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S1 Assumptions and Explanations

In the manuscript, we have made use of the following assumptions.

Assumption 1 For any q ∈ (0, 1], f satisfies the following regularity

conditions:

1. θ0 is an interior point in Θ0.

2. supθ∈Θ0
‖ 1
n

∑n
i=1 ψ̃(Xi; θ, q)− Eψ̃(X; θ, q)‖ p→ 0 as n→∞, where ‖ · ‖

represents the `2-norm.

3. max1≤k≤p Eθ0|ψ̃k(Xi; θ0, q)|3, k = 1, ..., p is upper bounded by a con-

stant, where ψ̃k is the k-th element of ψ̃.

4. The smallest eigenvalue of A is bounded away from zero.

5. Let bjk be the j-th row, k-th column element in B, then b2
jk for j, k =

1, ..., p are upper bounded by a constant.
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6. The second order partial derivatives of ψ̃(x; θ, q) are dominated by an

integrable functions with respect to the true distribution of X for all

θ in a neighborhood of θ0.

Assumption 2 For any ε ∈ (0, 1), the gross error model h is such that

Eh[f ′′θ (X; θ∗ε,1)/f(X; θ∗ε,1)] is positive definite, where θ∗ε,1 = arg maxθ Eh[log f(X; θ)].

Assumption 3 Ef [f ′θ(X; θ0)f ′θ(X; θ0)T (f(X; θ0)−2q − f(X; θ0)−q−1)] is

negative definite for any q ∈ (0, 1).

Assumption 4 There exists a constant q∗∗ ∈ (0, 1), such that λj(Aε,qB
−1
ε,q)

are monotonic function in q for any q ∈ (q∗∗, 1).

Remark on Assumption 1: The regularity conditions in Assumption 1

are based on the regularity conditions introduced in Ferrari and Yang (2010)

pp. 760, B1, B3, C1 through C4, with some modifications. In particular,

their regularity conditions are based on ψ and for the case of qn → 1,

whereas ours are based on ψ̃ and for the case of the fixed q.

Remark on Assumption 2: For an exponential family (i.e., f = m(x) exp{θTT (x)−

A(θ)}, with the sufficient statistic T (X)), Assumption 2 becomes that

Eh{(T (X) − A′θ(θ
∗
ε,1))(T (X) − A′θ(θ

∗
ε,1))T} − A′′θ(θ

∗
ε,1) is positive definite.

Note that

Eh{(T (X)− A′θ(θ∗ε,1))(T (X)− A′θ(θ∗ε,1))T}
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= CovhT (X) + (EhT (X)− A′θ(θ∗ε,1))(EhT (X)− A′θ(θ∗ε,1))T ,

where the second term on the right is positive semidefinite. This assumption

implies either that the covariance of T (X) under h, CovhT (X), is “larger”

than the covariance of T (X) under f(x; θ∗ε,1), A′′θ(θ
∗
ε,1), or that (EhT (X) −

A′θ(θ
∗
ε,1))(EhT (X) − A′θ(θ∗ε,1))T has large positive eigenvalues. Note that if

h = f(x; θ∗ε,1), then Eh{(T (X)− A′θ(θ∗ε,1))(T (X)− A′θ(θ∗ε,1))T} = A′′θ(θ
∗
ε,1).

More specifically, suppose the gross error model h contains a true null

model N(0, 1) and a contamination model N(0, σ2), i.e., h(x) = (1 −

ε)ϕ(x; 0, 1)+εϕ(x; 0, σ2). Here ϕ(x; 0, 1) represents the pdf of the standard

normal distribution and ϕ(x; 0, σ2) represents the pdf of the contamination

distribution. In this case, Assumption 2 is equivalent to σ2 > 1. To see

this, consider a one-dimensional problem where Eh[f ′′θ (X; θ∗ε,1)/f(X; θ∗ε,1)]

is a scalar and f = ϕ(x; θ, 1) is the pdf of a normal distribution with an

unknown mean θ and a known variance, we have

f ′θ(x) = f(x)(x− θ)

f ′′θ (x) = f(x)((x− θ)2 − 1)
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Plugging them into Eh[f ′′θ (X; θ∗ε,1)/f(X; θ∗ε,1)], where θ∗ε,1 = 0 (due to the

symmetric contamination N(0, σ2)), we have

Eh[f ′′θ (X)/f(X)] = Eh[X2 − 1]

= ε(σ2 − 1)

So, if σ2 > 1, for any ε ∈ (0, 1), we have Eh[f ′′θ (X)/f(X)] > 0. To sum up,

for a normal mixture gross error model h(x) = (1−ε)ϕ(x; 0, 1)+εϕ(x; 0, σ2),

the range of values of σ2 satisfying Assumption 2 is σ2 ∈ (1,+∞).

Remark on Assumption 3: When f belongs to the exponential family,

Assumption 3 becomes that Ef (T (X)−A′θ(θ0))(T (X)−A′θ(θ0))T (f 2(1−q)−

f 1−q) is negative definite for any q ∈ (0, 1). In this case, Ef (T (X) −

A′θ(θ0))(T (X) − A′θ(θ0))T is CovT (X). This assumption implies that the

weighted version of the covariance of T (X), using the weight f 2(1−q), is

“smaller” than the weighted version of the covariance of T (X) using the

weight f 1−q.

More specifically, let us continue with the same example from the pre-

vious remark. Suppose f = ϕ(x; θ, 1) is the pdf of a normal distribution

with an unknown mean θ and a known variance. Consider a one-dimensional

problem where Ef [f ′θ(X; θ0)f ′θ(X; θ0)T (f(X; θ0)−2q−f(X; θ0)−q−1)] is a scalar
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and θ0 = 0 represent the the true mean. Therefore, we have

Ef
[
f ′θ(X)f ′θ(X)T

(
f(X)−2q − f(X)−q−1

)]
=Ef

[(f ′θ(X)

f(X)

)2(
f(X)2(1−q) − f(X)1−q)]

=Ef
[
X2
(
f(X)2(1−q) − f(X)1−q)]

=

∫ +∞

−∞
x2

[
1√
2π

exp
{
− x2

2

}]1+2(1−q)

dx−
∫ +∞

−∞
x2

[
1√
2π

exp
{
− x2

2

}]1+(1−q)

dx

=(2π)q−1(3− 2q)−
3
2 − (2π)

1
2

(q−1)(2− q)−
3
2

For any q ∈ (0, 1), we have q − 1 < (q − 1)/2 < 0 and 3− 2q > 2− q > 0.

Therefore, (2π)q−1 < (2π)
1
2

(q−1) and (3−2q)−
3
2 < (2− q)− 3

2 . Hence we have

Ef
[
f ′θ(X)f ′θ(X)T (f(X)−2q − f(X)−q−1)

]
< 0 and f satisfies Assumption 3.

S2 Additional Simulation Studies

S2.1 Simulation on Testing the Mean of the Normal Distribution

Under Different Alternative Models

We extend the simulation from Section 4.1 in the manuscript to test the

power of LqRT for different alternative hypotheses. We simulated data

using h(x; θ, ε) with θ = 0.2, 0.5, and 0.8 and compared the powers of these

tests. The results in Figures 1, 2, and 3 indicate similar phenomena as
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Figure 1: Comparison of the powers for the LqRT, LRT, Wilcoxon test, sign test, and
HLRT under different levels of heavy-tail contamination when testing for the mean of
the normal distribution (H0 : θ = 0, H1 : θ 6= 0). The mean of the data generating
process is θ = 0.2.

shown in the manuscript.

S2.2 Simulation on Testing the Mean of the Normal Distribution

Under Point Mass Contamination

We investigate the proposed method in a point mass contamination setting.

We adopted the setup of Section 4.1 in the manuscript and changed the data

generating process to h(x; θ, ε) = (1− ε)ϕ(x; θ, 1) + εϕ(x;−5, 0.0001). The

results are presented in Figure 4. In the left panel, as ε increases, the sizes

of the LRT, the LqRT with q = 0.9, the Wilcoxon test, and the sign test

all increase above 0.05. However, the sizes of LqRT with q = 0.6 and LqRT

with estimated q are controlled at 0.05. With regard to the power, we
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Figure 2: Comparison of the powers for the LqRT, LRT, Wilcoxon test, sign test, and
HLRT under different levels of heavy-tail contamination when testing for the mean of
the normal distribution (H0 : θ = 0, H1 : θ 6= 0). The mean of the data generating
process is θ = 0.5.
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(b) Estimated q

Figure 3: Comparison of the powers for the LqRT, LRT, Wilcoxon test, sign test, and
HLRT under different levels of heavy-tail contamination when testing for the mean of
the normal distribution (H0 : θ = 0, H1 : θ 6= 0). The mean of the data generating
process is θ = 0.8.
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Figure 4: Comparison of powers and sizes for the LqRT with fixed q (q = 0.9, 0.6), the
LqRT with estimated q and estimated critical value, LRT, Wilcoxon test, sign test, and
HLRT under different levels of point mass contamination when testing for the mean of
the normal distribution (H0 : θ = 0, H1 : θ 6= 0). The powers are calculated using the
data generating process with mean θ = 0.34.

observe the same phenomena as shown in the manuscript.

For Figure 4, we report the estimated q in each iteration for calculating

the average power and size in Figures 5 and 6, respectively. The estimated

q gradually decreases as the contamination becomes more serious.

Comparing Figures 4, 5, and 6, the LqRT with estimated q again com-

bines the advantages of the LqRTs with fixed qs in terms of power. The

size is also better controlled at 5% for the LqRT with estimated q.

Lastly, in Figure 7, we report estimated q for calculating the average

size shown in Figure 9 in the manuscript.
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Figure 5: Histogram of the estimated q of the LqRT at different levels of point mass
contamination when testing for the mean of the normal distribution. These estimated qs
are obtained when calculating the powers (i.e., the right panel of Figure 4). The mean
estimated q is indicated by a vertical dashed line.
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Figure 6: Histogram of the estimated q of the LqRT at different levels of point mass
contamination when testing for the mean of the normal distribution. These estimated
qs are obtained when calculating the sizes (i.e., the left panel of Figure 4). The mean
estimated q is indicated by a vertical dashed line.
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Figure 7: Histogram of the estimated q of the LqRT at different levels of heavy-tail
contamination when testing for the mean of the normal distribution. These estimated qs
are obtained when calculating the sizes (i.e., the left panel of Figure 9 in the manuscript).
The mean estimated q is indicated by a vertical dashed line.
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S3 Proofs of Theorems

S3.1 Sketch of Proof of Consistency of BCMLqE

Proof.

∂

∂θ
[Eθ0Lq(f(X; θ))− C(θ, q)]

∣∣∣∣
θ=θ0

=
[
Eθ0 [f ′θ(X; θ)f(X; θ)−q]−

∫
f(x; θ)1−qf ′θ(x; θ)dx

]∣∣∣∣
θ=θ0

=
[ ∫

f ′θ(x; θ)f(x; θ)−qf(x; θ0)dx−
∫
f(x; θ)1−qf ′θ(x; θ)dx

]∣∣∣∣
θ=θ0

= 0,

and the consistency of the BCMLqE follows.

S3.2 Proof of Theorem 3

Proof. When q = 1, we have C(θ, 1) = 1, c(θ, 1) = 0, and c′(θ, 1) = 0.

Hence,

ψ(x; θ, 1) =
f ′θ(x; θ)

f(x; θ)
,

ψ′(x; θ, 1) =
f ′′θ (x; θ)

f(x; θ)
− f ′θ(x; θ)f ′θ(x; θ)T

f(x; θ)2
,

Aε,1 = Eh[ψ(X; θ∗ε,1, 1)ψ(X; θ∗ε,1, 1)T ] = Eh
f ′θ(X; θ∗ε,1)f ′θ(X; θ∗ε,1)T

f(X; θ∗ε,1)2
,
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Bε,1 = −Ehψ′(X; θ∗ε,1, 1) = −Eh[
f ′′θ (X; θ∗ε,1)

f(X; θ∗ε,1)
−
f ′θ(X; θ∗ε,1)f ′θ(X; θ∗ε,1)T

f(X; θ∗ε,1)2
].

Therefore,

Aε,1 −Bε,1 = Eh[
f ′′θ (X; θ∗ε,1)

f(X; θ∗ε,1)
].

By Assumption 2, we know that Aε,1 − Bε,1 is positive definite and that

λj(Aε,1−Bε,1) > 0. Since Bε,1 is positive definite, we know λj(Aε,1B
−1
ε,1) >

1. When f belongs to the exponential family, we have f(x; θ) = m(x) exp{θTT (x)−

A(θ)}, f ′θ(x; θ) = f(x; θ)(T (x) − A′θ(θ)) and f ′′θ (X; θ) = f(x; θ)[(T (x) −

A′θ(θ))(T (x)− A′θ(θ))T − A′′θ(θ)], such that

Eh[
f ′′θ (X; θ∗ε,1)

f(X; θ∗ε,1)
] = Eh[(T (x)− A′θ(θ∗ε,1))(T (x)− A′θ(θ∗ε,1))T − A′′θ(θ∗ε,1)].

S3.3 Proof of Theorem 4

Proof.

ψ(x; θ, q) =
f ′θ(x; θ)

f(x; θ)
f(x; θ)1−q,

ψ′(x; θ, q) =
f ′′θ (x; θ)

f(x; θ)
f(x; θ)1−q − qf

′
θ(x; θ)f ′θ(x; θ)T

f(x; θ)2
f(x; θ)1−q,
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c(θ, q) =

∫
f ′θ(x; θ)f(x; θ)1−qdx = Eff ′θ(X; θ)f(X; θ)−q,

c′(θ, q) =

∫
f ′′θ (x; θ)f(x; θ)1−q + f ′θ(x; θ)f ′θ(x; θ)T (1− q)f(x; θ)−qdx

= Eff ′′θ (X; θ)f(X; θ)−q + Ef
f ′θ(x; θ)f ′θ(x; θ)T

f(x; θ)2
(1− q)f(x; θ)1−q,

Aε,q = Eh[(ψ(X; θ∗ε,q, q)− c(θ∗ε,q, q))(ψ(X; θ∗ε,q, q)− c(θ∗ε,q, q))T ]

= Eh[(ψ(X; θ∗ε,q, q)− c(θ∗ε,q, q))ψ(X; θ∗ε,q, q)
T ]− {Eh[ψ(X; θ∗ε,q, q)− c(θ∗ε,q, q)]}c(θ∗ε,q, q)T

= Eh[(ψ(X; θ∗ε,q, q)− c(θ∗ε,q, q))ψ(X; θ∗ε,q, q)
T ]

= Eh[ψ(X; θ∗ε,q, q)ψ(X; θ∗ε,q, q)
T ]− c(θ∗ε,q, q)Ehψ(X; θ∗ε,q, q)

T ,

Bε,q = −Eh[ψ′(X; θ∗ε,q, q)− c′(θ∗ε,q, q)]

= c′(θ∗ε,q, q)− Eh[ψ′(X; θ∗ε,q, q)].

We further have

Aε,q −Bε,q = Eh[ψψT ]− cEh[ψT ]− c′ + Eh[ψ′]

= Eh
f ′θf

′T
θ

f 2
f 2(1−q) − cEh[

f ′Tθ
f
f 1−q]− c′ + Eh[

f ′′θ
f
f 1−q − qf

′
θf
′T
θ

f 2
f 1−q]

= Eh
f ′θf

′T
θ

f 2
f 2(1−q) − Ef [f ′θf−q]Eh[

f ′Tθ
f
f 1−q]− Ef [f ′′θ f−q]− (1− q)Ef [

f ′θf
′T
θ

f 2
f 1−q]

+ Eh[
f ′′θ
f
f 1−q − qf

′
θf
′T
θ

f 2
f 1−q]

= Eh
f ′θf

′T
θ

f 2
f 2(1−q) − Ef [f ′θf−q]Eh[

f ′Tθ
f
f 1−q]− Ef [f ′′θ f−q] + (q − 1)Ef [

f ′θf
′T
θ

f 2
f 1−q]

+ Eh[
f ′′θ
f
f 1−q − qf

′
θf
′T
θ

f 2
f 1−q].
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When ε = 0, h = f , we have θ∗0,q = θ0, and

A0,q −B0,q = Ef
f ′θf

′T
θ

f 2
f 2(1−q) − Ef [f ′θf−q]Ef [

f ′Tθ
f
f 1−q]− Ef [

f ′θf
′T
θ

f 2
f 1−q]

= Ef
f ′θf

′T
θ

f 2
(f 2(1−q) − f 1−q)− Ef [f ′θf−q]Ef [f ′θf 1−q]T .

We know Ef [f ′θf−q]Ef [f ′θf 1−q]T is always positive semidefinite. By As-

sumption 3, we know that A0,q − B0,q is negative definite, which means

λj(A0,qB
−1
0,q) < 1.

We denote λj(ε, q) = λj(Aε,qB
−1
ε,q). Suppose that for any ε ∈ (0, E],

λj(ε, 1) > 1. For any q ∈ [Q, 1) where Q ∈ (q∗∗, 1), λj(0, q) < 1. We

can define g(ε) = 1−Q
E
ε + Q. Since λj(E, g(E)) > 1 and λj(0, g(0)) < 1,

by the intermediate value theorem, there exists an ε̃ ∈ (0, E), such that

λj(ε̃, g(ε̃)) = 1. Furthermore, for any ε ∈ (0, ε̃), we have λj(ε, g(ε)) < 1.

Therefore, for any ε ∈ (0, ε̃), we know that λj(ε, g(ε)) < 1 < λj(ε, 1). By

Assumption 4, we know λj(ε, q) is increasing in q for any q ∈ (g(ε), 1).

We let L = λj(ε, g(ε)) and U = λj(ε, 1) so that L < 1 < U . Here, L and

U are introduced as lower and upper bounds of λj(ε, q) for q ∈ (g(ε), 1). If

1−L = |L− 1| < |U − 1| = U − 1, by Assumption 4, we know that for any

q ∈ (g(ε), 1) where ε ∈ (0, ε̃), we have |λj(ε, q)− 1| < |λj(ε, 1)− 1|.

On the other hand, if 1−L = |L− 1| ≥ |U − 1| = U − 1, since we know
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λj(ε, q) is increasing in q for any q ∈ (g(ε), 1), there exists a g∗(ε) ∈ (g(ε), 1),

such that |λj(ε, g∗(ε))−1| < |U−1|. Therefore, for any q ∈ (g∗(ε), 1) where

ε ∈ (0, ε̃), we have |λj(ε, q)−1| < |λj(ε, 1)−1|. Note that, in the statement

of the theorem, we refer to g(ε) or g∗(ε) as q∗.

To sum up, there exists an ε̃ ∈ (0, 1), such that for any arbitrary ε ∈

(0, ε̃), there exists a q∗ ∈ (q∗∗, 1) and for any q ∈ (q∗, 1), we have |λj(ε, q)−

1| < |λj(ε, 1)− 1|.

When f belongs to the exponential family, we have

Ef
f ′θf

′T
θ

f 2
(f 2(1−q) − f 1−q) = Ef (T (X)− A′θ(θ0))(T (X)− A′θ(θ0))T (f 2(1−q) − f 1−q).

S3.4 Proof of Theorem 5

We will prove the simple null hypothesis case. To start, we note that

tmin = 0 and tmin = ∞. Then we can rewrite our test statistic as Dq =

1
2
(θ̂q − θ0)TnB(θ∗)(θ̂q − θ0), where θ∗ is between θ̂q and θ0. Since we know

B(θ) is continuous in θ, we conclude that our test statistic and θ̂q have the

same breakdown points.
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