n, (X0)

Proof of Lemma 5 Recalling the definition of F, it is easy to see that F.(y) = i (FE() *
6(-/an) ) (y) where

Fy) = > s Lok 1—2m] (X)) I{Ye — 4(X3) < y5(X5)}
S > Ton,a—2n, (X0) '

Standard calculations show that

i(FE(.) *¢(-/an)>(y) _ F(y) + op(1/y/7)

Qn

uniformly in y € Y. Thus it suffices to establish that, for any bounded Y

Fi(a) = B(0) = (Fe(a) = E:(0)| = or(1/v/) (53.28)

sup
a,bej), la—b|<dn,

Ey) — )| = op((lzi:)m). (53.20)

sup
yey

To simplify the notation, write ) for :)7
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Proof of (S3.28) Since %Zz I, 1-2n,](X;) = 1+ op(1), we only need to consider the
enumerator. Since ) is bounded we have, with probability tending to one, uniformly in
ye)y

Yy — ¢-(Xi) < yd(Xi)} — H{Ys — ¢ 2(Xi) < ysn(Xi)}

< H{Yr — Grn(Xi) —yS0(Xk) < vn} — IH{Y% — Grn(Xk) — yS0(Xk) < =7}

for some 7, = o(1/4/n). Moreover an application of parts 1 and 6 of Lemma 8 combined
with Theorem 2.7.1 in van der Vaart, Wellner (1996) shows that the functions

(u’ U) = I{U - ér,L(U> - y§L<u> < ’Vn} - I{U - QT,L(U) - yéL(u) < _771}

are, with probability tending to one, contained in a class of functions satisfying the as-
sumptions of the first part of Lemma 7 with the additional property that each element has
expectation of order o(1/4/n). Combined with parts 1 and 4 of Lemma 8, this implies

sup } Z Iion, 1—2m,](Xk) ([{Yk—@r(Xk) < Ys(Xp) }—1{Ye—qr,0(Xi) < yéL(Xk)}> ’ =op(1/v/n),

yeY

and thus it remains to consider

1
sup -
a7b€y7‘a_b‘§6n n

Z Tioh, 1-2m,)(X5) (I{Yk < Grn(Xp) + a3 (Xp)} — I{Yk < Grn(Xg) +030(Xk)}
!

—Fy (Gr.0(Xk) + a3 (Xi) | Xk) + Fy (¢r,0(Xk) + b§L(Xk)’Xk))

By arguments similar to those given above, it is easily seen that this quantity is of order
op(1/4/n) if one notes that the smoothness assumptions on Fy imply that with ¢, ., $; €
CO5™ with probability tending to one the same holds for the function u +— Fy (¢, (u) +
ySr(u)|u) uniformly in y € Y. This completes the proof of (53.28).

Proof of (S3.29) Write

: 1S T 2n) (X (1Y = (X)) < y3(Xe)} = Foly))
Fily) - Fuly) = Y T () |

Since n™' Y7, Tion, 120, (X1) = 1+ op(1), it suffices to consider the enumerator. Observe

that 5(X0)
. . §

H{Ye — -(Xi) < ys(Xp)} = I{Ek < v :

4-(Xx) — ¢ (Xi)
X0 T S0 }

and thus, for any ¢, /r, — oo we have with probability tending to one, uniforly over y € Y

I{Yi = 6:(X0) < y3(Xe)} = Hew < v}| < Hlew =yl < e},
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Thus standard

sp [0 3 Tt aong (Xi) (1Y = 6(X0) < 98(X0)} = Iz < 0} )|

yeY

< supn! ZI[Zhn,lf2hn}(Xk)]{|5k‘ —y| < cu} = Op(cy),
%

yeY
where the last equality follows by standard empirical process arguments. This shows that,

uniformly in y € ),

: S T2 (X0) (Her < v} = Fo))

Fs<y) - FE(Z/) = n-1 Zl I[Qh L oh }(Xl) + OP(Cn) = Op(Cn).

Since ¢,, was arbitrary, this completes the proof of (53.29) and hence also of the Lemma. O

Lemma 6 Assume that k is a symmetric, uniformly bounded density with support [—1,1]
and let b, = o(1).
(a) If the function F : [0,1] — R is strictly increasing and F~' is k times continuously

differentiable in a neighborhood of the point T, we have for b, small enough
Hipirp(F) = F7H (1) + ) H(F ) (T)piga (k) + Ra(7)

with |Ra(7)] < Cu()b suppu_y cp, [(F)B(r) = (F)O(S)], pal) = [u's(u)du and a
constant Cy, depending only on k and k. In particular, if we assume that F' : R — [0,1] is
strictly increasing and F~' is two times continuously differentiable in a neighborhood of T
and G : R — (0,1) is two times continuously differentiable in a neighborhood of F~' () with
G'(F~Y(7)) > 0 we have

|FHT) = Qamrp, (F)] < Cy, sup (G (s)] sup [(GoF~)"(s)| =t Rup

|s—GoF~1(1)|<Rn,1 |s—7|<bn

for some constant C' that depends only on r where R,y == Cb sup),_, 1<, |(G o F~1)"(s)].

(b) Assume that k is additionally differentiable with Lipschitz-continuous derivative and that
the functions G, G~ have derivatives that are uniformly bounded on any compact subset of
R [the bound is allowed to depend on the intervall. Then for any increasing function F with
uniformly bounded first derivative we have |H(Fy) — H(Fy)| < Rn3 + R4 and

’QG,K),T,bn (Fl) i QG,I‘C,T7bn (F2)| < sup |(G—1)/(u) | (Rn,:’) + Rn,4)
u€U(H (F1),H(F2))

where C'is a constant that depends only on k, U(a,b) := [a A b,a V D], and

Cec, B Fi — Flloo + || F1 — F3||oo
_ ||F1_F2||oo sup |(GOF 1)/(1})|, Rn,4 = Rn’3|| 1 || H 1 2”

bn lv—T|<cn bn

ng .
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with ¢ = by + 2||F1 — Fa|lee + || F1 — Flo.

(c) If additionally to the assumptions made in (b), the function Fy is two times continu-
ously differentiable in a neighborhood of F~(7) with F{(F7 (7)) > 0 and G is two times
continuously differentiable in a neighborhood of Fy *(7) with G'(F~1(7)) > 0, we have

1
Fi(Fy (7))
_'_Rn:

Qrin (F1) = Qarers (Fa) = /_ w(0) (Fa(F (7 + b)) = Fi(Fy (7 + b)) ) do

1

where

Chb, SuP|s—T|§bn(G © Fﬁl)//(S)HFl — Byl + Ry 4

R,| < Ry5+ Rng +
il = fns 5 G(F ()

with a constant C' depending only on k and

Rus =5 sw (G WI(H(F) - HE)
u€U(H (F1),H(F2))
Rogi= s (G (@) [HR) - GE| - HF) - HE),

w€U(H(F1),G(F;Y)(r)

Proof See Volgushev et al. (2013).

Lemma 7 (Basic Lemma)

1. Assume that the classes of functions F, consist of uniformly bounded functions (with
the bound, say D, not depending on n) with Ny(F,, e, L*(P)) < Cexp(—ce™*) for every

e < 0, for some a < 2 and constants C, ¢ not depending on n. Then we have

Vi sw ([ gap- [ gap) =op)

f€fn7||f||P,2§6n

where the * denotes outer probability, see van der Vaart and Wellner (1996) for a more

detailed discussion.

2. If under the assumptions of part one we have Ny(Fy, e, L*(P)) < Ce™ for everye < 4,
some a > 0 and C not depending on n, it holds that for any 8, ~ n=" with b < 1/2

i ([ an= [ 1ar) = 0i(lost]

F€Fn | fllp2<on

Proof See Volgushev et al. (2013).



The independence process in quantile models: supplement XXX1

Lemma 8

1. Define F+G:={f+g|f € F,ge G}, FG:={fg|f € F,g € G}. Then

Ny(F +G,e,p) < Ny(F,e/2,p)Ny(G,€/2, p)

If additionally the classes F,G are uniformly bounded by the constant C, we have
Ny(FG, e, [l) < Nj(F,e/4C, [l INNG(G./4C, |.))
for any seminorm ||.|| with the additional property that |fi| < |fa| tmplies || f1|| < || f2||-

2. Assume that the Kernel K has compact support [—1, 1], that Kf’z) 15 uniformly bounded
and Lipschitz-continuous, and that fx is uniformly bounded. Then the L*(Px) brack-
eting numbers Ny(F,, e, L*(Px)) of the set

F, = {u — K}(LT)k(x —u)|x € [hy, 1 — hn]}
are bounded by Ce=3 for some constant C' independent of n.

3. Assume that the Kernel K has compact support [—1,1], that K is uniformly bounded
and Lipschitz continuous, and that fx is uniformly bounded away from zero on [0,1]

and Lipschitz-continuous. Then for the set of function
1 1 1

Fn = {u — —( -

ha Nfx(x)  fx(u)

we have Ny(F,, e, L*(P)) < Ce™® for some constant C' independent of n.

)Khmk(:c N hn]}

4. For any measure P on the unit interval with uniformly bounded density f, the class of

functions
F = {u — I{u < s}‘s €0, 1]} U {u — I{u < 3}‘5 € [0, 1]}
can be covered by Ce=?) brackets of L?(P) length ¢.

5. Consider the class of distribution functions F = {u — F(ylu)ly € R} with densities
f(ylu) and assume that sup,, ly|*(F(y|u) A (1 — F(y|u)) < D for some a > 0 and
additionally sup,, , f(ylu) < D. Then we have Nj(F,e,| [) < Ce="a for some

constant C' independent of a.

6. For any measure P on R x R¥ with uniformly bounded conditional density fviu the

class of functions
G .= {(u,v) — I{v < f(u)}|f € .7:}
satisfies Nij(G, e, ||.||p2) < Ny(F,Ce?, ||.|ls) for some constant C' independent of «.
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Proof

Part 1 The first assertion is obvious from the definition of bracketing numbers. For the
second assertion, note that G = (F 4+ C)(G + C') — CF — CG + C?. Moreover, all elements
of the classes F + C,G + C are by construction non-negative and thus it also is possible
to cover them with brackets consisting of non-negative functions and amounts equal to the
brackets of F, G, respectively. Finally, observe that if 0 < f; < f < f, and 0 < ¢; < g < ¢4,
we also have figi < fg < fugu. Moreover |[figi — fugull < Cllfu — il + Cllgu — il Thus
the class (F 4+ C)(G + C) can be covered by at most < Ny(F,e, ||.|[)Ny(G,¢,|.||) brackets
of length 2Ce. Finding brackets for the classes C'F,CG is trivial, and applying the first
assertion of the Lemma completes the proof.

Part 2+3 Without loss of generality, assume that h = h, < 1. Note that the class of
functions F,, from part 2 can be represented as F,, = {u — g.(u)|x € [hy,,1 — h,]} where
the functions g, satisfy sup,ep, 1-n,1 [19zllc < O, SUDyer [92(u) — gy (u)] < Clz — y|h;* for
some constants C,C independent of n,x,y. To see the latter inequality, observe that by
assumption u — K 1(? (u) is uniformly bounded and Lipschitz continuous. Additionally, the
support of the functions g, is contained in [z — h,,x + h,).

Similarly, F,, from part 3 can be represented as F,, = {u > g,(u)|z € [hyn, 1 —h,]} where the
functions g, satisfy sup,cp, 1-n,) 192/loc < C, SUp,ep [g2(u) — gy (u)] < Clx — y|h;? for some
constants C, C' independent of n, z,y (and possibly different from those for part 2), and the
support of the functions g, is contained in [z — h,,x + hy).

Thus it suffices to establish that for any class of functions F of the form F = {u +— g, (u)|z €
[h,1—h]} with 0 < h < 1/2 with elements g, that have support contained in [z — h, x + h]
and satisfy sup,ep, 14 [|9zlloc < O, sUP,er |92(w) — gy(u)| < Clx — y|h~" for some constants
C,C independent of h,z,y we have we have N||(F,¢, L?(Px)) < ce~®L*D for some c that
does not depend on h.

To prove this statement, consider two cases.

1 &> 4h'/?
Divide [0,1] into N := 2/¢? subintervals of length 2a := &2 with centers ra for r =
1,...,N and call the intervals I;,..., 5. Note that two adjunct intervals overlap by
a > 2h. This construction ensures that every set of the form [z — h,z + h] with
x € [h,1 — h] is completely contained in at least one of the intervals defined above.
Then a collection of N brackets of L*length De for some D > 0 independent of A is
given by (—=CI{u € I;},CI{u € I;}).

2 & < 4p1/?
Consider the points t; :== i/(N 4+ 1),i = 1,..., N with N := 42:2C /241 By con-
struction, to every x € [k, 1 — h] there exists i(z) with [ty — x| < e2F1/(42L42().
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This implies
Sup [ga () = gryq,y ()| < C2RTE/(421420) < /2

Then N || - ||o—brackets of length e covering F are given by (g4, (-) —€/2, 91, (+) +¢/2),

i=1,...,N. From those one can easily construct L?(Py)-brackets.

Part 4 Follows by standard arguments.

Part 5 For any ¢ > 0, set y. := e /*DY* and define t; :== —y. +ic/D for i = 1,...,N
with N such that 1 4+ y. >ty > y.. Note that N < Ce=" for some fixed, finite constant
C' which can depend on D but not on €. The collection of brackets (f = 0, f = ¢),(f =
l—e, f=1),(F(y,|.) —¢/2, F(y,|.) +¢/2) with i = 1,..., N covers the class F. To see that,
let f € F. Then there exists y € R such that f(-) = F(y|-). If y < —y. we have

0 < F(ylu) < sup F(—yelu) < y-* supy F(—y:|u) < D(e”/*DY*) ™ = .
Similarly, y > y. implies 1 — ¢ < F(ylu) < 1 Finally, if —y. < y < y., there exists
i€ {l,..., N} such that |y — t;| <e/(2D). In that case

F(ti|u) —e/2 < [F(ti|u) — F(ylu)] + F(ylu) — /2 < Fylu) < F(ti|u) +¢/2

since |F(t;lu) — F(y|u)| < D[t; — y| < &/2 by the assumption sup,, , f(y|u) < D.
Part 6 Follows from |[I{v < g1(u)} — I{v < go(u)}| < I{]v — g1(w)| < 2[|g1 — 92|00 }-

S3.3 Main results for proofs

Define ¢; ;, as the estimated residuals based on linearized versions ¢, 1, [see Section S3.1 for
their definition], i.e. &1 1= (Y; — ¢-.(X;))/50(X;), and £, as the corresponding quantities
in the bootstrap setting, that is
o sp(Xi)ei + qrn(Xs) — 47 . (X5)
iL = -
81(Xi)

The following Lemma demonstrates, that the sequential empirical process based on the resid-
uals &; = (Vi — ¢-(X;))/58(X;) computed from the initial estimators ¢, $ and the sequential

empirical process of residuals based on ¢; ;, have the same first order expansion.

Lemma 9 Assume that (K1)-(K6), (A1)-(A5), (BW) hold. Then

‘ 1
sup —
t€2hn, 1—2hn]weR | V/T0

If additionally (B1)-(B2) hold we also have

| 57 ftha < X < OHE <0} = 1 <uh)| = or(1).

te[dhn,1—4h,],yeR

D I{2h, < Xo S H(I{E < w} -~ I{ew < y})( = 0p(1).
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Proof We only proof the second assertion since the first one follows by similar but easier
arguments. Start by observing that under the assumptions of the Lemma there exists a set

D,, whose probability tends to one such that on D,, we have

(1) SUPgepun, 1-4p,) MAX (!@T(x) — 4r2(2)], |37 (2) — @7 L (2)], [3(2) — S1(2)], 8" (2) — 87 (x )|) <
(47) infrepun, 1-an,) min(Sy(z), S3(z)) = ¢ >0
(4ii) sup,er [y.f-(y)| < C

for some deterministic sequence 7,, = o(1/4/n) and finite constants C, ¢ > 0. Here (i) and (ii)
follow from Lemma 2 and Lemma 1 together Assumption (A2), while (iii) is a consequence
of (S2.1) in the main body of the paper.

A standard Taylor expansion shows that on D,,

e <y} —I{& < y}‘ < I{ n ( zigili n inL(X;)L(—XCZ]gL(Xz)N < O%}

= gn,y,C'yn<Ui7 Xi>’

this follows from the representations

f{éz‘gy}—I{Uisﬁg(yi&;)+ 2 % )}
Her <) = 1< R (g + LR

a Taylor expansion of F. and (i)-(iii). In the same manner as the proof of Proposition 3 in
Neumeyer (2009) it follows from assumptions (B1) and (B2) that, with probability tending

to one

G, = {(u,v) — ]{u <z+ F. (yiLEZ; + (j:’L(U; _(U?’L(v))}) y€eR, ze[-2, 2]}
- " (53.30)

is contained in the class

Go={(wv) s H{u<z F(ijEZ; + %)}‘ FeD,an,as € CLP([dhn, 1 — 4h,]),

as € CL([4hy, 1 — 4h)),y € R, 2 € [—2,2]},

where D is defined in (52.2). Now, denoting by P the product measure of the uniform

random variable U; and the covariate X7,
log N{1(¢,G, L*(P)) < Ce™ (S3.31)

for some v < 1, this can be shown by similar arguments as in the proof of Proposition 3 in
Neumeyer (2009). Next, since I{|U; —a| < b} = I[{U; < a+b} — I{U; < a—b} as., we find
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that, with probability tending to one
Fn = {(u,v) = I{s < v <t}gnycoqm (v, )

C {(u,v) = I{s <v <t}(g1(v,u) — g2(v,u))

5,1 € [Ahn, 1 — dhy),y € R}

s, t € [4hn71 - 4hn]7glag2 € Gn} = gn,l-

Combining parts (1) and (4) of Lemma 8 thus yields that log N i(¢, Fy, L2(P)) < Ce™2*
for some constant C'. Moreover, standard arguments (employing Taylor expansions and the
bounds in (S2.1) from the main body of the paper) show that sup ez, [ gdP = o(1/+/n) and
sup,cr, | g°dP = o(1). Here, P denotes the probability distribution of (X;,U;) and g* = g
for all g € F,,. Finally observe that, with probability tending to one,

sup =3 (1 £ X% e U X) = [ [ o) s (0)dva)

te[dhy,1—4hy,],yeR

< nsup(/gdPn—/gdP),
gEFn

and the right-hand side of the inequality is of order op(1) by part one of Lemma 7 . Moreover,

standard arguments yield

/h: /gn,yvcvn@’U)fx(U)dvdu = op(1/y/n).

Summarizing, we have obtained the estimate

sup \/_ZI{ML < X; < t}gnycva (Ui, Xi) = op(1).

te[dhn,1—4h,],yeR

and thus the proof is complete. O

Lemma 10 Assume that the conditions (K1)-(K6), (A1)-(A5), (BW) hold. Then

/ gﬂL(x(s)(;)QT(x)f () f-(0)dx = —= Z I{e; <0} — T)I[hn (X5) + OP(l/\/ﬁ)

uniformly in t € [h,, 1 — hy] and

b osp(r) — s(x) o) do
/ S (a) d

1 Lm0 (X0) 1 (H{e <0} —7)(f(1) — fo(=1))
B _E; [fsl]() <I{’ I=t=5- f(0) >+0P(

uniformly in t € [2h,, 1 — 2h,).
If additionally (B1)-(B2) hold

" gi(x) = grp(2) I GHg <0 =7 L .
/3n $1(x) fx(@)de = n; 7.(0) Tisn,.0(Xi) + op(1/v/n)

)

i
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uniformly in t € [3hy,, 1 — 3h,| and
bst(r) = $(v)
————fx(z)dx
L "

_ __21[4%6' <I{|€ PRI GG 0}—2(([{;(1) _fa(_l))> + opf

uniformly in t € [4hy,, 1 — 4h,).

)

i

§*(z)— qTL $)f

e (x)dz since all other

Proof We will only prove the representation for f;h
results can be derived by analogous arguments.
Observe the decomposition ¢*(z) — ¢-(z) = ¢ (x) — ¢ (x) + ¢- () — G- (x). By Lemma 1

and Lemma 2 we have

G7(x) = g7 1 (x) = op(1/V/n), @ 1(2) = 4-(2) = Op(ra), Si(x) — s(x) = Op(ra),
uniformly in = € [3h,,1 — 3h,]. It thus suffices to establish
¢ Q:,L("L‘) - QT(w) o ! (jT,L(x) - QT(x) I{€ < O} d
/3 ) 5() fx(@)dz = /3 ) 5() Fx(z)de — — ; Wf[:ahn,t](xi)
Top(1/v/n)
uniformly in ¢ € [3h,,1 — 3h,]. By definition of ¢} ;, by part (iii)
fe(0lz) = s(x) f-(0) we have
fx(2)(q71(2) = ¢-())
s(x)

_Ix@ui ME) [
)

)

of Lemma 3, and since

~ ~ t
R0) (T8 ron, (@) Ty (@ G, () ) 0+ 0p(13/)

1

where

T:yns(,y) = nh fX Z K, i( (Q<Yi*dn_ y) - Fy(y|X¢)>.

The remaining proof is based on the following intermediate results which we will establish

later on. First of all, uniformly in ¢ € [3h,,1 — 3h,], we have

| Tl s, (@) ) (5332

— Qrtob, (Xi + uhy,
=—213hnthn] /Klk q“’d( >)

— Fy (G, (Xi + uhn)|Xi)>du +op(1/v/n).
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Moreover we have uniformly in v € [—1,1],¢ € [3h,,1 — 3h,]

1 Y;*_Tanz_‘_Uhn

— % ; Ii3h, 1) (X)) (Q (ﬁsz—i&)) + Vb Y (X;) + jzl (X0, n)(uhn)j> (53.33)

- ha) (X5) (QT<X%2L_()Q;:>L(X1')

) +op(n?)

- —Zf[ghnt (X (vbn% i)+2£j(Xi,v,n)(uhn)j> (93.34)
j=1

+-— Zlghnt] )I{er <0} + £(0 )/t 4r(*) — Gri()

3hn s()

fx(z)dx + 0p(n_1/2),

where ;, 7, denote some functions that do not depend on u. Additionally, a Taylor expansion
of (u,v) = Fy(qriv, (X; + uhy,)|X;) shows that

_ZI[Sh b (Xi) By (Grson, (Xi + uhn )| X5)

- —ZI[SW (X (T—l-vb +Zgj X, 0,0) (why ) ) Yop(nV?),  (S3.35)

where the remainder holds uniformly in u € [—1,1],¢ € [3h,, 1 — 3h,] and the functions ¢
are again independent of u. Plugging (S3.34) and (S3.35) into (S3.32) we find that

J#0) | Tl acsin @)oo = 3 s (s 6) + 001/

1 s

n

w()(t) - (fa(0>/3 QT(U)S?UQ)TL( ) du—}-TlLZ];gh t] I{é <0}—7'))

hJ n 1 .
w;(t) = = > [[3hn,t—hn}(Xz')/1ff(v)(fj(XmU7n) = G(Xi,v,n))dv,  j=1,...p.
=1 -

Thus, uniformly in ¢ € [3h,,1 — 3h,],

futa) [ ) (Tt (@) T (0, (@)))
= M) (o (1), < (8))" + 0 (1/ V).

Hence the proof will be complete once we establish (S3.32)-(53.34).
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Proof of (S3.32)
Recalling that K has support [—1, 1], we obtain for any ¢ € [3h,,, 1 — 3h,| the decomposition

K, (2 =X3) 3h, () = Kp, o (0—X5) I130,,.0(2) (I(t—hmt—&-hn} (Xi) 1 i2h,30,) (X)) F 130,01~ hn] (Xz)> -

We will now show that the contributions corresponding to the summands containing Iy, 3h,,) (Xi)
and I(;_p,, ++1,)(X;) are negligible. Since both expressions can be treated analogously, we only
provide the arguments for I;_, 144,)(X;). By similar arguments as in the proof of Lemma

3 it is easy to show that

Ttt—hy phn) (Xi) (Q<Yi*dn_ y) — FY(?J|Xz‘)) ‘

’ 1 - Khn,k:(x_Xi)
sup

{0 B, 1—3hy | yey | Thn £ Ix(z)

)

= An(y> = OP<Tn
for any bounded Y C R. Observe that K}, ; vanishes outside [—hy, hy|, and since
I{’ﬂlf - Xi’ < hn}f[?)hn,t} (x)[(t—hn,tJrhn} (Xz) < I[t—th,t+2hn](x)l[t—hn,t-i-hn} (Xz)

we obtain, for a suitably chosen ),

‘ / o Kh"f)({< ) Xi)][tfhn,tJrhn}(Xi) <Q<Y;* — q;:vb" (x)) — FY(QT+vbn($)|Xi)>d:L"

t+2hn
< /t+ An(V)dz = Op(hyry) = op(1/+/n)

—2hnp

uniformly in t € [3h,, 1 — 3h,],v € [—1,1]. This completes the proof of (S3.32).

Proof of (S3.33) Throughout this part of the proof, let J C R denote a fixed, bounded
set containing the interval [—d,,, d,] for sufficiently large n. The following statement will be

proved later

1 .
1 2] (X (15" < Gron (X + uhy) + y} = el < y/30(X0)}) (83.36)

T n Z T3y =, (X ( (QT+”b" (Xi + Z}Ll(;(z) Gr(X;) + ?/)
_FE< ¢-(X;) SLQETXLZ()XZ) - y) N f€<8L(yXi)> qT(XgL—(;Z,)L(Xi)) 4 on(L/v/)

uniformly in ¢t € [3h,,1 — 3h,],u,v € [-1,1],y € Y where F. is defined in Lemma 5.
Now convolving both sides of (S3.36) [with respect to the argument y| with dinw(- /d,) and
evaluating the result in 0 yields the identity

! 5 oo (6 (9 e L)) (S0
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" s (B (R ) - R ()

O FE ) o)),

Observe that the smoothness properties of F. (defined in Lemma 5) yield the representation

F. (qr(Xz;L_(;?,)L (Xz)> iyl <q7'+’l)bn (X; —;—Lu(ﬁg)) —GrL (Xz)>

= vby Y (X;) + Zsj Xiyv,n)(why ) + 14
where the remainder terms 7, is of order O(b? + h?™') = o(1/+/n) uniformly in u,v and

&, vn denote some functions that do not depend on w. Thus the proof of (S3.33) will be
complete once we establish (5S3.36). To this end, observe that

} _ ]{6: < Qrtoby, (Xi + uhy) — 4-(X5) + y}

7 &

and

—ZIW (X)) (1{=1 < q””b"(Xﬁ;hX”;)_(j(XiHy} -1 < 505 ))

S <f{e*sqf*”b*xi*z’zz;;@“(”*y} 1o eg)) ortre

| /\

= 2 a0 (A (B R (y/51060) + 0r(1/R)

uniformly in ¢, v, u, which follows by arguments similar to those used in the proof of Lemma

9. Consider the decomposition

I3 <QT+vbn(Xi+Uh7(l>—)(jﬂL(Xi) +y> - ( (y ))
) S1.(Xi “\5L(X;
_ F8<q7+vbn (X; + Zf?;(:) qr,L(Xi) + y) B FE(QT(X1'> ;L(igé()Xl) + y)
= (4r(Xi) = Gro(XG ~
+F€(q = <§Lq(Xz() )+y> B F€(§L(sz‘))‘

For the first term in this decomposition, an application of Lemma 5 yields

—nghnt 0 [ (BB ) s 06) ) _ (4000 — g0 )
- Z Ii3h, 130 ( [F (q””b" (X + uéiz;(;) Gr.o(Xi) + y) _ Fg(QT(Xi) ;Lq;;é()Xz) + y)]

+0P(1/\/_)7
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where F. is defined in Lemma 5. Noting that

(SR < () =ty S i

and recalling that f. converges to f. uniformly with rate op((h,/logn)'/?) [see (S2.1)] com-
bined with 7, (h,/logn)'/? = o(1) yields

P - R (t) = () e s v

which completes the proof of (S3.36) and thus (S3.33) is also established.
Proof of (S3.34) It suffices to show that, uniformly in t € [3h,, 1 — 3h,,]

EEZ%M¢mw&mﬁcdg?ﬁ>—1&fém)20A?%h (33.37)

—Zlghnt n) (X3)(I{er <0} —7) = Zlghnt] N(I{e; <0} —7) +op(—=), (S3.38)

S

(X)) = Gr(Xa) z gr(u) — Gr,p(u) Wi+ o 1
;;jgjfmmhbmﬂm)n> St = e et o). (5339

The statement in (S3.39) follows since, for ¢ € [4h,,1 — 3h,],

- Z [Bhnst—h ( qT(XlgL()§ZSL(Xi) = %ZI[3hn,t—hn](Xi)QT(Xi)S(ng’L(Xi) +op(1/v/n)

t~hn o (0) — g (u
= [ puydu st on(1/v)

= [ i+ op(1 /v

where the first equality follows from the rates of convergence for ¢, 1, — ¢, 51, — s [see Lemma
1 and Lemma 2], the second equality is a consequence of the fact that ¢,; € CJ with
probability tending to one [see Lemma 1] combined with Lemma 7. For ¢t < 4h,,, the left-
hand side of (S3.38) is zero and the right-hand side of order op(n~'/2?) by Lemma 1 and
Lemma 2.

For a proof of (S3.37), observe that

dn

Q(%) _ e <0} = din/_dn (1er < asal} - Het < 0))oo(-) da

Define the sequence of sets

S(6,) == {(t, Yn z)|t € [Bhn, 1 = 3], Yn, 20 € Y, [y — 20| < 6}
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for some §,, = o(1). Observe that, with probability tending to one,

sup ‘—nghnt 3 ( (I{g < yn}— I{e} <zn}+F(zn)—ﬁ(yn))’
(t,yn,2n)ES(0n)
= s ‘— nghnt s (X0 (H{Us < F(ya)} = HUG < Bolza)} + Bolz) = Fely))|
tyn zn (S
S sup ‘_ Z I[Bhnt 3hn] (I{U < yn} - ]{U < Zn} + 2n — yn>

(t,Yyn,2n)ES(Cdn)
= op(1/Vn).

Here, for the first inequality we made use of (B.1). This implies that, with probability
tending to one, F. has a uniformly bounded derivative which shows that, with probability
tending to one, |y, —z,| < 6, implies lﬁg(yn) —Z:}(zn)| < (9, for some finite constant C'. The
last bound above follows by standard empirical process arguments provided that §,, = o(1).
Thus

1 ek
£ X o0 (525
I
- _ZI[% t—hn (X d_/
n d
1
= —Z [Bhn,t— hn] d_/

= 0p('nfl/2)

where the second to last line follows by Lemma 5 and the last line is a consequence of the
smoothness properties of F..

Thus (S3.37) follows and it remains to establish (S3.38). To this end, observe that it suffices
to establish

’—Zl[t hot] (Xi)(I{e] <0} —7) ‘ = op(n~1?).

t€[3hn 1 3hny]

Now
—Z[{tht] I{€ <0}—7' ZItht I{U<F(0)}_T>7

and by (S3.27) in Lemma 5 we have F.(0) — 7 = F.(0) — F.(0) = Op(r,). Thus we have
with probability tending to one |FL(0) — 7| < ruhn Y4 and in particular

’— Z Ty (X (I{er < 0} — T)’

t6[3hn 1 —3hn)
1 « _
< sup sup (= Y T, (X)) (I{U: < y} — T)‘ = op(n~'"?)
t€[3hn,1—3hn) |y\§rnh;1/4 n i=1
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where the first inequality holds with probability tending to one and the equality follows by
standard empirical process arguments. Thus (S3.37) follows. This completes the proof of

Lemma 10.
O
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