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Abstract: This article introduces a robust hypothesis testing procedure: the Lq-

likelihood-ratio-type test (LqRT). By deriving the asymptotic distribution of the

test statistic, we demonstrate its robustness analytically and numerically, and in-

vestigate the properties of its influence function and breakdown point. A proposed

method to select the tuning parameter q offers a good efficiency/robustness trade-

off compared with the traditional likelihood ratio test (LRT) and other robust tests.

Simulation and a real data analysis provide further evidence of the advantages of the

proposed LqRT method. In particular, for the special case of testing the location

parameter in the presence of gross error contamination, the LqRT dominates the

Wilcoxon-Mann-Whitney test and the sign test at various levels of contamination.
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1. Introduction

The likelihood ratio test (LRT) is frequently used, but its robustness is not

ideal. The LRT can achieve optimal performance only under several strict as-

sumptions, whereas its performance degrades significantly in the presence of even

mild violations of them. Here we propose a robust testing procedure, the Lq-

likelihood-ratio-type test (LqRT), that leverages the newly developed concept of

Lq-likelihood (Ferrari and Yang (2010)).

Consider a gross error model h(x) = (1 − ε)f(x; θ) + εg(x), where f is an

“idealized” model with the parameter θ that we need to test, g is the measurement

error or contamination component, and ε is the contamination ratio. h represents

the true data generating process, a deviation from f when ε > 0. For a data set

generated from h, 100(1 − ε)% are drawn from f , whereas the rest of the data

points from g are considered measurement errors or outliers. Common choices

for the contamination distribution g are a fat tailed distribution and a point mass

distribution.

Suppose measurements X = (X1, X2, . . . , Xn) are generated by an experi-

ment, where X follows a distribution f(x; θ) with an interpretable parameter θ,

but that we observe, instead, X∗ = (X∗1 , X
∗
2 , . . . , X

∗
n). Here most of the X∗i = Xi,
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but there are a few outliers due to human error, instrument malfunction, or the

complexity of the underlying process. Under such circumstances, using data X∗,

we still have θ as the parameter for hypothesis testing or estimation (Bickel and

Doksum (2007)). For this problem, we introduce the LqRT.

For robust testing, Huber (1965) suggested a censored likelihood ratio test

(HLRT). Rousseeuw (1984) proposed a “least median of squares” approach and

corresponding testing procedures. Heritier and Ronchetti (1994) proposed Wald-

type, score-type, and likelihood-ratio-type tests, that are the natural counter-

parts of M-estimators. Cantoni and Ronchetti (2001) proposed a robust quasi-

likelihood function for hypothesis testing for generalized linear models. Lô and

Ronchetti (2009) extended this method with saddlepoint approximations to ob-

tain both a robust test statistic for hypothesis testing and variable selection for

generalized linear models. Basu et al. (2013) developed a class of tests using

the density power divergence (DPD) based on Basu et al. (1998). Markatou,

Basu and Lindsay (1998) proposed a weighted likelihood, and Agostinelli and

Markatou (2001) offered a test based on this weighted likelihood. He, Simpson

and Portnoy (1990) and He (1991) have studied and extended the concept of a

breakdown point for robustness evaluation. Ronchetti (1997) and Medina and

Ronchetti (2015) have provided selective reviews of some basic approaches to

robust inference and of recent developments in robust statistics.

In our notation, n denotes the sample size, and d indicates the dimension of

the observations. Bold-face lower-case letters are vectors, bold-face upper-case

letters are matrices. We take p to be the dimension of the parameter space, and

θ is a p × 1 parameter vector, with θ0 as the true parameter. Finally, f(x; θ) is

the assumed probability density function, and f ′θ(x; θ) and f ′′θ (x; θ) are its first

and second-order derivatives with respect to θ.

In the next section, we introduce the Lq-likelihood and other preliminary

concepts that lead to the introduction of the Lq-likelihood-ratio-type test (LqRT)

in Section 3. We demonstrate its robustness properties through an analysis of the

asymptotic distribution, the influence function, and the breakdown point; we also

discuss related issues such as critical values. Numerical results are presented in

Section 4. We discuss the selection of q in Section 5 and showcase the performance

of our test. We have a discussion in Section 6, summarize the assumptions in the

Appendix in Section 7, and relegate the proofs and additional simulation studies

to online supplementary materials.
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2. Preliminary Concepts

2.1. Lq-likelihood and maximum Lq-likelihood estimation

The likelihood function of the observed sample x = (x1, . . . , xn) under the

hypothesized model f(x; θ) is L(x; θ) =
∏n
i=1 f(xi; θ), with θ ∈ Θ ⊂ Rp. Ferrari

and Yang (2010) introduced the Lq-likelihood,
∑n

i=1 Lq(f(xi; θ)), where Lq(u) =

(u1−q − 1)/(1 − q) for q 6= 1, and Lq(u) = log u for q = 1. When q → 1,

Lq(u)→ log u. Throughout, we take 0 < q ≤ 1.

To estimate θ, we can use the maximum Lq-likelihood estimation (MLqE)

θ̃q = arg maxθ∈Θ

∑n
i=1 Lq(f(xi; θ)). To obtain θ̃q, we solve the Lq-likelihood

equation,
∑n

i=1[f ′θ(xi; θ)/f(xi; θ)]f(xi; θ)
1−q = 0, a weighted version of the like-

lihood equation, with the weights given by f(xi; θ)
1−q. When q < 1, data points

with high likelihoods are assigned large weights. Outliers are usually assigned

small weights because of their low likelihoods, promoting MLqE robustness. As

q → 1, the MLqE becomes the maximum likelihood estimation (MLE).

The robustness added by the Lq-likelihood results because the Lq(·) function

is bounded from below for 0 < q < 1. As Lq(u) ≥ −1/(1− q) whereas log(x)→
−∞ when x→ 0+, one limits the effect of particular data points on the quantity∑n

i=1 Lq(f(xi; θ)).

2.2. Consistency and bias correction

The MLqE, while robust, is consistent only for a few special cases (e.g.,

estimation of the location parameter of a symmetric distribution). We consider

two approaches to correct inherent bias.

Consider a sequence qn, qn → 1 as n→∞, such that θ̃qn
p→ θ0. Ferrari and

Yang (2010) and Ferrari and La Vecchia (2012) offered a detailed discussion of

this case in which the MLqE loses robustness as qn tends to 1.

Consider then a fixed q and subtract a bias correction term from the Lq-

likelihood function; this is equivalent to re-centering the estimation equation.

Here take the bias correction term: C(θ, q) =
∫
f(x; θ)2−q/(2 − q)dx. The bias-

corrected maximum Lq-likelihood estimation (BCMLqE) is

θ̂q = arg max
θ∈Θ

n∑
i=1

[Lq(f(xi; θ))− C(θ, q)].

The online supplementary materials contain a simple proof for the consistency

of the BCMLqE. When q = 1 or θ is a location parameter, C(θ, q) is a constant

independent of θ, and the BCMLqE is the MLqE. We adopt this bias-correction
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approach and extend it in the next section to support our proposed test statistic.

The BCMLqE is the minimum density power divergence estimator (MDPD)

proposed by Basu et al. (1998). Maximizing the bias-corrected Lq-likelihood

function is equivalent to minimizing the density power divergence between the

empirical distribution and the parametric distribution. While we are revising

our paper, we became aware of another test proposed by Basu et al. (2013),

a distance-based test using the density power divergence between the estimated

model and the hypothesized model. The robustness of their test statistic is linked

directly to the robustness of their parameter estimate MDPD, while our test

statistic depends on the data through the likelihood functions, using information

more thoroughly.

3. Lq-Likelihood-Ratio-Type Test

3.1. Test statistic

Suppose we have a sample (x1, . . . , xn) and an assumed parametric model

f(x; θ) with parameter θ ∈ Θ ⊂ Rp. We are interested in testing H0 : θ ∈ Θ0

against H1 : θ ∈ Θ1. We take the Lq-likelihood-ratio-type test (LqRT) as

Dq(x) = 2 sup
θ∈Θ0∪Θ1

{ n∑
i=1

[Lq(f(xi; θ))− C(θ, q)]
}

− 2 sup
θ∈Θ0

{ n∑
i=1

[Lq(f(xi; θ))− C(θ, q)]
}
, (3.1)

where q is a tuning parameter. We reject the null hypothesis when Dq is large.

This test is a member of the class of likelihood-ratio-type tests as defined in

Heritier and Ronchetti (1994), obtained by choosing ρ(z; θ) = −Lq(f(z; θ)) +

C(θ, q). Therefore, many tools provided by Heritier and Ronchetti (1994) are

available for the LqRT.

To derive the asymptotic distribution of our test statistic, we partition the

parameter as θ = (α, β), where α ∈ Rr and β ∈ Rp−r, then simplify the null and

alternative hypotheses to H0 : α = 0 and H1 : α 6= 0. The test statistic is Dq(x)

= 2 supα,β
∑n

i=1[Lqn(f(xi; (α, β)))−C((α, β), q)]−2 supβ
∑n

i=1[Lqn(f(xi; (0, β)))−
C((0, β), q)]. The necessary notation and assumption are as follows.

Let ψ(x; θ, q) = ∂Lq(f(x; θ))/∂θ, ψ′(x; θ, q) = ∂2Lq(f(x; θ))/∂θ2, c(θ, q) =

∂C(θ, q)/∂θ, and c′(θ, q) = ∂2C(θ, q)/∂θ2, where C(θ, q) is the bias correction

term. Take ψ̃(X; θ, q) = ψ(X; θ, q) − c(θ, q), ψ̃′(X; θ, q) = ψ′(X; θ, q) − c′(θ, q),
A = E[ψ̃(X; θ0, q)ψ̃(X; θ0, q)

T ],
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B = −E[ψ̃′(X; θ0, q)] =

(
Bαα Bαβ

Bβα Bββ

)
, and B∗ =

(
0 0

0 B−1
ββ

)
,

where ψ, ψ̃, and c are p × 1 vectors, ψ′, ψ̃′, c′ , A, and B are p × p symmetric

matrices. Denote the sorted eigenvalues of an r × r matrix M by λj(M) for

j = 1, . . . , r, with λ1(M) ≥ . . . ≥ λr(M).

Assumption 1. f satisfies the regularity conditions specified in the Appendix

(Section 7).

Theorem 1. Under Assumption 1 and a correctly specified model f , for a fixed q,

the asymptotic distribution of Dq(x) under the null hypothesis is
∑r

j=1 λj(A[B−1

− B∗])χ2
1,j, where the χ2

1,j are i.i.d. chi-square random variables with 1 degree of

freedom, and the λj(A[B−1 −B∗]) are r positive eigenvalues of A[B−1 −B∗].

The proof of this result can be obtained directly as a special case of Proposi-

tion 3a in Heritier and Ronchetti (1994), when ρ(z; θ) = −Lq(f(z; θ)) + C(θ, q).

When q = 1, we have A = B, and then the LqRT is the LRT, which is chi-square

with r degrees of freedom.

3.2. Robust properties of LqRT

Suppose data are generated from a gross error model h = (1−ε)f+εg, where

f is the assumed model and g is the contamination component. For simplicity,

we take r = p restricting to a simple null hypothesis.

Let Aε,q = Eh[ψ̃(X; θ∗ε,q, q)ψ̃(X; θ∗ε,q, q)
T ], and Bε,q = −Eh[ψ̃′(X; θ∗ε,q, q)],

where Aε,q, and Bε,q are p×p symmetric matrices, and θ∗ε,q=arg maxθ Eh[Lq(f(X;

θ)) − C(θ, q)]. Here, θ∗ε,q represents the parameter to which the BCMLqE con-

verges under the gross error model h. In addition, θ∗0,q = θ0 for 0 < q ≤ 1.

Assumption 2. For any ε ∈ (0, 1), h is such that Eh[f ′′θ (X; θ∗ε,1)/f(X; θ∗ε,1)] is

positive definite, where θ∗ε,1 = arg maxθ Eh[log f(X; θ)].

Assumption 3. Ef [f ′θ(X; θ0)f ′θ(X; θ0)T (f(X; θ0)−2q−f(X; θ0)−q−1)] is negative

definite for any q ∈ (0, 1).

Assumption 4. There exists a constant q∗∗ ∈ (0, 1), such that the λj(Aε,qB
−1
ε,q )

are monotonic functions in q on (q∗∗, 1).

A detailed discussion of these assumptions can be found in the online supple-

mentary materials and, in particular, what they mean for the exponential family

in general, and for normal distributions in particular.
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Theorem 2. Under Assumption 1 and a misspecified model h, for a fixed q, the

asymptotic distribution of Dq(x) under the null hypothesis is
∑r

j=1 λj(Aε,qB
−1
ε,q )

χ2
1,j, where the χ2

1,j are i.i.d. chi-square random variables with 1 degree of free-

dom, and the λj(Aε,qB
−1
ε,q ) are r positive eigenvalues of Aε,qB

−1
ε,q .

When ε = 0 and q = 1, λj(Aε,qB
−1
ε,q ) = 1, and the LqRT is chi-square with

r degrees of freedom.

Theorem 3. Under Assumptions 1 and 2 and a misspecified model h, for any

ε ∈ (0, 1) and for q = 1, λj(Aε,1B
−1
ε,1) > 1 for j = 1, . . . , r.

Theorem 3 has that, when contamination occurs in the data and q = 1,

the divergence between Aε,1 and Bε,1 increases, so λj(Aε,1B
−1
ε,1) increases away

from 1, causing inflation in the asymptotic distribution; the original chi-square

distribution with r degrees of freedom is a sum of the r inflated chi-square dis-

tributions with 1 degree of freedom, with inflations captured by λj(Aε,1B
−1
ε,1),

j = 1, . . . , r. Thus, Dq is an “inflated” chi-square under the null hypothesis and,

under the alternative hypothesis, an “inflated” non-central chi-square distribu-

tion. The overlap between the null and alternative distributions grows larger in

ε, and the power of the test degrades (see Figure 2 for illustration). To limit

or control this degradation of power, we need to control for the inflation of the

asymptotic distribution.

Theorem 4. Under Assumptions 1, 2, 3, and 4, and a misspecified model h, there

exists an ε̃ ∈ (0, 1) such that, for any ε ∈ (0, ε̃), there exists a q∗ ∈ (q∗∗, 1) and

for any q ∈ (q∗, 1),

|λj(Aε,qB
−1
ε,q )− 1| < |λj(Aε,1B

−1
ε,1)− 1| for j = 1, . . . , r.

Without Assumption 4, Theorem 4 would remain true, but only for a partic-

ular q. Theorem 4 implies that, by setting q < 1, we can shrink the eigenvalues

λj(Aε,qB
−1
ε,q ) back toward 1 and alleviate the inflation of distributions. More

importantly, the effect of q < 1 on λj(Aε,qB
−1
ε,q ) can offset the inflation effect of

ε > 0 on λj(Aε,qB
−1
ε,q ). With this approach, we can avoid the increasing overlap

between the null and alternative distributions and protect the power of the test

better.

The theory offers two insights. First, our test statistic makes the approxima-

tion Aε,q ≈ Bε,q more robust to model misspecification. By setting q < 1, many

of the statistical inferences originally based on A0,1 = B0,1 can remain valid,

even if the model is misspecified. Second, we gain a tool for identifying model
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Figure 1. Contour plot of λ(Aε,qB
−1
ε,q) as a function of ε and q where the assumed model

is a standard normal distribution.

misspecification. Setting q < 1 effectively eliminates the influence of outliers, and

setting q > 1 can magnify those effects. When q = 1, Aε,1 is essentially Fisher’s

information matrix; many model misspecification tests are based on Aε,1 = Bε,1

(e.g., White (1982)). The preceding results provide a possible approach to model

misspecification detection.

3.3. Simulation study

In this section, we report on simulations to support our findings.

First we plot λ(Aε,qB
−1
ε,q ) as a function of the contamination ratio ε and the

tuning parameter q for p = 1 in Figure 1. Here f was a normal distribution and

h(x) = (1− ε)ϕ(x; 0, 1) + εϕ(x; 0, 10). In Figure 1, we highlight the contour level

of 1 in bold; it shows that λ(Aε,qB
−1
ε,q ) increases as ε increases when q = 1, but

that we can find a value of λ(Aε,qB
−1
ε,q ) closer to 1 by decreasing q.

We simulated the asymptotic null and alternative distributions under ε =

0, 0.05, and 0.1, and q = 1, 0.97, and 0.8, for H0 : µf = 0 and H1 : µf 6= 0. For

this test, f was a three-dimensional normal distribution with known variance

and the data generating process was h = (1− ε)f + εg, where g was multivariate

normal distribution with µg = µf and Σg = 30Σf . We simulated the null and

alternative distributions of Dq using µf = (0, 0, 0)T and µf = (0.15, 0.15, 0.15)T

and present the results in Figure 2.

In this figure, when q = 1 and ε increases from 0 to 0.1, the null and al-

ternative distributions become flatter and overlap more, which results in power
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Figure 2. Comparison of asymptotic null and alternative distributions of the test statistic
for testing the mean of the three-dimensional normal distribution under difference levels
of symmetric heavy-tail contamination and different q’s.

degradation. When q = 0.97, instead of having the inflated chi-square distribu-

tion, the null and alternative distributions are less affected by the contamination,

because λj(Aε,qB
−1
ε,q ) gets pulled back toward 1 when we set q < 1. When q = 0.8,

the distributions are much less affected. It is worth noting that, in the case of

q = 0.8 and ε = 0 (lower left panel), the null and alternative distributions overlap

more than they do in the case of q = 1 and ε = 0 (upper left panel), which means

that by setting q < 1, we lose some of the test’s power at zero contamination. As

Figure 2 illustrates, we gain robustness from using the Lq-likelihood and make a

trade-off for robustness by giving up power at zero contamination.

3.4. Critical values

Since we know the asymptotic null distribution of LqRT from Theorem 2,

we can calculate the 1− α quantile of the null distribution to obtain the critical

value for a level α test. When ε = 0, we use the following algorithm to calculate

the critical value:

Step 1: Calculate A0,q and B0,q under H0.

Step 2: Calculate λj(A0,qB
−1
0,q).

Step 3: Obtain the 1−α quantile of the distribution of
∑r

j=1 λj(A0,qB
−1
0,q)χ

2
1,j

as CVα. In step 3, use either simulation or the tools provided by Rao and Scott

(1981) and Modarres and Jernigan (1992). Rao and Scott (1981) proposed using a
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linear transformation of χ2
r(1−α), the 1−α quantile of the chi-square distribution

with r degrees of freedom, to approximate the 1−α quantile of the distribution of∑r
j=1 λj(A0,qB

−1
0,q)χ

2
1,j . For example, we could use [

∑r
j=1 λj(A0,qB

−1
0,q)/r]χ

2
r(1−

α). We found this works well in practice, especially when λj is close to 1. If

we suppose λ1 = 0.9, λ2 = 0.85, λ3 = 0.8, then the critical value obtained

from the simulation of 100,000 iterations is 6.639, and the critical value obtained

from [
∑r

j=1 λj(A0,qB
−1
0,q)/r]χ

2
r(1−α) is 6.643. The simulation calculates the true

critical value accurately but, since α is usually small, it takes a relatively long

time.

We use CVα as the critical value. Even though CVα is intended for the case

of ε = 0, it also works well for the case of ε > 0, as long as q is not very close to 1.

In Section 4.3, we confirm that this approach works well for mild contamination.

Unfortunately, it does not work well with heavy contamination, because then the

null distribution varies too much.

We can obtain the genuine critical value for the case of ε > 0, but not easily.

The null distribution depends on ε and g (Theorem 2), which are not known in

practice. We present some special cases that allow us to estimate the critical

values, though in general we would use CVα.

3.4.1. Location parameter

To test a location parameter, we can use the bootstrap method to estimate

the critical value from the sample. Suppose H0 : θ = θ0 and H1 : θ 6= θ0, where

θ is the location parameter. We propose the following algorithm.

Step 1: Given a sample x = (x1, . . . , xn), estimate the mean using a robust

procedure, such as the BCMLqE θ̂q.

Step 2: Shift the entire sample by θ0−θ̂q to obtain x′ = (x1−θ̂q+θ0, . . . , xn−
θ̂q + θ0).

Step 3: Use x′ to get bootstrap samples x′b for b = 1, . . . , B.

Step 4: Calculate Dq(x
′
b) for each bootstrap sample and denote it by Db

q.

Step 5: Calculate the 1− α quantile of the Db
q as ĈVα,q.

As a result, ĈVα,q is our estimate for the critical value. The rationale behind

our method is as follows. We first transform the sample x to have a mean of θ0.

With this new sample x′, we use the bootstrap to mimic the null distribution.

Since there are usually outliers in the sample, we choose a robust estimation for

the mean, namely, the BCMLqE. We demonstrate this approach in Section 4.1.

3.4.2. Linear regression

Consider a linear regression setting, yi = xTi β+ ηi, where yi ∈ R, xi, β ∈ Rp,
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and ηi is the error term. To test H0 : β = β0 and H1 : β 6= β0, we propose a

similar algorithm to obtain ĈVα.

Step 1: Given a sample {yi,xi}i=1,...,n, obtain a robust estimate β̂, say the

BCMLqE.

Step 2: Calculate the residual η̂i = yi − xTi β̂ for i = 1, . . . , n.

Step 3: Use {η̂i}i=1,...,n to get bootstrap samples {η̂bi}i=1,...,n for b = 1, . . . , B.

Step 4: Obtain ybi = xTi β0 + η̂bi for i = 1, . . . , n, using β0.

Step 5: Calculate Dq({ybi ,xi}i=1,...,n) for each bootstrap sample and denote

it by Db
q.

Step 6: Calculate the 1− α quantile of Db
q, ĈVα.

3.5. Influence function and breakdown point

In this section, we use F and G to denote the distribution functions of f and

g, and we consider all the test statistics as statistical functionals with domain F ,

the set of all proper distributions.

The influence function (Hampel et al. (1986)) measures the effect of an in-

finitesimal contamination at the point x on the estimator, so it can be considered

as a proxy for the asymptotic bias caused by the contamination at x. Ronchetti

(1979, 1982a,b) has extended the influence function to hypothesis testing by defin-

ing a level influence function (LIF) and a power influence function (PIF), showing

how the asymptotic level and power are influenced by a small amount of contam-

ination at a particular point. As our test statistic Dq is not Fisher-consistent,

Dq(Fθ) 6= θ, we can modify the test statistic by taking U(G) = ξ−1(Dq(G)) where

ξ(θ) = Dq(Fθ), so that U(G) is Fisher-consistent (Huber and Ronchetti (2009)).

The properties of the influence function are relatively more difficult to determine

for the likelihood-ratio-type test, compared with the Wald or score test statistics

(Basu et al. (2013)). For ease of presentation, we study the influence function of

closely related test statistic, T = θ̂q, the BCMLqE of θ. We focus on T , which is

Fisher-consistent and used directly in Dq. The LIF of T is

LIF(x;T, F ) =
φ(Φ−1(1− α0))IF(x;T, F )√∫

IF(x;T, F )2dF (x)
,

where α0 is the nominal level of the test. Thus, LIF(x;T, F ) is proportional

to IF(x;T, F ), the influence function, and that is proportional to ψ̃. For most

of the parametric models that satisfy the regularity conditions, ψ̃ is bounded.

Therefore, both IF and LIF are bounded.

We illustrate a general method for deciding the boundedness of the influence
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function for our test. For the BCMLqE, the influence function is proportional to

ψ̃,

ψ̃(x; θ, q) =
f ′θ(x; θ)

f(x; θ)
f(x; θ)1−q −

∫
f ′θ(x; θ)f(x; θ)1−qdx,

where the second term is independent of x, so we focus on the first term. When

f belongs to the exponential family, we have

ψ̃(x; θ, q) = (T (x)−A′θ(θ))f(x; θ)1−q −
∫
f ′θ(x; θ)f(x; θ)1−qdx.

We know that f(x; θ) → 0 as x → ∞, and that (T (x) − A′θ(θ))f(x; θ)1−q is a

continuous function in x, Therefore, as long as (T (x)− A′θ(θ))f(x; θ)1−q → 0 as

x→∞, we have the boundedness of the influence function.

We now consider the breakdown point, intuitively, the fraction of data that

can be given arbitrary values without making the statistical functional arbitrarily

bad. Let tmax = supF∈F Dq(F ) and tmin = infF∈F Dq(F ), and define the level

breakdown function ε0 and the power breakdown function ε1 as

ε0(Fθ, Dq) = inf{ε : sup
G∈F

Dq((1− ε)Fθ + εG) = tmax},

ε1(Fθ, Dq) = inf{ε : inf
G∈F

Dq((1− ε)Fθ + εG) = tmin}.

Here ε0(Fθ, Dq) represents the smallest amount of contamination necessary to

drive the p-value of Dq to 0, and ε1(Fθ, Dq) represents the smallest amount of

contamination necessary to drive the p-value of Dq to 1. If θ ∈ Θ1 and tmin = 0,

then ε1(Fθ, Dq) is the smallest fraction of contamination that can make the LqRT

inconsistent. We define the level breakdown point (LBP) and power breakdown

point (PBP) as

LBP(Dq) = sup
θ∈Θ0

ε0(Fθ, Dq),

PBP(Dq) = sup
θ∈Θ1

ε1(Fθ, Dq).

Theorem 5. The level breakdown point and power breakdown point of LqRT are

the same as the breakdown point of the BCMLqE, θ̂q.

The exponential family satisfies all the regularity conditions of the BCMLqE.

The influence function of the BCMLqE on the parameter in this case is bounded

so it has a breakdown point of 0.5. Consequently, the LqRT has both LBP and

PBP at 0.5 for the exponential family.

4. Numerical Results

We present numerical studies illustrating the performance of our proposed
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Figure 3. Comparison of powers and sizes for the LqRT (q = 0.9, 0.6), LRT, Wilcoxon
test, sign test, and HLRT at different levels of heavy-tail contamination when testing
for the mean of the normal distribution (H0 : θ = 0, H1 : θ 6= 0). The powers were
calculated using the data generating process with mean θ = 0.34.

method through simulations and additional simulation studies can also be found

in the online supplementary materials.

4.1. Mean of normal distribution

For f a normal distribution with unknown mean θ and variance σ2, we test

H0 : θ = 0 against H1 : θ 6= 0. We simulated data with a sample size of n = 50

from h(x; θ, ε) = (1− ε)ϕ(x; θ, 1) + εϕ(x; θ, 50). Then we applied the LqRT with

q = 0.9 and 0.6, the likelihood ratio test (LRT), the Wilcoxon test, the sign test,

and Huber’s censored likelihood ratio test (HLRT) with c′ = 0.1 and c′′ = 10.

At different levels of ε, we used h(x; θ = 0, ε) and h(x; θ = 0.34, ε) to generate

the data and calculated the size and power. We used the approach introduced in

Section 3.4.1 to generate critical values. The results are in Figure 3.

In the left panel of Figure 3, the sizes of all tests are successfully controlled at

0.05; in the right panel of Figure 3, at zero contamination, the LRT achieves the

highest power; the LqRT with q = 0.9, the Wilcoxon test, and the HLRT also offer

high powers. At larger contamination, the LRT degrades much faster than any

of the other tests. Among all tests, the LqRT with q = 0.6 and the sign test offer

the slowest degradation rates. The LqRT with q = 0.6 uniformly dominates the

sign test at all levels of contamination. We only slightly overestimate the critical

values as the powers obtained from the estimated critical values are slightly below
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Figure 4. Comparison of powers and sizes for the LqRT (q = 0.9, 0.8, 0.7) and the LRT
under different levels of heavy-tail contamination when testing for the coefficients of the
linear regression model (H0 : β1 = β2, H1 : β1 6= β2).

these of the true critical values.

We performed simulation studies using different alternative models and dif-

ferent contamination and obtained similar results, see the online supplementary

materials.

4.2. Linear regression

We tested the proposed method in a linear regression setting: yi = β1xi1 +

β2xi2 + ηi, where ηi ∼ ϕ(0, σ2), and we want to test H0 : β1 = β2 against

H1 : β1 6= β2. With a sample size of n = 100, we simulated data using xi1 ∼
Uniform(0, 0.5), xi2 ∼ Uniform(0, 0.5), ηi ∼ (1 − ε)ϕ(0, 0.2) + εϕ(0, 10), and

yi = xi1 + xi2 + ηi, and calculated the size of the test. In addition, we simulated

data according to yi = 0.5xi1 +1.5xi2 +ηi to calculated the power. We compared

the LqRT (q = 0.9, 0.8, 0.7) with the LRT, using the approach introduced in

Section 3.4.2 for critical values. The results are given in Figure 4.

In Figure 4, all tests successfully control the sizes at 0.05. As for the power,

at ε = 0, the power of LqRT is slightly lower than the power of LRT. As ε

increases, the LqRT degrades more slowly than the LRT, and has higher power

than the LRT when ε > 0.

4.3. Covariance

We applied the proposed method to test the covariance. With x ∼ MN(0,Σ),
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Figure 5. Comparison of powers and sizes for the LqRT (q = 0.9, 0.8, 0.7) and the LRT
under different levels of heavy-tail contaminations when testing for the covariance matrix
of the multivariate normal distribution (H0 : Σ1,2 = 0, H1 : Σ1,2 6= 0).

where x ∈ R2, Σ = [Σi,j ] ∈ R2×2, and Σi,j = Cov(Xi, Xj), we tested H0 : Σ1,2 =

0 against H1 : Σ1,2 6= 0. With a sample size of n = 100, we simulated the data

using x ∼ (1−ε)MN(0, I)+εMN(0, 30I) and calculated the size of the test. With

x ∼ (1− ε)MN(0,Σ) + εMN(0,Σ∗) with Σ1,1 = Σ2,2 = 1, Σ∗1,1 = Σ∗2,2 = 30, and

Σ1,2 = Σ2,1 = Σ∗1,2 = Σ∗2,1 = 0.3, we simulated data to calculate the power of the

test. We used our general approach to obtain the critical values. The results are

presented in Figure 5.

From Figure 5, as ε increases, the size of LRT increases above 0.05, while

the sizes of LqRT tests increase only slightly. However, at ε = 0.3, the size

of LqRT also increases significantly. Our general approach only works for mild

contamination. Power degrades relatively slowly for the LqRT compared with

the LRT, consistent with the right panel of Figure 4.

4.4. Data

We applied our test to the Boston housing data (https://archive.ics.

uci.edu/ml/datasets/Housing). The sample size is n = 506. The variable

“full-value property-tax rate per $10,000” serves as our variable of interest. From

the histogram in Figure 6, we see outliers above 600. The mean of the data set,

including these outliers, is 408.2, whereas the mean of the data without outliers

is 311.9, offering a more reasonable estimate of the true center of data. We

https://archive.ics.uci.edu/ml/datasets/Housing
https://archive.ics.uci.edu/ml/datasets/Housing
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Figure 7. p-values as a function of µ0 for
the LqRT and the LRT.

performed hypothesis testing with H0 : µ = µ0 and H1 : µ 6= µ0. Varying µ0

from 200 to 700, we plot the corresponding p-values for the LqRT (q = 0.5) and

the LRT in Figure 7. For the LqRT, the p-value goes above 0.05 at around 300,

whereas the p-value of LRT goes above 0.05 at around 400, and the LRT rejects

the null hypothesis when µ0 is at 311.9. One could first remove outliers and

proceed with standard (non-robust) inference methods, but our preference, for

the reasons noted in Huber and Ronchetti (2009), is for robust methods.

5. Selection of q

We have assumed the tuning parameter q to be known, but we never know

the optimal q in practice. We propose a method for adaptively selecting it.

The optimal q is qopt = arg minq trace(Vq(θ0)), where Vq(θ0) is the asymptotic

variance of θ̂q. In Figure 8, we plot the relationship between Vq(θ0) and q at

different levels of contamination using the setup of Section 4.1. The optimal q

is generally between 0.6 and 0.9 and, the more serious the contamination, the

lower the optimal q. In practice, using the empirical variance V̂q(θ̂q), we propose

data-adaptive estimation for the tuning parameter

q̂ = arg min
q

trace

([
1

n

n∑
i=1

ψ̃′(xi; θ̂q, q)

]−1[ 1

n

n∑
i=1

ψ̃(xi; θ̂q, q)ψ̃(xi; θ̂q, q)
T

]
[

1

n

n∑
i=1

ψ̃′(xi; θ̂q, q)

]−1)
.
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Figure 8. Vq(θ0) as a function of q at different levels of ε.

Accordingly, we conducted some simulation studies of the LqRT using the

estimated q, first under the setup of Section 4.1. By setting θ to 0 and 0.34, we

compared the sizes and powers of our test, the LRT, the Wilcoxon test, the sign

test, and the HLRT. The results are presented in Figure 9.

In Figure 9, at ε = 0, the LRT offers the highest power, and our LqRT

provides nearly the same power. As ε increases away 0, the LRT’s power quickly

drops below that of all other tests. Our test is robust and degrades slower than the

Wilcoxon test. The power of our test dominates both the Wilcoxon and sign tests

uniformly at all levels of contamination. Our test can beat the nonparametric

tests since we adaptively control the amount of information used, by selecting q,

whereas the Wilcoxon and sign tests always use the rank information.

Figure 9 shows the average power over 2,000 Monte Carlo iterations. Since

each iteration has a different q, we plot these estimated q’s in the histograms in

Figure 10. At large contamination, the estimated q tends to be smaller. In our

experiment, we limited the smallest q to 0.5 (which corresponds to the minimum

Hellinger distance estimation (Beran (1977))) because we do not understand the

case of q < 0.5 well. Comparing Figures 9 and 10 with Figure 3, the LqRT

with estimated q can combine the advantages of the LqRTs with fixed q’s. When

the contamination ratio is low, the estimated q’s are large, so the LqRT with

estimated q has roughly the same performance as the LqRT with q = 0.9. When

the contamination ratio is 0.3, the mean estimated q is near 0.6, the LqRT with

estimated q achieves a performance comparable to the LqRT with q = 0.6.
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Figure 9. Comparison of the powers and sizes for the LqRT with estimated q and
estimated critical value, LRT, Wilcoxon test, sign test, and HLRT under different levels
of heavy-tail contamination when testing for the mean of the normal distribution (H0 :
θ = 0, H1 : θ 6= 0). The powers were calculated using the data generating process with
mean θ = 0.34.
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Figure 10. Histograms of the estimated q of the LqRT at different levels of heavy-tail
contamination when testing for the mean of the normal distribution. These estimated
q’s were obtained when calculating the powers (i.e., the right panel of Figure 9). The
mean estimated q is indicated by a vertical dashed line.

We repeated the simulation from Section 4.2 for linear regression using LqRT

with estimated q and present the results in Figure 11. While the size is success-

fully controlled, the power of LqRT with estimated q degrades the most slowly,

it is relatively high compared with that of other LqRT tests with fixed q.

Through these simulation studies, we demonstrated the improved perfor-
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Figure 11. Comparison of powers and sizes for the LqRT with estimated q and estimated
critical value and the LRT under different levels of heavy-tail contamination when testing
for the coefficients of the linear regression model (H0 : β1 = β2, H1 : β1 6= β2).

mance using estimated q. The method for estimating q works well when the

model is relatively simple, but when the model is more complex, with more

parameters to estimate, simply minimizing the trace of V̂q(θ̂q) will lead to an

unsatisfactory estimated q.

Additional simulation studies on the estimated q can be found in the online

supplementary materials.

6. Conclusion

In a sense, our proposed test offers a bridge between the LRT and such

nonparametric tests such as the Wilcoxon and sign tests. By changing the tuning

parameter q, we control the information used in the hypothesis testing: the LRT

assigns all data points equal weights, the Wilcoxon test takes only the rank

information, while our test assigns each data point a weight as a function of its

likelihood and q.

Many directions remain for further research. We need better estimation pro-

cedures for the critical value, and q. Our estimate of the critical value performs

decently, but there is clearly a gap in the powers obtained from the true ver-

sus the estimated critical values (see Figure 3). Filling this gap is a challenging

task. As well, the divergence of A and B, as described in Section 3.2, indicates

a potential approach to model misspecification detection.
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Appendix and Supplementary Materials

We have made use of the following assumptions.

Assumption 1. For any q ∈ (0, 1], f satisfies the following.

1. θ0 is an interior point in Θ0.

2. supθ∈Θ0
‖ 1
n

∑n
i=1 ψ̃(Xi; θ, q)− Eψ̃(X; θ, q)‖ p→ 0 as n → ∞, where ‖ · ‖ repre-

sents the `2-norm.

3. max1≤k≤p Eθ0 |ψ̃k(Xi; θ0, q)|3, k = 1, . . . , p is upper bounded by a constant,

where ψ̃k is the k-th element of ψ̃.

4. The smallest eigenvalue of A is bounded away from zero.

5. If bjk is the j-th row, k-th column element in B, then b2jk for j, k = 1, . . . , p,

are upper bounded by a constant.

6. The second order partial derivatives of ψ̃(x; θ, q) are dominated by an integrable

functions with respect to the true distribution of X for all θ in a neighborhood

of θ0.

Assumption 2. For any ε ∈ (0, 1), the gross error model h is such that Eh[f ′′θ (X;

θ∗ε,1)/f(X; θ∗ε,1)] is positive definite, where θ∗ε,1 = arg maxθ Eh[log f(X; θ)].

Assumption 3. Ef [f ′θ(X; θ0)f ′θ(X; θ0)T (f(X; θ0)−2q−f(X; θ0)−q−1)] is negative

definite for any q ∈ (0, 1).

Assumption 4. There exists a constant q∗∗ ∈ (0, 1), such that the λj(Aε,qB
−1
ε,q )

are monotonic in q for any q ∈ (q∗∗, 1).

See the online supplementary materials for detailed discussion on these as-

sumptions, additional simulation studies, and proofs.
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