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Abstract: Two-dimensional (2-D) polynomial phase signals occur in different areas

of image processing. When the degree of the polynomial is two they are called

chirp signals. In this paper, we consider the least squares estimators of the un-

known parameters of the 2-D polynomial phase signal model in the presence of

stationary noise, and derive their properties. The proposed least squares estima-

tors are strongly consistent and we obtained their asymptotic distributions. It is

observed that asymptotically the least squares estimators are normally distributed.

We perform some simulation experiments to observe their behavior.

Key words and phrases: Asymptotic distribution, least squares estimators, linear

processes, polynomial phase signals, strong consistency.

1. Introduction

One-dimensional polynomial phase signal models have received considerable

attention in the statistical signal processing literature. The one-dimensional poly-

nomial phase signal model has been used quite successfully in various areas of

science and engineering, specifically in sonar, radar communications etc., see for

example Barbarossa and Petrone (1997), Barbarossa, Scaglione and Giannakis

(1998), and Wu, So and Liu (2008). Wu, So and Liu (2008) consider a specific

case when the degree of polynomial is three, due to its applications in seismol-

ogy. When the degree of polynomial is two, the polynomial phase signal model is

known as chirp model, and it has also received considerable attention because of

its wide scale applicability in sonar array processing. See for example Djuric and

Kay (1990), Gini, Montanari and Verrazzani (2000), Kundu and Nandi (2008),

and the references cited therein.

The two-dimensional (2-D) polynomial phase signal model also has received

significant amount of attention as it has been used in modeling and analyzing

magnetic resonance imaging (MRI), optical imaging, and different texture imag-

ing. See for example Francos and Friedlander (1998, 1999), Hedley and Rosenfeld

(1992), Peleg and Porat (1991), Cao, Wang and Wang (2006), Zhang and Liu
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(2006), and Zhang, Wang and Cao (2008). Friedlander and Francos (1996) used

the 2-D polynomial phase signal model to analyze finger print type data, and

Djurovic et al. (2010) considered a specific 2-D cubic phase signal model due

to its applications in modeling Synthetic Aperture Radar (SAR) data and, in

particular, Interferometric SAR data.

Surprisingly, although extensive work has been done on estimating the pa-

rameters of different 2-D polynomial phase signal models least squares estimators

(LSE’s) of the 2-D polynomial phase signal have not been considered, nor their

properties discussed. Many estimators have been proposed and their asymp-

totic variances compared with the Cramer-Rao lower bound. But unless it is

established that the asymptotic variances of the maximum likelihood estimators

attend the corresponding Cramer-Rao lower bound, this comparison may not be

meaningful. When the error random variables X(m,n)’s are i.i.d. Gaussian, then

the LSE’s are the maximum likelihood estimators (MLE’s).

We consider the most general 2-D polynomial (of degree r) phase signal

model which has the form

y(m,n) = A0 cos

 r∑
p=1

p∑
j=0

α0(j, p− j)mjnp−j


+B0 sin

 r∑
p=1

p∑
j=0

α0(j, p− j)mjnp−j


+X(m,n); m = 1, · · · ,M ; n = 1, · · · , N. (1.1)

Here X(m,n) is stationary error, A0 and B0 are non zero amplitudes, and for

j = 0, · · · , p, p = 1, · · · , r, α0(j, p−j)’s are distinct frequency rates of order (j, p−
j), respectively. They lie strictly between 0 and π, α0(0, 1), α0(1, 0) are called

frequencies. The explicit assumptions on the errors X(m,n) will be provided.

We provide the properties of the least squares estimators of the unknown pa-

rameters of the model (1.1). Deriving the exact distribution of the least squares

estimators may well not be possible, and we rely on asymptotic results. The

properties of 1-D chirp signal model have been discussed by Kundu and Nandi

(2008). They established the strong consistency and asymptotic normality prop-

erties of the least squares estimators, but their results cannot be used directly

here.

The present model does not satisfy the sufficient conditions of Jennrich

(1969) and Wu (1981) for the least squares estimators to be consistent, and their

results cannot be used directly here. We establish the strong consistency and
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asymptotic normality properties of the least squares estimators of the unknown

parameters of the model (1.1). The least squares estimators of α0(j, p−j) for j =

1, · · · , p, p = 1, · · · , r have the convergence rates Op(M
−j−1/2N−(p−j)−1/2), and

the least squares estimators of A0 and B0 have the convergence rate (MN)−1/2.

Thus the convergence rates of the estimators of α0(j, p− j) for j = 1, · · · , p, p =

1, · · · , r are much faster than (MN)−1/2, the usual convergence rate of an es-

timator for a general non-linear model. Moreover, when X(m,n)’s are i.i.d.

random variables, then the asymptotic variances of the MLEs, the LSEs, attend

the Cramer-Rao lower bound.

We have performed some simulation experiments to study the effectiveness

of the least squares estimators for different sample sizes, models, error structures,

and error random variables. We have considered independent and correlated error

random variables that might be Gaussian or Laplace, and we have considered the

polynomial phase with degrees two and three. In all the cases considered, the

performances of the least squares estimators are quite satisfactory.

The rest of the paper is organized as follows. In Section 2, we provide the

necessary assumptions, preliminary results, and the methodology for the least

squares estimators. Strong consistency and asymptotic results are established in

Section 3. Discussions on extensive simulation results and the analysis of a data

set are presented in Section 4. We conclude the paper in Section 5. The proofs

and the numerical results based on extensive simulations are provided in the

Supplementary Section. See for example Djuric and Kay (1990); Gini, Montanari

and Verrazzani (2000); Kundu and Nandi (2008, 2012); Lahiri, Kundu and Mitra

(2013, 2015); Nandi and Kundu (2004), and the references cited therein.

2. Model Assumptions, Preliminary Results and Methodology

2.1. Model assumptions

Assumption 1: The error X(m,n) is

X(m,n) =

∞∑
j=−∞

∞∑
k=−∞

a(j, k)ε(m− j, n− k) (2.1)

with
∞∑

j=−∞

∞∑
k=−∞

|a(j, k)| <∞. (2.2)

Here ε(m,n) is a double array sequences of independent and identically dis-

tributed (i.i.d.) random variables with zero mean, finite variance σ2, and with
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finite 2r-th moment.

Assumption 2: The true parameter vector is θ0 = (A0, B0, α0(j, p−j), j =

0, · · · , p, p = 1, · · · , r) and the parameter space is Θ = [−K,K] × [−K,K] ×
[0, π]

⊗
r(r+3)/2, where K > 0 is an arbitrary constant and [0, π]

⊗
r(r+3)/2 denotes

the r(r + 3)/2 fold of [0, π], θ0 is an interior point of Θ.

2.2. Preliminary results

Proposition 1. Suppose (α0(j, p−j), j = 0, · · · , p, p = 1, · · · , r) ∈ (0, π)
⊗
r(r+3)/2.

Then, except for a countable number of points α0(j, p− j), for s, t = 0, 1, 2, · · · ,

lim
min{M,N}→∞

1

MN

N∑
n=1

M∑
m=1

cos

 r∑
p=1

p∑
j=0

α0(j, p− j)mjnp−j

 = 0, (2.3)

lim
min{M,N}→∞

1

MN

N∑
n=1

M∑
m=1

sin

 r∑
p=1

p∑
j=0

α0(j, p− j)mjnp−j

 = 0, (2.4)

lim
min{M,N}→∞

1

M (s+1)N (t+1)

N∑
n=1

M∑
m=1

msnt cos2

 r∑
p=1

p∑
j=0

α0(j, p− j)mjnp−j


=

1

2(s+ 1)(t+ 1)
, (2.5)

lim
min{M,N}→∞

1

M (s+1)N (t+1)

N∑
n=1

M∑
m=1

msnt sin2

 r∑
p=1

p∑
j=0

α0(j, p− j)mjnp−j


=

1

2(s+ 1)(t+ 1)
. (2.6)

Proof: See the Supplementary Section.

Lemma 1. If X(m,n) satisfies Assumptions 1 and 2, then as min{M,N} → ∞,

sup
α(j,p−j), j=0,··· ,p, p=1,··· ,r

∣∣∣∣∣∣ 1

MN

N∑
n=1

M∑
m=1

X(m,n)e
i

(
r∑

p=1

p∑
j=0

α(j,p−j)mjnp−j

)∣∣∣∣∣∣→ 0 a.s..

Proof: See the Supplementary Section.

Lemma 2. If X(m,n) satisfies Assumptions 1 and 2, then as min{M,N} → ∞,

for s, t = 0, 1, · · · ,

sup
α(j,p−j),j=0,··· ,p,p=1,··· ,r

∣∣∣∣∣∣ 1

M s+1N t+1

N∑
n=1

M∑
m=1

msntX(m,n)e
i

(
r∑

p=1

p∑
j=0

α(j,p−j)mjnp−j

)∣∣∣∣∣∣
−→ 0 a.s..
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Proof: See the Supplementary Section.

2.3. Methodology

We use the following notations;

φ =

[
A

B

]
,

W (α) =



cos

 r∑
p=1

p∑
j=0

α(j, p− j)

 sin

 r∑
p=1

p∑
j=0

α(j, p− j)


cos

 r∑
p=1

p∑
j=0

α(j, p− j)2j
 sin

 r∑
p=1

p∑
j=0

α(j, p− j)2j


...
...

cos

 r∑
p=1

p∑
j=0

α(j, p− j)M j

 sin

 r∑
p=1

p∑
j=0

α(j, p− j)M j


...

...

cos

 r∑
p=1

p∑
j=0

α(j, p− j)Np−j

 sin

 r∑
p=1

p∑
j=0

α(j, p− j)Np−j


cos

 r∑
p=1

p∑
j=0

α(j, p− j)2jNp−j

 sin

 r∑
p=1

p∑
j=0

α(j, p− j)2jNp−j


...

...

cos

 r∑
p=1

p∑
j=0

α(j, p− j)M jNp−j

 sin

 r∑
p=1

p∑
j=0

α(j, p− j)M jNp−j





,

and Y is the MN × 1 data vector

Y = (y(1, 1), · · · , y(M, 1), · · · , y(1, N), · · · , y(M,N))T . (2.7)

The least squares estimators of θ = (A,B, α(j, p−j), j = 0, · · · , p, p = 1, · · · , r),
can be obtained by minimizing

Q(θ) = (Y −W (α)φ)T (Y −W (α)φ) (2.8)

with respect to θ. Using the separable regression technique of Richards (1961),

it can be seen that, for fixed (α(j, p − j), j = 0, · · · , p, p = 1, · · · , r), the
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minimization of Q(θ) with respect to A and B can be obtained as

φ̂(α) =

[
Â(α)

B̂(α)

]
= (W (α)TW (α))−1W (α)TY.

Therefore, the minimization of Q(θ) can be obtained by minimizing

R(α) = Y T (I − P (α))Y

with respect to (α(j, p− j), j = 0, · · · , p, p = 1, · · · , r), where

P (α) = W (α)(W (α)TW (α))−1W (α)T

is the projection matrix on the column space of W (α).

If (α̂(j, p− j), j = 0, · · · , p, p = 1, · · · , r) minimizes R(α), the least squares

estimates of A and B can be obtained as Â = Â(α̂) and B̂ = B̂(α̂). We write

θ̂ = (Â, B̂, α̂(j, p − j), j = 0, · · · , p, p = 1, · · · , r). By using the separable

regression technique, the least squares estimators of the unknown parameters of

the model (1.1) can be obtained by solving a r(r−3)/2 dimensional optimization

problem, rather than a 2 + r(r − 3)/2 dimensional optimization problem.

3. Asymptotic Properties of the Least Squares Estimators

3.1. Consistency of the least squares estimators

Theorem 1. If the Assumptions 1 and 2 are satisfied, then θ̂, the least squares

estimators of θ0, is a strongly consistent estimator of θ0.

Proof: See the Supplementary Section.

The following result might be useful for error analysis of the model, and it

may have some independent interest.

Lemma 3. If the Assumptions 1 and 2 are satisfied, then for j = 0, · · · , p, p =

1, · · · , r,
M jNp−j(α̂(j, p− j)− α0(j, p− j))→ 0 a.s..

Proof: See the Supplementary Section.

Using Lemma 3, we immediately obtain

Â = A0 + o(1) a.s., B̂ = B0 + o(1) a.s.,

α̂(j, p− j) = α0(j, p− j) + o(M jNp−j) a.s..

So we get

ŷ(m,n) = Â cos(

r∑
p=1

p∑
j=0

α̂(j, p− j)mjnp−j) + B̂ sin(

r∑
p=1

p∑
j=0

α̂(j, p− j)mjnp−j)
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= A0 cos(

r∑
p=1

p∑
j=0

α0(j, p− j)mjnp−j) +B0 sin(

r∑
p=1

p∑
j=0

α0(j, p− j)mjnp−j)

+o(1) a.s.

which gives

y(m,n)− ŷ(m,n) = X(m,n) + o(1) a.s.. (3.1)

Therefore, (3.1) can be used for checking the error assumptions.

3.2. Asymptotic normality of the estimators

Theorem 2. If the Assumptions 1 and 2 are satisfied, then (θ̂ − θ0)D−1 →
Nd(0, 2cσ

2Σ−1) where the matrix D is the (2 + r(r + 3)/2) × (2 + r(r + 3)/2)

diagonal matrix

D = diag
(
M−1/2N−1/2,M−1/2N−1/2,M−j−1/2N−(p−j)−1/2,

j = 0, · · · , p, p = 1, · · · , r
)
,

Σ =

 1 0 V1
0 1 V2
V T
1 V T

2 M

 . (3.2)

Here V1 = (B0/(j + 1)(p− j + 1), j = 0, · · · , p, p = 1, · · · , r), V2 = (−A0/(j +

1)(p − j + 1), j = 0, · · · , p, p = 1, · · · , r), are vectors of order 1 × r(r + 3)/2,

M = ((A02 +B02)/(j + k + 1)(p+ q − j − k + 1), j = 0, · · · , p, p = 1, · · · , r, k =

0, · · · , q, q = 1, · · · , r), is a matrix of order r(r + 3)/2 × r(r + 3)/2, and c =∑∞
j=−∞

∑∞
k=−∞ a(j, k)2. Further, Nd(0, 2cσ

2Σ−1) denotes a d-variate normal

distribution with the mean vector 0, and dispersion matrix 2cσ2Σ−1, where d =

2 + r(r + 3)/2.

Proof: See the Supplementary Section.

Comments: When the X(m,n)’s are i.i.d. Gaussian, then the maximum like-

lihood estimator of θ is the same as the least squares estimator. Hence, due to

Theorem 2, it follows that (θ̂ − θ0)D−1 → Nd(0, 2σ
2Σ−1). Now if l(θ) denotes

the log-likelihood function, then from the expressions of the elements of Q′′(θ),

see the Proof of Theorem 2, it follows that

E

[
D
∂2l(θ)

∂θ∂θ′
D

]
θ=θ0

→ 1

2σ2
Σ.

Hence, it follows that the asymptotic variance of θ̂ with proper normalization

attains the Cramer-Rao lower bound.
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4. Simulations and Data Analysis

4.1. Simulations

We performed some simulations for different models, sample sizes and error

variances, mainly to see how the least squares estimators perform in practice

based on the biases and mean squared errors (MSEs). We considered two models

Model 1:

y(m,n) = A0 cos(α0m+ β0m2 + γ0n+ δ0n2) +B0 sin(α0m+β0m2+γ0n+δ0n2)

+X(m,n); m = 1, · · · ,M ; n = 1, · · · , N. (4.1)

Here the model parameters were

A0 = 5.0, B0 = 5.0, α0 = 1.0, β0 = 0.05, γ0 = 1.5, δ0 = 0.5. (4.2)

We took the sample sizes: 50×50, 75×75, 100×100 and the two error structures

Error-I: X(m,n) = ε(m,n); (4.3)

Error-II: X(m,n) = ε(m,n) + 0.5ε(m− 1, n) + 0.33ε(m,n− 1). (4.4)

We took the ε(m,n)’s as i.i.d. Gaussian with mean 0, variance σ2 and ε(m,n)’s

as i.i.d. Laplace with mean 0, and variance σ2. We considered σ2 as 0.05 and

0.5.

Model 2:

y(m,n) = A0 cos(α0m+ β0m2 + η0m3 + γ0n+ δ0n2 + ξ0n3)

+B0 sin(α0m+ β0m2 + +η0m3 + γ0n+ δ0n2 + ξ0n3) +X(m,n);

m = 1, · · · ,M ; n = 1, · · · , N. (4.5)

Here the model parameters were

A0 = 2.0, B0 = 2.0, α0 = 1.0, β0 = 0.05, η0 = 0.01, γ0 = 1.0, δ0 = 0.05, ξ0 = 0.01.

(4.6)

Again sample sizes were 50× 50, 75× 75, 100× 100, and the error structure only

as defined in (4.4). The ε(m,n)’s were i.i.d. Gaussian with mean 0 and variance

σ2 = 0.5

We used the random number generator RAN2 of Press et al. (1996) for gen-

erating the uniform random numbers. In each case the least squares estimators

of the unknown parameters were obtained by using the Downhill Simplex Al-

gorithm, see for example Press et al. (1996), whereas, the initial guesses were

obtained by using a grid search method with grid size of 0.01 around the true

parameter values.
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Figure 1. Noisy signal.

In each case we computed the least squares estimators, and obtained the

average estimates, mean squared errors and variances over 1000 replications. We

report the true parameter values (PARA), the average estimates (MEAN), the

associated mean squared errors (MSE), and variances (VAR). For comparison

purposes we report the asymptotic variances (ASYV) obtained using Theorem

2. For Model 1, in case of Gaussian errors, the results are in Tables 1 - 4, and

in case of Laplace errors the results are in Tables 5 - 8. For Model 2, the results

are reported in Table 9. The tables are provided in the Supplementary Section.

Some of the points are clear from these tables. As error variances decrease,

the performance of the estimators in terms of MSEs improved. As the sample size

increases, the variances and the mean squared errors decrease. The simulation

results show that the least squares estimates are quite close to the true parameter

values. For both the error structures, the mean squared errors of the least squares

estimators match quite well with the corresponding asymptotic variances.

The MSEs for the LSEs of the model parameters are slightly lower when

the errors are Gaussian than when the errors are Laplace, but the LSEs behave

quite well even when the errors are Laplace. Even for Model 2, the LSEs of

the unknown parameters behave quite satisfactorily compared to the asymptotic

variances of the corresponding estimators of the unknown parameters. It seems

that the asymptotic results work quite well even for moderate sample sizes for

the cases considered here.

4.2. Data analysis

For illustrative purposes, mainly to show how the proposed method can be

implemented in practice, we have analyzed two simulated data sets obtained from
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Figure 2. True signal.

Figure 3. Estimated signal.

the model (1.1). We used the parameter values A0 = 5.0, B0 = 1.0, α0 = 1.55,

β0 = 0.05, γ0 = 1.25, δ0=0.075 . The X(m,n)’s were

X(m,n) = ε(m,n) + 0.5ε(m− 1, n) + 0.33ε(m,n− 1) + 0.2ε(m− 1, n− 1),

with ε(m,n)’s assumed to be i.i.d. Gaussian with mean 0 and variance σ2 = 2.5.

We plot one generated data set {y(m,n);m = 1, . . . , 100, n = 1, . . . , 100, in Figure

1. Figure 1 represents the 2-D image plot of a simulated noise corrupted y(m,n),

whose gray level at (m,n) is proportional to the value of y(m,n). The problem

is to extract the true texture, see Figure 2, from the contaminated one.

We used the least squares technique and estimated the unknown parameters

as Â= 5.003434, B̂= 0.965267, α̂ = 1.549228, β̂ = 0.050006, γ̂ =1.250852, and

δ̂ = 0.074991. The estimated y(m,n) are plotted in Figure 3. The original and
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Figure 4. True image.

Figure 5. Estimated image.

the estimated plots match quite well.

We generated another data set with similar values as in Friedlander and

Francos (1996) suitable for our model, with A0= 1.0, B0 = 1.0, α0 = 0.45, β0

= 0.0015, γ0 = 0.82, δ0 = 0.0022, and σ2 = 0.005. The 2-D image plot of

the generated sample is provided in Figure 4. We used our method as before

to obtain the estimated image, and it is plotted in Figure 5. The two images,

true and estimated, also look very similar. The estimates of the corresponding

parameters were Â = 0.305698, B̂ = −0.054401, α̂ = 0.586525, β̂ = 0.000995, γ̂

= 0.969553, and δ̂ = 0.001654.

5. Conclusion

There are several open issues and generalizations which are of interest for
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future work. For example, the least squares estimators can be obtained using a

r(r + 3)/2 dimensional optimization problem. It would be interesting to develop

a numerically efficient algorithm to find its solution. Moreover, although the

least squares estimators are quite efficient, it is well known that they may not

be very robust. Developing robust parameter estimation in this case would be of

interest. More work is needed.

Supplementary Materials

The numerical results are presented in Tables 1-9, and all proofs are given.
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