
Statistica Sinica 27 (2017), 1815-1839
doi:https://doi.org/10.5705/ss.2013.173

THE INDEPENDENCE PROCESS IN CONDITIONAL

QUANTILE LOCATION-SCALE MODELS AND AN

APPLICATION TO TESTING FOR MONOTONICITY

Melanie Birke, Natalie Neumeyer and Stanislav Volgushev

University of Bayreuth, University of Hamburg and University of Toronto

Abstract: In this paper the nonparametric quantile regression model is considered in

a location-scale context. The asymptotic properties of the empirical independence

process based on covariates and estimated residuals are investigated. In particular

an asymptotic expansion and weak convergence to a Gaussian process are proved.

The results can be applied to test for validity of the location-scale model, and they

allow one to derive various specification tests in conditional quantile location-scale

models. A test for monotonicity of the conditional quantile curve is investigated.

For the test for validity of the location-scale model, as well as for the monotonicity

test, smooth residual bootstrap versions of Kolmogorov-Smirnov and Cramér-von

Mises type test statistics are suggested. We give proofs for bootstrap versions of

the weak convergence results. The performance of the tests is demonstrated in a

simulation study.
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1. Introduction

Quantile regression was introduced by Koenker and Bassett (1978) as an

extension of least squares methods focusing on the estimation of the conditional

mean function. Due to such attractive features as robustness with respect to

outliers and equivariance under monotonic transformations that are not shared

by the mean regression, it has since become increasingly popular in such fields

as medicine, economics and environment modelling (see Yu, Lu and Stander

(2003) or Koenker (2005)). An important feature of quantile regression is its

great flexibility. While mean regression aims at modelling the average behaviour

of a variable Y given a covariate X = x, quantile regression allows one to analyse

the impact of X in different regions of the distribution of Y by estimating several

quantile curves simultaneously. For example, Fitzenberger, Kohn and Lembcke
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(2008) demonstrate that the presence of certain structures in a company can

have different effects on upper and lower wages. For a more detailed discussion,

see Koenker (2005).

Here we prove a weak convergence result for the empirical independence

process of covariates and estimated errors in a nonparametric location-scale con-

ditional quantile model. In turn, this suggests a test for monotonicity of the

conditional quantile curve. To the authors’ best knowledge, this is the first time

that those problems have been treated for the general nonparametric quantile

regression model.

The empirical independence process results from the distance between a joint

empirical distribution function and the product of the marginal empirical distri-

bution functions. It can be used to test for independence; see Hoeffding (1948);

Blum, Kiefer and Rosenblatt (1961), and van der Vaart and Wellner (1996).

When applied to covariates X and estimators of error terms ε = (Y −q(X))/s(X)

it can be used to test for validity of a location-scale model Y = q(X)+s(X)ε with

X and ε independent. Here the conditional distribution of Y , given X = x, al-

lows for a location-scale representation P (Y ≤ y | X = x) = Fε((y− q(x))/s(x)),

where Fε denotes the error distribution function. Einmahl and Van Keilegom

(2008a) consider such tests for location-scale models in a general setting (mean

regression, trimmed mean regression, . . . ). But the assumptions made there rule

out the quantile regression case. Validity of a location-scale model means that

the covariates have influence on the trend and on the dispersion of the conditional

distribution of Y , but otherwise do not affect the shape of the conditional distri-

bution (such models are frequently used, see Shim, Hwang and Seok (2009) and

Chen, Dahl and Khan (2005)). Should the test reject independence of covariates

and errors, there is evidence that the influence of the covariates on the response

goes beyond location and scale effects. Our results can easily be adapted to test

the validity of location models P (Y ≤ y | X = x) = Fε(y − q(x)); see also Ein-

mahl and Van Keilegom (2008b) and Neumeyer (2009b) in the mean regression

context.

If there is economic, physical, or biological evidence that a quantile curve is

monotone, one might check by a statistical test that such a feature is reasonable.

In classical mean regression there are various methods for testing monotonicity;

see Bowman, Jones and Gijbels (1998); Gijbels et al. (2000); Hall and Heckman

(2000); Ghosal, Sen and van der Vaart (2000); Durot (2003); Baraud, Huet and

Laurent (2003); Domı́nguez-Menchero, González-Rodŕıguez and López-Palomo

(2005); Birke and Dette (2007); Wang and Meyer (2011), and Birke and Neumeyer



THE INDEPENDENCE PROCESS IN QUANTILE MODELS 1817

(2013). While most tests are conservative and lack power against alternatives

with only a small deviation from monotonicity, the method proposed by Birke

and Neumeyer (2013) has better power in some situations and can detect local

alternatives of order n−1/2. For monotone estimators of a quantile function, see

e.g. Cryer et al. (1972) and Robertson and Wright (1973) for median regression

and Casady and Cryer (1976) and Abrevaya (2005) for general quantile regression.

Still, testing whether a given quantile curve is increasing (decreasing) has received

little attention aside from Duembgen (2002).

The paper is organized as follows. In Section 2 we present the location-scale

model, give necessary assumptions and define the estimators. In Section 3 we

introduce the independence process, derive asymptotical results and construct a

test for validity of the model. Bootstrap data generation and asymptotic results

for a bootstrap version of the independence process are discussed as well. The

results derived there are modified in Section 4 to construct a test for monotonicity

of the quantile function. In Section 5 we present a small simulation study, and

we conclude in Section 6. Proofs are given in the supplementary materials.

2. The Location-Scale Model, Estimators and Assumptions

For some fixed τ ∈ (0, 1), consider the nonparametric quantile regression

model of location-scale type (see e.g. He (1997)),

Yi = qτ (Xi) + s(Xi)εi, i = 1, . . . , n, (2.1)

where qτ (x) = F−1Y (τ |x) is the τ -th conditional quantile function, (Xi, Yi), i =

1, . . . , n, is a bivariate sample of i.i.d. observations, FY (·|x) = P (Yi ≤ ·|Xi = x)

denotes the conditional distribution function of Yi given Xi = x, and s(x) denotes

the median of |Yi − qτ (Xi)|, given Xi = x. We assume that εi and Xi are

independent and, hence, that εi has τ -quantile zero and |εi| has median one,

since

τ = P
(
Yi ≤ qτ (Xi)

∣∣∣ Xi = x
)

= P (εi ≤ 0),

1

2
= P

(
|Yi − qτ (Xi)| ≤ s(Xi)

∣∣∣ Xi = x
)

= P (|εi| ≤ 1).

Denote by Fε the distribution function of εi. Then for the conditional distribution

we obtain a location-scale representation as FY (y|x) = Fε((y − qτ (x))/s(x)),

where Fε as well as qτ and s are unknown.

Consider the case τ = 1/2 for example. This is a median regression model,

that allows for heteroscedasticity, in the sense that the conditional median abso-

lute deviation s(Xi) of Yi, given Xi, may depend on the covariate Xi. Here the
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median absolute deviation of a random variable Z is MAD(Z) = median(|Z −
median(Z)|); it is the typical measure of scale (or dispersion) when the median

is used as location measure.

Remark 1. Assuming |εi| to have median one is not restrictive: if the model

Yi = qτ (Xi) + s̃(Xi)ηi with ηi i.i.d. and independent of Xi and some positive

function s̃ holds, the model Yi = qτ (Xi) + s(Xi)εi with s(Xi) := s̃(Xi)F
−1
|η| (1/2),

εi := ηi/F
−1
|η| (1/2) also holds, where F|η| denotes the distribution function of |ηi|;

then, in particular, P (|εi| ≤ 1) = P (|ηi| ≤ F−1|η| (1/2)) = 1/2.

Several non-parametric quantile estimators have been proposed (see e.g. Yu

and Jones (1997, 1998); Takeuchi et al. (2006); Dette and Volgushev (2008),

among others). We follow the last-named authors who proposed non-crossing

estimates of quantile curves using a simultaneous inversion and isotonization of

an estimate of the conditional distribution function. Thus, let

F̂Y (y|x) := (XtWX)−1XtWY (2.2)

with

X =

1 (x−X1) . . . (x−X1)
p

...
... . . .

...

1 (x−Xn) . . . (x−Xn)p

 , Y :=
(

Ω
(y − Y1

dn

)
, . . . ,Ω

(y − Yn
dn

))t
,

W = Diag
(
Khn,0(x−X1), . . . ,Khn,0(x−Xn)

)
,

denote a smoothed local polynomial estimate (of order p ≥ 2) of the conditional

distribution function FY (y|x), where Ω(·) is a smoothed version of the indicator

function and we used Khn,k(x) := K(x/hn)(x/hn)k. Here K is a nonnegative

kernel and dn, hn are bandwidths converging to 0 with increasing sample size.

The estimator F̂Y (y|x) can be represented as a weighted average

F̂Y (y|x) =

n∑
i=1

Wi(x)Ω
(y − Yi

dn

)
. (2.3)

Following Dette and Volgushev (2008) we consider a strictly increasing distribu-

tion function G : R → (0, 1), a nonnegative kernel κ, and a bandwidth bn, and

define the functional

HG,κ,τ,bn(F ) :=
1

bn

∫ 1

0

∫ τ

−∞
κ
(F (G−1(u))− v

bn

)
dvdu.

It is intuitively clear that HG,κ,τ,bn(F̂Y (·| x)), where F̂Y is the estimator of

the conditional distribution function as in (2.2), is a consistent estimate of

HG,κ,τ,bn(FY (·|x)). If bn → 0, this quantity can be approximated as
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HG,κ,τ,bn(FY (·|x)) ≈
∫
R
I{FY (y|x) ≤ τ}dG(y)

=

∫ 1

0
I{FY (G−1(v)|x) ≤ τ}dv = G ◦ F−1Y (τ |x)

and, as a consequence, an estimate of the conditional quantile function qτ (x) =

F−1Y (τ |x) is

q̂τ (x) := G−1(HG,κ,τ,bn(F̂Y (·|x))).

The scale function s is the conditional median of the distribution of |ei|, given

the covariate Xi, where ei = Yi−qτ (Xi) = s(Xi)εi, i = 1, . . . , n. Hence, we apply

the quantile-regression approach to |êi| = |Yi − q̂τ (Xi)|, i = 1, . . . , n, and obtain

the estimator

ŝ(x) = G−1s (HGs,κ,1/2,bn(F̂|e|(·|x))) . (2.4)

Here Gs : R → (0, 1) is a strictly increasing distribution function and F̂|e|(·|x)

denotes the estimator of the conditional distribution function,

F̂|e|(y|x) =

n∑
i=1

Wi(x)I{|êi| ≤ y}, (2.5)

with the same weights Wi as in (2.3). We further use the notation Fe(·|x) =

P (e1 ≤ ·|X1 = x).

We need some assumptions on the kernel functions and the functions G,Gs used

in the construction of the estimators.

(K1) The function K is a symmetric, positive, Lipschitz-continuous density with

support [−1, 1]. Moreover, the matrix M(K) with entries

(M(K))k,l = µk+l−2(K) :=

∫
uk+l−2K(u)du

is invertible.

(K2) The function K is two times continuously differentiable, K(2) is Lipschitz

continuous and, for m = 0, 1, 2, the set {x|K(m)(x) > 0} is a union of finitely

many intervals.

(K3) The function Ω has derivative ω which has support [−1, 1], is a kernel of or-

der pω, and is two times continuously differentiable with uniformly bounded

derivatives.

(K4) The function κ is a symmetric, uniformly bounded density, and has one

Lipschitz-continuous derivative.
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(K5) The function G : R→ [0, 1] is strictly increasing; it is two times continuously

differentiable in a neighborhood of the set Q := {qτ (x)|x ∈ [0, 1]}, and its

first derivative is uniformly bounded away from zero on Q.

(K6) The function Gs : R → (0, 1) is strictly increasing; it is two times continu-

ously differentiable in a neighborhood of the set S := {s(x)|x ∈ [0, 1]}, and

its first derivative is uniformly bounded away from zero on S.

For the data-generating process, we need the following conditions.

(A1) X1, . . . , Xn are independent and identically distributed with distribution

function FX and Lipschitz-continuous density fX , with support [0, 1], that

is uniformly bounded away from zero and infinity.

(A2) The function s is uniformly bounded and infx∈[0,1] s(x) = cs > 0.

(A3) The partial derivatives ∂kx∂
l
yFY (y|x), ∂kx∂

l
yFe(y|x) exist and are continuous

and uniformly bounded on R × [0, 1] for k ∨ l ≤ 2 or k + l ≤ d for some

d ≥ 3.

(A4) The errors ε1, . . . , εn are independent and identically distributed with strictly

increasing distribution function Fε (independent of Xi) and a density fε that

is positive everywhere and continuously differentiable, such that

supy∈R |yfε(y)| < ∞ and supy∈R |y2f ′ε(y)| < ∞. The εi have τ -quantile

zero and |ε1| has median one.

(A5) For some α > 0, supu,y |y|α(FY (y|u) ∧ (1− FY (y|u))) <∞.

We assume that the bandwidth parameters satisfy the following.

(BW) log n/(nhn(hn ∧ dn)4) = o(1), log n/(nh2nb
2
n) = o(1), d

2(pω∧d)
n + h

2((p+1)∧d)
n +

b4n = o(n−1),

with pω from (K3), d from (A3), and p the order of the local polynomial

estimator in (2.2).

Remark 2. Assumptions (A1) and (A2) are mild regularity assumptions on the

data-generating process. Assumption (A5) places a mild condition on the tails

of the error distribution, and is satisfied even for distribution functions with-

out finite first moments. Assumptions (A3) and (A4), by the Implicit Function

Theorem, imply that x 7→ qτ (x) and x 7→ s(x) are two times continuously dif-

ferentiable with uniformly bounded derivatives. This kind of condition is quite
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standard in the non-parametric estimation and testing literature. Due to the

additional smoothing of F̂Y (y|x) in the y-direction, we require more than the ex-

istence of just the second-order partial derivatives of FY (y|x). As to bandwidths,

observe that if, for example, d = pω = p = 3 and we set dn = hn = n−1/6−β for

some β ∈ (0, 1/30), bn = h
−1/4−α
n such that α + β ∈ (0, 1/12), condition (BW)

holds.

3. The Independence Process, Asymptotic Results and Testing for

Model Validity

As estimators for the errors we build residuals

ε̂i =
Yi − q̂τ (Xi)

ŝ(Xi)
, i = 1, . . . , n. (3.1)

To use q̂τ for building the numerator, we need hn ≤ Xi ≤ 1 − hn. The estima-

tion of s requires us to again stay away from boundary points and we use the

restriction 2hn ≤ Xi ≤ 1− 2hn.

For y ∈ R, t ∈ [2hn, 1− 2hn], we let

F̂X,ε,n(t, y) (3.2)

:=

n∑
i=1

I{ε̂i ≤ y}I{2hn < Xi ≤ t}
1∑n

i=1 I{2hn < Xi ≤ 1− 2hn}

=
1

n

n∑
i=1

I{ε̂i ≤ y}I{2hn < Xi ≤ t}
1

F̂X,n(1− 2hn)− F̂X,n(2hn)
,

where F̂X,n denotes the usual empirical distribution function of the covariates

X1, . . . , Xn. The empirical independence process compares the joint empirical

distribution with the product of the corresponding marginal distributions, and

we take

Sn(t, y) =
√
n
(
F̂X,ε,n(t, y)− F̂X,ε,n(1− 2hn, y)F̂X,ε,n(t,∞)

)
(3.3)

for y ∈ R, t ∈ [2hn, 1−2hn], and Sn(t, y) = 0 for y ∈ R, t ∈ [0, 2hn)∪ (1−2hn, 1].

Theorem 1. Under the location-scale model (2.1) and assumptions (K1)-(K6),

(A1)-(A5), and (BW),

Sn(t, y) =
1√
n

n∑
i=1

(
I{εi ≤ y} − Fε(y)− φ(y)

(
I{εi ≤ 0} − τ

)
−ψ(y)

(
I{|εi| ≤ 1} − 1

2

))
×
(
I{Xi ≤ t} − FX(t)

)
+ oP (1)

uniformly with respect to t ∈ [0, 1] and y ∈ R, where
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φ(y) =
fε(y)

fε(0)

(
1− yfε(1)− fε(−1)

f|ε|(1)

)
, ψ(y) =

yfε(y)

f|ε|(1)

and f|ε|(y) = (fε(y) +fε(−y))I[0,∞)(y) is the density of |ε1|. The process Sn con-

verges weakly in `∞([0, 1]×R) to a centered Gaussian process S with covariance

Cov(S(s, y), S(t, z)) = (FX(s ∧ t)− FX(s)FX(t))×
[
Fε(y ∧ z)− Fε(y)Fε(z)

+ φ(y)φ(z)(τ − τ2) +
1

4
ψ(y)ψ(z)

− φ(y)(Fε(z ∧ 0)− Fε(z)τ)− φ(z)(Fε(y ∧ 0)− Fε(y)τ)

− ψ(y)
(

(Fε(z ∧ 1)− Fε(−1))I{z > −1} − 1

2
Fε(z)

)
− ψ(z)

(
(Fε(y ∧ 1)− Fε(−1))I{y > −1} − 1

2
Fε(y)

)
+ (φ(y)ψ(z) + φ(z)ψ(y))

(
Fε(0)− Fε(−1)− 1

2
τ
)]
.

The proof is given in the supplementary materials.

Remark 3. The result can easily be adapted for location models Yi = qτ (Xi)+εi
with εi and Xi independent: we just set ŝ ≡ 1 in the definition of the estimators.

The asymptotic covariance in Theorem 1 then simplifies as φ reduces to φ(y) =

fε(y)/fε(0) and ψ(y) ≡ 0.

We now discuss the testing of the null hypothesis of independence of error

εi and covariate Xi in model (2.1).

Remark 4. Assume Xi and εi are dependent, but the other assumptions of

Theorem 1 are valid, where (A4) is replaced by

(A4’) The conditional error distribution function Fε(·|x) = P (εi ≤ ·|Xi = x) ful-

fills Fε(0|x) = τ and Fε(1|x)−Fε(−1|x) = 1/2 for all x. It is strictly increas-

ing and differentiable with density fε(·|x) such that supx,y |yfε(y|x)| <∞.

Then one can show that Sn(t, y)/n1/2 converges in probability to P (εi ≤ y,Xi ≤
t)− Fε(y)FX(t), uniformly with respect to y and t.

Remark 5. If the location-scale model is valid for some τ -th quantile regression

function it is valid for every α-th quantile regression function, α ∈ (0, 1). This

follows from qα(x) = F−1ε (α)s(x) + qτ (x), a consequence of the representation of

the conditional distribution function FY (y|x) = Fε((y − qτ (x))/s(x)) (compare

Remark 1). A similar statement is true for general location and scale measures,

see e. g. (Van Keilegom, 1998, Prop. 5.1). Thus for testing the validity of the

location-scale model one can restrict oneself to the median case τ = 0.5.
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Remark 6. Einmahl and Van Keilegom (2008a) consider a process similar to

Sn for general location and scale models that rules out the quantile case q(x) =

F−1(τ |x).

To test for the validity of a location-scale model we reject the null hypothesis

of independence of Xi and εi for large values of, e. g., the Kolmogorov-Smirnov

statistic

Kn = sup
t∈[0,1],y∈R

|Sn(t, y)|

or the Cramér-von Mises statistic

Cn =

∫
R

∫
[0,1]

S2
n(t, y) F̂X,n(dt) F̂ε,n(dy),

where F̂ε,n(·) = F̂X,ε,n(1− 2hn, ·).

Corollary 1. Under the assumptions of Theorem 1,

Kn
d−→ sup

t∈[0,1],y∈R
|S(t, y)| = sup

x∈[0,1],y∈R
|S(F−1X (x), y)|,

Cn
d−→
∫
R

∫
[0,1]

S2(t, y)FX(dt)Fε(dy) =

∫
R

∫
[0,1]

S2(F−1X (x), y) dxFε(dy).

The proof is given in Section S1 of the supplementary materials. The asymp-

totic distributions of the test statistics are independent of the covariate distri-

bution FX , but depend in a complicated manner on the error distribution Fε, so

we suggest a bootstrap version of the test. If Yn = {(X1, Y1), . . . , (Xn, Yn)} is

the original sample, generate bootstrap errors as ε∗i = ε̃∗i + αnZi (i = 1, . . . , n),

where αn denotes a positive smoothing parameter, Z1, . . . , Zn are independent

standard normals (independent of Yn), and ε̃∗1, . . . , ε̃
∗
n are randomly drawn with

replacement from the set of residuals {ε̂j | j ∈ {1, . . . , n}, Xj ∈ (2hn, 1 − 2hn]}.
Conditional on the original sample Yn, ε∗1, . . . , ε

∗
n are i.i.d. with distribution func-

tion

F̃ε(y) =
1/n

∑n
i=1 Φ

(
(y − ε̂i)/αn

)
I{2hn < Xi ≤ 1− 2hn}

F̂X,n(1− 2hn)− F̂X,n(2hn)
, (3.4)

where Φ denotes the standard normal distribution function. The bootstrap er-

ror’s τ -quantile is not exactly zero, but vanishes asymptotically. We use a smooth

distribution to generate new bootstrap errors, see Neumeyer (2009a).

Now we build new bootstrap observations,

Y ∗i = q̂τ (Xi) + ŝ(Xi)ε
∗
i , i = 1, . . . , n.

Let q̂∗τ and ŝ∗ denote the quantile regression and scale function estimator defined
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analogously to q̂τ and ŝ, but based on the bootstrap sample (X1, Y
∗
1 ), . . . , (Xn, Y

∗
n ).

Analogously to (3.3) the bootstrap version of the independence process is

S∗n(t, y) =
√
n
(
F̂ ∗X,ε,n(t, y)− F̂ ∗X,ε,n(1− 4hn, y)F̂ ∗X,ε,n(t,∞)

)
for t ∈ [4hn, 1−4hn], y ∈ R, and S∗n(t, y) = 0 for t ∈ [0, 4hn)∪ (1−4hn, 1], y ∈ R.

Here, similar to (3.2),

F̂ ∗X,ε,n(t, y) =
1

n

n∑
i=1

I{ε̂∗i ≤ y}I{4hn < Xi ≤ t}
1

F̂X,n(1− 4hn)− F̂X,n(4hn)
,

with ε̂∗i = (Y ∗i − q̂∗τ (Xi))/ŝ
∗(Xi), i = 1, . . . , n.

To obtain conditional weak convergence we need some assumptions.

(B1) For some δ > 0

nh2nα
2
n

log h−1n log n
→∞, nαnhn

log n
→∞, hn

log n
= O(α8δ/3

n ), nα4
n = o(1)

and there exists a λ > 0 such that

nh
1+1/λ
n α

2+2/λ
n

log h−1n (log n)1/λ
→∞.

(B2) E[|ε1|max(υ,2λ)] <∞ for some υ > 1+2/δ, and with δ and λ from assumption

(B1).

Here, (B2) can be relaxed to E[|ε1|2λ] <∞ if the process is only considered

for y ∈ [−c, c] for some c > 0 instead of for y ∈ R.

Theorem 2. Under (2.1), (K1)-(K6), (A1)-(A5), (BW), and (B1)-(B2) condi-

tionally on Yn, the process S∗n converges weakly in `∞([0, 1]×R) to the Gaussian

process S defined in Theorem 1, in probability.

A proof is given in the supplementary materials.

Remark 7. The bootstrap version of the Kolmogorov-Smirnov test statistic is

K∗n = supt,y |S∗n(t, y)|, and with

P (K∗n ≥ k∗n,1−α | Yn) = 1− α,

we reject the location-scale model if Kn = supt,y |Sn(t, y)| ≥ k∗n,1−α. The test

has asymptotic level α. If the location-scale model is not valid, Kn → ∞ in

probability, while k∗n,1−α converges to a constant. Thus the power of the test

converges to one. Similar reasoning applies for the Cramér -von Mises test.

Remark 8. Recently, Sun (2006) and Feng, He and Hu (2011) proposed to use

wild bootstrap in the setting of quantile regression. To follow the approach of the
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last-named authors, one would define ε∗i = viε̂i such that P ∗(viε̂i ≤ 0|Xi) = τ ,

e. g.

vi = ±1 with probability


1−τ
τ if ε̂i ≥ 0,

τ
1−τ if ε̂i < 0.

However, then when calculating the conditional asymptotic covariance (following

the proof in the supplementary material), instead of F̃ε(y) the following term

appears

1

n

n∑
i=1

P (viε̂i ≤ y | Yn)
n→∞−→ (1− τ)(Fε(y)− Fε(−y)) + τ.

One obtains Fε(y) (needed to obtain the same covariance as in Theorem 1) only

for y = 0 or for median regression (τ = 0.5) with symmetric error distributions,

but not in general. Hence, wild bootstrap cannot be applied in the general

context of procedures using empirical processes in quantile regression.

Remark 9. Under (2.1) the result of Theorem 1 can be applied to test for more

specific model assumptions (e. g. testing goodness-of fit of a parametric model

for the quantile regression function). The general approach is to build residuals

ε̂i,0 that only under H0 consistently estimate the errors (e. g. using a parametric

estimator for the conditional quantile function). Recall the definition of F̂X,ε,n in

(3.2) and define analgously F̂X,ε0,n by using the residuals ε̂i,0. Then, analogously

to (3.3), define

Sn,0(t, y) =
√
n
(
F̂X,ε0,n(t, y)− F̂X,ε,n(1− 2hn, y)F̂X,ε,n(t,∞)

)
for y ∈ R, t ∈ [2hn, 1− 2hn], and Sn,0(t, y) = 0 for y ∈ R, t ∈ [0, 2hn)∪ (1 − 2hn,

1]. With this process the discrepancy from the null hypothesis can be measured.

This approach is considered in detail for the problem of testing monotonicity of

conditional quantile functions in the next section. A related approach, which

however does not assume the location-scale model, is suggested to test for signif-

icance of covariables in quantile regression models by Volgushev et al. (2013).

4. Testing for Monotonicity of Conditional Quantile Curves

In this section, we consider a test of the hypothesis H0 that qτ (x) is increas-

ing in x. To this end we define an increasing estimator q̂τ,I , which consistently

estimates qτ if the hypothesis H0 is valid, and consistently estimates some in-

creasing function qτ,I 6= qτ under the alternative that qτ is not increasing. For

any function g : [0, 1]→ R define its increasing rearrangement on [a, b] ⊂ [0, 1] as
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Figure 1. Left part: True nonincreasing function qτ for τ = 0.25 with scatter-plot of
a typical sample. Right part: qτ (solid line) and increasing rearrangement qτ,I (dotted
line).

Γ(g)(x) = inf
{
z ∈ R

∣∣∣a+

∫ b

a
I{g(t) ≤ z} dt ≥ x

}
, x ∈ [a, b].

If g is increasing, then Γ(g) = g|[a,b]. See Anevski and Fougéres (2007) and

Neumeyer (2007) who consider increasing rearrangements of curve estimators in

order to obtain monotone versions of unconstrained estimators. We take Γn as

Γ with [a, b] = [hn, 1 − hn], and define the increasing estimator q̂τ,I = Γn(q̂τ ),

where q̂τ denotes the unconstrained estimator of qτ in Section 2. Then q̂τ,I
estimates the increasing rearrangement qτ,I = Γ(qτ ) of qτ (with [a, b] = [0, 1]),

and only under the hypothesis H0 of an increasing regression function do we have

qτ = qτ,I . In Figure 1 (right part) a non-increasing function qτ and its increasing

rearrangement qτ,I are displayed.

We build (pseudo-) residuals

ε̂i,I =
Yi − q̂τ,I(Xi)

ŝ(Xi)
(4.1)

to estimate the pseudo-errors εi,I = (Yi − qτ,I(Xi))/s(Xi) that coincide with the

true errors εi = (Yi − qτ (Xi))/s(Xi) (i = 1, . . . , n) in general only under H0.

Note that we use ŝ from (2.4) for the standardization and not an estimator built

from the constrained residuals. If the true function qτ is not increasing (e.g. as

in Figure 1) and we calculate the pseudo-errors from qτ,I , they are no longer

identically distributed. This effect is demonstrated in Figure 2 for a τ = 0.25-

quantile curve. To detect such discrepancies from the null hypothesis, we estimate

the pseudo-error distribution for the covariate values Xi ≤ t and compare with
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1 q
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Figure 2. Left part: True nonincreasing function qτ for τ = 0.25 and errors for the
sample shown in Figure 1. Right part: Increasing rearrangement qτ,I and pseudo-errors.
(Positive errors are marked by solid points and solid lines, negative errors marked by
circles and dashed lines.)

what is expected under H0. Define F̂X,εI ,n analogously to (3.2), but using the

constrained residuals ε̂i,I , i = 1, . . . , n, and take

Sn,I(t, y) =
√
n
(
F̂X,εI ,n(t, y)− F̂X,ε,n(1− 2hn, y)F̂X,ε,n(t,∞)

)
(4.2)

for y ∈ R, t ∈ [2hn, 1−2hn], and Sn,I(t, y) = 0 for y ∈ R, t ∈ [0, 2hn)∪(1−2hn, 1].

For each fixed t ∈ [0, 1], y ∈ R, for hn → 0 the statistic n−1/2Sn,I(t, y) consistently

estimates the expectation

E[I{εi,I < y}I{Xi ≤ t}]− Fε(y)FX(t)

= E
[
I
{
εi < y +

(qτ,I − qτ )(Xi)

s(Xi)

}
I{Xi ≤ t}

]
− Fε(y)FX(t).

For Kn = supy∈R,t∈[0,1] |Sn,I(t, y)|, n−1/2Kn estimates

K = sup
t∈[0,1],y∈R

∣∣∣∣∫ t

0

(
Fε

(
y +

(qτ,I − qτ )(x)

s(x)

)
− Fε(y)

)
fX(x) dx

∣∣∣∣ .
Under H0 : qτ,I = qτ we have K = 0, and if K = 0, then also

sup
t∈[0,1]

∣∣∣ ∫ t

0

(
Fε

((qτ,I − qτ )(x)

s(x)

)
− Fε(0)

)
fX(x) dx

∣∣∣ = 0.

Then it follows that qτ,I = qτ is valid FX -a. s. by the strict monotonicity of Fε.

Under the alternative we have K > 0 and Kn converges to infinity. If c is the

(1−α)-quantile of the distribution of supt∈[0,1],y∈R |S(t, y)| with S from Theorem

1, the test that rejects H0 for Kn > c is consistent by the above argumentation
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and has asymptotic level α by the next theorem and the Continuous Mapping

Theorem.

Theorem 3. Under (2.1) and (K1)-(K6), (A1)-(A5), and (BW), under the null

hypothesis H0 and the assumption infx∈[0,1] q
′
τ (x) > 0 the process Sn,I converges

weakly in `∞([0, 1]× R) to the Gaussian process S defined in Theorem 1.

The proof is given in the supplementary materials.

Remark 10. We use the non-smooth monotone rearrangement estimators q̂τ,I ,

while Dette, Neumeyer and Pilz (2006) and Birke and Dette (2008) consider

smooth versions of the increasing rearrangements in the context of monotone

mean regression. Under suitable assumptions on the kernel k and bandwidths

bn the same weak convergence as in Theorem 3 holds for Sn,I based on their

approach.

For testing monotonicity we suggest a bootstrap version of the test as in

Section 3, but applying the increasing estimator to build new observations as

Y ∗i = q̂τ,I(Xi) + ŝ(Xi)ε
∗
i , i = 1, . . . , n.

Theorem 4. Under the assumptions of Theorem 3 and (B1), (B2), the process

S∗n,I , conditionally on Yn, converges weakly in `∞([0, 1] × R) to the Gaussian

process S defined in Theorem 1, in probability.

The proof is given in the supplementary materials. A consistent asymptotic

level-α test is constructed as in Remark 7.

Remark 11. In the context of testing for monotonicity of mean regression curves

Birke and Neumeyer (2013) based their tests on the observation that too many

of the pseudo-errors are positive (see solid lines in Figure 2) on some subintervals

of [0, 1] and too many are negative (see dashed lines) on other subintervals.

Transferring this idea to the quantile regression model, one would consider a

stochastic process

S̃n(t, 0) =
1√
n

n∑
i=1

(
I{ε̂i,I ≤ 0}I{2hn < Xi ≤ t}

− F̂X,ε,n(1− 2hn, 0)I{2hn < Xi ≤ t}
)

or alternatively (because F̂X,ε,n(1− 2hn, 0) estimates the known Fε(0) = τ)

Rn(t) =
1√
n

n∑
i=1

(
I{ε̂i,I ≤ 0}I{Xi ≤ t} − τI{Xi ≤ t}

)
,
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where t ∈ [0, 1]. For every t ∈ [2hn, 1 − 2hn] the processes count how many

pseudo-residuals are positive up to covariates≤ t. This term is then centered with

respect to the estimated expectation under H0 and scaled with n−1/2. However,

as can be seen from Theorem 3 the limit is degenerate for y = 0, and hence we

have under H0 that

sup
t
|S̃n(t, 0)| = oP (1). (4.3)

Also, supt∈[0,1] |Rn(t)| = oP (1) can be shown analogously. Hence, no critical val-

ues can be obtained for the Kolmogorov-Smirnov test statistics, and those test

statistics are not suitable for our testing purpose. To explain the negligibility

(4.3) heuristically, consider the case t = 1 (now ignoring the truncation of co-

variates for simplicity of explanation). Then, under H0, n
−1∑n

i=1 I{ε̂i,I ≤ 0}
estimates Fε(0) = τ . But the information that εi has τ -quantile zero was

already applied to estimate the τ -quantile function qτ . Hence, one obtains

n−1
∑n

i=1 I{ε̂i,I ≤ 0} − τ = oP (n−1/2). This observation is in accordance to

the fact that n−1
∑n

i=1 ε̂i = oP (n−1/2), when residuals are built from a mean

regression model with centered errors (see Müller, Schick and Wefelmeyer (2004)

and Kiwitt, Nagel and Neumeyer (2008)).

Finally, consider the process

S̃n(1− 2hn, y) =
1√
n

n∑
i=1

(
I{ε̂i,I ≤ y}I{2hn < Xi ≤ 1− 2hn}

− F̂X,ε,n(1− 2hn, y)I{2hn < Xi ≤ 1− 2hn}
)

i. e. the difference between the estimated distribution functions of pseudo-residuals

ε̂i,I and unconstrained residuals ε̂i (i = 1, . . . , n), respectively, scaled with n1/2.

An analogous process has been considered by Van Keilegom, González–Manteiga

and Sánchez Sellero (2008) for testing for parametric classes of mean regression

functions. However, as can be seen from Theorem 3, in our case of testing for

monotonicity the limit again is degenerate, i. e. Var(S(1, y)) = 0 for all y, and

hence supy∈R |S̃n(1, y)| = oP (1). Similar observations can be made when typical

distance based tests from lack-of-fit literature (for instance L2-tests or residual

process based procedures by Härdle and Mammen (1993) and Stute (1997), re-

spectively) are considered in the problem of testing monotonicity of regression

function, see Birke and Neumeyer (2013). The reason is that under H0 the

unconstrained and constrained estimators, q̂τ and q̂τ,I , typically are first order

asymptotically equivalent. This for estimation purposes very desirable property

limits the possibilities to apply the estimator q̂τ,I for hypotheses testing.
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5. Simulation Results

In this section we show some simulation results for the bootstrap-based tests

introduced in this paper. When available, we compare the results to already

existing methods. Throughout, we choose the bandwidths according to condition

(BW) as dn = 2(σ̂2/n)1/7, hn = (σ̂2/n)1/7, bn = σ̂2(1/n)2/7, and σ̂2 is the

difference estimator proposed in Rice (1984) (see Yu and Jones (1997) for a

related approach). The degree of the local polynomial estimators of location

and scale (see equation (2.2)) was chosen to be three, the kernel K is the Gauss

Kernel, while κ was chosen to be the Epanechnikov kernel. The function Ω

was defined through Ω(t) =
∫ t
−∞ ω(x)dx where ω(x) := (15/32)(3 − 10x2 +

7x4)I{|x| ≤ 1}, a kernel of order 4 (see Gasser, Müller and Mammitzsch (1985)).

For the choices of G and Gs, we followed the procedure described in Dette and

Volgushev (2008) who suggested a normal distribution such that the 5% and

95% quantiles coincide with the corresponding empirical quantities of the sample

Y1, . . . , Yn. The parameter αn for generating the bootstrap residuals was chosen

as αn = 0.1n−1/4
√

2 median(|ε̂1|, . . . , |ε̂n|). The results under H0 are based on

1,000 simulation runs and 200 bootstrap replications, while the results under

alternatives are based on 500 simulation runs and 200 bootstrap replications.

5.1. Testing for location and location-scale models

Testing the validity of location and location-scale models has previously been

considered by Einmahl and Van Keilegom (2008a) and Neumeyer (2009b); we

compare the properties of our test statistic with theirs. In testing the validity of

location models (see Remark 3), we considered the data generation processes

(model 1) Y |X = x ∼ (x− 0.5x2) +
(1 + ax)1/2

10
N (0, 1), X ∼ U [0, 1],

(model 2a) Y |X = x ∼ (x− 0.5x2) +
1

10

(
1− 1

2c

)1/2
tc, X ∼ U [0, 1],

(model 2b) Y |X = x ∼ (x− 0.5x2) +
1

10

(
1− (cx)1/4

)1/2
t2/(cx)1/4 ,

X ∼ U [0, 1],

(model 3) Y |X = x, U = u ∼ (x− 0.5x2) +
(
U − 0.5− b

6
(2x− 1)

)
,

(X,U) ∼ C(b).

Model 1 with parameter a = 0, model 2a with arbitrary parameter c, and model

3 with parameter b = 0 correspond to a location model, while models 1, 2b,

and 3 with parameters a, b, c 6= 0 describe models that are not of this type.



THE INDEPENDENCE PROCESS IN QUANTILE MODELS 1831

Table 1. Rejection probabilities for testing the validity of a location model under various
H0 scenarios, the nominal level is α = 5%.

model 1 model 2a model 3
a = 0 c = 2 b = 0

KS n = 100 0.034 0.039 0.045
CvM n = 100 0.029 0.044 0.053
KS n = 200 0.034 0.039 0.050

CvM n = 200 0.046 0.049 0.062

Table 2. Rejection probabilities for testing the validity of a location model under the
alternative in model 1 for different values of the parameter a, nominal level is α = 5%.

a 0 1 2.5 5 10
KS n = 100 0.032 0.078 0.16 0.23 0.444
CvM n = 100 0.038 0.128 0.364 0.568 0.746
N n = 100 0.054 0.190 0.506 0.734 0.884
EVK n = 100 0.072 0.132 0.316 0.524 0.668
KS n = 200 0.034 0.144 0.292 0.586 0.784
CvM n = 200 0.046 0.296 0.632 0.9 0.976
N n = 200 0.044 0.390 0.860 0.976 0.972
EVK n = 200 0.066 0.376 0.788 0.960 1.00

Here tc denotes a t−distribution with c degrees of freedom (c not necessarily

integer). Models 1 and 2b have been considered by Einmahl and Van Keilegom

(2008a). Model 3 is from Neumeyer (2009b), with (X,U) ∼ C(b) generated

as follows. Let X,V,W be independent U [0, 1]-distributed random variables and

take U = min(V,W/(b(1−2X))) if X ≤ 1/2, and U = max(V, 1+W/(b(1−2X)))

otherwise. Note that this data generation produces observations from the Farlie-

Gumbel-Morgenstern copula if the parameter b is between −1 and 1.

Simulation results under the null are summarized in Table 1. The Kolmogorov-

Smirnov (KS) and the Cramér-von Mises (CvM) bootstrap versions of the test

hold the level quite well in all models considered, both for n = 100 and n = 200

observations.

We looked at the power properties of the tests in models 1, 2a, and 3. The

rejection probabilities are reported in Table 2, Table 3, and Table 4, respectively.

For comparison, we include the results reported in Neumeyer (2009b) (noted N in

the tables) and Einmahl and Van Keilegom (2008a) (noted EVK in the tables),

where available. Neumeyer (2009b) considered several bandwidth parameters,

while Einmahl and Van Keilegom (2008a) considered various types of test statis-

tics (KS, CvM, and Anderson-Darling) and two types of tests (difference and
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Table 3. Rejection probabilities for testing the validity of a location model under the
alternative in model 2b for different values of the parameter c, nominal level is α = 5%.

c 0.2 0.4 0.6 0.8 1
KS n = 100 0.044 0.074 0.120 0.194 0.390
CvM n = 100 0.082 0.124 0.218 0.414 0.768
N n = 100 0.096 0.120 0.224 0.420 0.676
EVK n = 100 0.116 0.160 0.224 0.360 0.612
KS n = 200 0.08 0.136 0.222 0.4 0.762
CvM n = 200 0.118 0.29 0.49 0.792 0.996
N n = 200 0.156 0.216 0.412 0.688 0.904
EVK n = 200 0.124 0.216 0.344 0.584 0.944

Table 4. Rejection probabilities for testing the validity of a location model under the
alternative in model 3 for different values of the parameter b, nominal level is α = 5%.

b 0 1 2 3 5
KS n = 100 0.045 0.094 0.154 0.306 0.712
CvM n = 100 0.053 0.128 0.240 0.576 0.968
N n = 100 0.024 0.172 0.284 0.452 0.662
KS n = 200 0.050 0.134 0.31 0.518 0.906
CvM n = 200 0.062 0.254 0.538 0.92 1
N n = 200 0.034 0.620 0.926 0.998 1.000

estimated residuals). We have included the best values of the possible tests in

Neumeyer (2009b) and Einmahl and Van Keilegom (2008a).

The tests of Neumeyer (2009b) and Einmahl and Van Keilegom (2008a)

perform better for normal errors (Table 2), while our test seems to perform

better for t errors (Table 3). This corresponds to intuition since for normal

errors the mean provides an optimal estimator of location, while for heavier

tailed distributions the median has an advantage. In almost all cases the CvM

test outperforms the KS test. In model 3, the test of Neumeyer (2009b) performs

better than our tests, with significantly higher power for b = 1, 2 and n = 200.

The CvM version again has somewhat higher power than the KS version of the

test. Overall, we can conclude that the newly proposed testing procedures are

competitive and can be particularly recommended for error distributions with

heavier tails. In this, the CvM test seems to be preferable.

To evaluate the test for location-scale models, we considered the settings

(model 1h) Y |X = x ∼ (x− 0.5x2) +
2 + x

10
N (0, 1), X ∼ U [0, 1],

(model 2ah) Y |X = x ∼ (x− 0.5x2) +
2 + x

10

(
1− 1

2c

)1/2
tc, X ∼ U [0, 1],
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Table 5. Rejection probabilities for the testing the validity of a location-scale model
under various H0 scenarios, the nominal level is α = 5%.

model 1h model 2ah model 3h
c = 2 b = 0

KS n = 50 0.025 0.026 0.023
CvM n = 50 0.022 0.026 0.034
KS n = 100 0.031 0.037 0.037
CvM n = 100 0.029 0.031 0.041
KS n = 200 0.024 0.044 0.057
CvM n = 200 0.028 0.044 0.062

Table 6. Rejection probabilities for testing the validity of a location-scale model under
the alternative in model 2bh, the nominal level is α = 5%.

c 1
KS n = 50 0.032
CvM n = 50 0.034
EVK n = 50 0.262
KS n = 100 0.046
CvM n = 100 0.04
EVK n = 100 0.478

(model 2bh) Y |X = x ∼ (x− 0.5x2) +
2 + x

10

(
1− (cx)1/4

)1/2
t2/(cx)1/4 ,

X ∼ U [0, 1],

(model 3h) Y |(X,U) = (x, u) ∼ (x− 0.5x2) +
2 + x

10

(
U − 0.5− b(2x− 1)

)
(X,U) ∼ C(b).

Models 1h and 2bh have been considered in Einmahl and Van Keilegom (2008a),

while model 3h is from Neumeyer (2009b). Simulation results corresponding to

the different null models are collected in Table 5. In all three models the KS and

the CvM test hold their level quite well for all sample sizes, with both tests being

slightly conservative for n = 50, and in model 1h.

The power against alternatives in model 2bh and 3h is shown in Tables 6

and 7, respectively. In Table 7, the CvM version of the proposed test has higher

(sometimes significantly so) power than the test of Neumeyer (2009b). One note

is that the power of Neumeyer’s test decreases for large values of b, while the

power of our test continues to increase. This might be explained by the fact

that for larger values of b, the variance of the residuals is extremely small, which

probably leads to an instability of variance estimation.



1834 MELANIE BIRKE, NATALIE NEUMEYER AND STANISLAV VOLGUSHEV

Table 7. Rejection probabilities for testing the validity of a location-scale model under
the alternative in model 3h for different values of the parameter b, the nominal level is
α = 5%.

b 0 1 2 3 5
KS n = 100 0.037 0.212 0.344 0.546 0.878
CvM n = 100 0.041 0.368 0.658 0.922 0.992
N n = 100 0.036 0.278 0.388 0.190 0.156
KS n = 200 0.057 0.452 0.646 0.8 0.972
CvM n = 200 0.062 0.802 0.966 1 1
N n = 200 0.035 0.630 0.774 0.402 0.268

In Table 6, the situation differs from the results in the homoscedastic model

2b. In this setting, the tests proposed in this paper have no power for n = 50,

or n = 100, even for the most extreme setting b = 1. The test of Einmahl

and Van Keilegom (2008a) has less power than in the homoscedastic case, but is

still able to detect that this model corresponds to the alternative. An intuitive

explanation is that their residuals have the same variances while our residuals are

scaled to have the same median absolute deviation. Under various alternative

distributions, this leads to different power curves for the location-scale test. This

difference is particularly extreme in the case of t-distributions. To illustrate this

fact, recall in models which are not of location-scale structure, n−1/2Sn(t, y)

converges in probability to P (εadi ≤ y,Xi ≤ t) − Fεad(y)FX(t), see Remark 4.

Here, the residuals εadi are defined as (Yi−F−1Y (τ |Xi))/s(Xi) with s(x) denoting

the conditional median absolute deviation of Yi − F−1Y (τ |Xi) given Xi = x. A

similar result holds for the residuals in EVK which take the form εσi := (Yi −
m(Xi))/σ(Xi) where σ2 denotes the conditional variance. One thus might expect

that computing the quantities Kad := supt,y |P (εadi ≤ y,Xi ≤ t)− Fεad(y)FX(t)|
and Kσ := supt,y |P (εσi ≤ y,Xi ≤ t) − Fεσ(y)FX(t)| will give some insights into

the power properties of the KS test for residuals that are scaled in different

ways. Indeed, numerical computations show that Kσ/Kad ≈ 4.5 which explains

the large difference in power (note that the power for EVK reported in Table

6 is in fact the power of their Anderson-Darling test, the power of the KS test

in EVK is lower). For a corresponding version of the CvM distance the ratio is

roughly ten. We suspect that using a different scaling for the residuals would

improve the power of the test in this particular model. However, since the optimal

scaling depends on the underlying distribution of the residuals which is typically

unknown, it seems difficult to implement an optimal scaling in practice. We

leave this interesting question to future research. We do not present simulation
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Table 8. Rejection probabilities for the test for monotonicity of quantile curves in model
4. The nominal level is α = 5%.

τ = 0.25 τ = 0.5
n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

β = 0 0.020 0.020 0.026 0.025 0.023 0.026
β = 0.15 0.024 0.027 0.050 0.027 0.047 0.060
β = 0.25 0.028 0.057 0.126 0.037 0.053 0.154
β = 0.45 0.140 0.202 0.410 0.084 0.154 0.344

Table 9. Rejection probabilities for the test for monotonicity of quantile curves in model
5. Different rows correspond to the 0.25, 0.5 and 0.75 quantile curves, respectively. The
nominal level is α = 5%.

n = 50 n = 100 n = 200
τ = 0.25 0.23 0.262 0.376
τ = 0.5 0.073 0.061 0.043
τ = 0.75 0.181 0.180 0.296

results for the models with χ2-distributed errors considered by Einmahl and

Van Keilegom (2008a) and Neumeyer (2009b) for power simulations. For error

distributions that are χ2
b with b < 2, tests based on residuals do not hold their

level, and the power characteristics described in those papers are a consequence

of this fact. Weak convergence of the residual process requires errors to have

a uniformly bounded density, which is not the case for chi-square distributions

with degrees of freedom less than two.

5.2. Testing for monotonicity of quantile curves in a location-scale

setting

We considered the test for monotonicity of quantile curves that is introduced

in Section 4. We simulated two models of location-scale type,

(model 4) Y |X = x ∼ 1 + x− βe−50(x−0.5)2 + 0.2N (0, 1), X ∼ U [0, 1],

(model 5) Y |X = x ∼ x

2
+ 2(0.1− (x− 0.5)2)N (0, 1), X ∼ U [0, 1].

The results for models 4 and 5 are reported in Table 8 and Table 9, respectively.

In model 4, all quantile curves are parallel and so all quantile curves have a similar

monotonicity behavior. In particular, the parameter value β = 0 corresponds to

strictly increasing quantile curves, for β = 0.15 the curves have a flat spot,

and for β > 0.15 the curves have a small decreasing bump that gets larger for

larger values of β. The median curves for different values of β are depicted in

Figure 3, and the 25% quantile curves are parallel to the median curves with
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Figure 3. The function x 7→ 1 + x− βe−50(x−0.5)2 for values β = 0 (solid line), β = 0.15
(dashed line), β = 0.25 (dotted line), β = 0.45 (dash-dotted line), respectively. This is
the median function in model 4, see Section 5.2.

exactly the same shape. We performed the tests for two different quantile curves

(τ = 0.25 and τ = 0.5) and in both cases the test has a slowly increasing power for

increasing values of β and sample size. The case β = 0.45 is already recognized

as alternative at n = 50, while for β = 0.25 the test only starts to show some

power for n = 200.

In model 5, the median is a strictly increasing function while the outer quan-

tile curves are not increasing. In Table 9, we report the simulation results for the

quantile values τ = 0.25, τ = 0.5 and τ = 0.75 and sample sizes n = 50, 100, 200.

For n = 50, the observed rejection probabilities are slightly above the nominal

critical values (for τ = 0.5), and the cases τ = 0.25 and τ = 0.75 are recognized

as alternatives. For n = 100, 200, the test holds its level for τ = 0.5 and also

shows a slow increase in power at the other quantiles. The increase is not really

significant when going from n = 50 to n = 100 for τ = .25, and not present for

τ = .75. For n = 200, the test clearly has more power compared to n = 50.

Overall, we can conclude that the proposed test shows a satisfactory behavior.

6. Conclusion

The paper at hand considered location-scale models in the context of non-

parametric quantile regression. A test for model validity was investigated, based

on the empirical independence process of covariates and residuals built from non-

parametric estimators for the location and scale functions. The process converges
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weakly to a Gaussian process. A bootstrap version of the test was investigated

in theory and by means of a simulation study. We considered in detail the test-

ing for monotonicity of a conditional quantile function in theory as well as in

simulations. Similarly other structural assumptions on the location or the scale

function can be tested. A small simulation study demonstrated that the proposed

method works well. All weak convergence results are proved in the supplementary

materials.

Supplementary Materials

Proofs are presented in detail in the supplementary materials.
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