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In this supplementary material, we further present some properties of our proposed estimator,

and provide the proofs for related lemmas and theorems. Lastly, we show the derivation of

generalized approximate cross-validation for choosing the tuning parameter.

S1 Properties of ABS estimator

Since our basis selection algorithm involves the response variable, the stan-

dard argument for the asymptotic analysis of smoothing splines does not

apply. We first present some theoretical properties which shed light on how

the adaptive basis sampling algorithm works and facilitate our asymptotic

analysis.

Consider the estimation of E{ψ(X, Y )} based on n i.i.d. observations
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{(xi, yi)}ni=1, where ψ(x, y) ∈ L2(X ,Y) is a generic multivariate function.

Two notations are introduced as the standard sample mean estimator and

a mean estimator based on a subset of samples which is adaptively selected

by our proposed method,

En(ψ) =
1

n

n∑
i=1

ψ(xi, yi), (S1.1)

E∗n(ψ) =
K∑
k=1

|Sk|
n

{
1

nk

nk∑
j=1

ψ(x
∗(k)
j , y

∗(k)
j )

}
. (S1.2)

The following lemma shows the new estimator based on a subsample

provides a good approximation to that based on all observations.

Lemma 1. Suppose nk = n∗/K, for k = 1, . . . , K, then under the adaptive

basis sampling scheme, the conditional variance of E∗n(ψ) is bounded

var{E∗n(ψ)|{(xi, yi)}ni=1} 6
K

n∗
1

n

n∑
i=1

ψ2(xi, yi) (S1.3)

and

E{E∗n(ψ)− En(ψ)}2 6 K

n∗
E(ψ2). (S1.4)

This lemma implies E∗n(ψ) − En(ψ) converges to zero in probability if

n∗ → ∞ for ψ with E{ψ2(X, Y )} < ∞. In other words, the subsample

estimator, E∗n(ψ), is a good surrogate of the usual estimator En(ψ).

To understand the behavior of η̂A, the smoothing spline estimator com-

puted using the adaptive basis selection algorithm, we refer to two impor-

tant properties of the effective model space HE.
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Lemma 2. For any function outside the effective model space, its evalua-

tions at selected samples {x∗j}n
∗
j=1 are all zeros, i.e. for h ∈ H 	HE,

h(x∗j) = 0, j = 1, . . . , n∗.

Lemma 3. Under Condition 1, 2, and 4, as λ → 0 and n∗λ2/r → ∞, if

unction h is not in the effective model space, i.e., h ∈ H 	HE, we have

V (h) = op{λJ(h)}.

S2 Proofs

Proof of Lemma 1 For each k, 1 ≤ k ≤ K, {x∗(k)j }
nk
j=1 is a random draw

from the k-th slice Sk. Thus, for j = 1, . . . , nk, the conditional mean of

ψ(x
∗(k)
j , y

∗(k)
j ) given the data is

E{ψ(x
∗(k)
j , y

∗(k)
j )|{(xi, yi)}ni=1} =

1

|Sk|

n∑
i=1

ψ(xi, yi)1(yi ∈ Sk). (S2.1)

It follows that the conditional mean of E∗n(ψ) given the data is

E{E∗n(ψ)|{(xi, yi)}ni=1}

= E

[ K∑
k=1

|Sk|
n

{
1

nk

nk∑
j=1

ψ(x
∗(k)
j , y

∗(k)
j )

}∣∣∣∣{(xi, yi)}ni=1

]

=
1

n

K∑
k=1

n∑
i=1

ψ(xi, yi)1(yi ∈ Sk) =
1

n

n∑
i=1

ψ(xi, yi) = En(ψ).

Hence E∗n(ψ) and En(ψ) have the same mean value, E(ψ).
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In the k-th slice, for j = 1, . . . , nk, the conditional variance of ψ(x
∗(k)
j , y

∗(k)
j )

given the data is bounded by its second order conditional moment whose

explicit form can be obtained by replacing ψ by ψ2 in (S2.1), i.e.

var{ψ(x
∗(k)
j , y

∗(k)
j )|{(xi, yi)}ni=1} 6 E{ψ2(x

∗(k)
j , y

∗(k)
j )|{(xi, yi)}ni=1} =

1

|Sk|

n∑
i=1

ψ2(xi, yi)1(yi ∈ Sk).

(S2.2)

Noticing that samples from the same slice and from different slices are

mutually independent, we obtain that

var{E∗n(ψ)|{(xi, yi)}ni=1}

= var

[ K∑
k=1

|Sk|
n

{
1

nk

nk∑
j=1

ψ(x
∗(k)
j , y

∗(k)
j )

}∣∣∣∣{(xi, yi)}ni=1

]

=
K∑
k=1

|Sk|2

n2

1

nk
var{ψ(x

∗(k)
j , y

∗(k)
j )|{(xi, yi)}ni=1}.

The right hand side of the above has an upper bound due to (S2.2)

var{E∗n(ψ)|{(xi, yi)}ni=1} 6
K∑
k=1

|Sk|
n2

1

nk

n∑
i=1

ψ2(xi, yi)1(yi ∈ Sk),

which in turn is upper bounded by

K∑
k=1

1

n

1

n∗/K

n∑
i=1

ψ2(xi, yi)1(yi ∈ Sk) =
K

n∗
1

n

n∑
i=1

ψ2(xi, yi)

with the fact that nk = n∗/K and |Sk|/n 6 1. We thus have proved (S1.3).

The condition mean of E∗n(ψ) given the data has been proved to be

En(ψ). Recall the definition of conditional variance, we have

var{E∗n(ψ)|{(xi, yi)}ni=1} = E[{E∗n(ψ)− En(ψ)}2|{(xi, yi)}ni=1].
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We obtain (S1.4) immediately by taking expectation on both sides of the

above, i.e.

E{E∗n(ψ)− En(ψ)}2 = E[var{E∗n(ψ)|{(xi, yi)}ni=1}] 6
K

n∗
E(ψ2).

Before proving the main result, we first present two useful lemmas in

Gu (2013).

Lemma 4. Under Condition 2, as λ→ 0, one has

∑
ν

1

1 + λρν
= O(λ−1/r).

This is part of Lemma 9.1 in Gu (2013).

Lemma 5. Under Condition 1, 2 and 4, as λ→ 0 and nλ2/r →∞,

1

n

n∑
i=1

g(xi)h(xi)w(η0(xi); yi) = V (g, h) + op({(V + λJ)(g)(V + λJ)(h)}1/2)

for all g and h in H.

This is Lemma 9.16 in Gu (2013).

Proof of Lemma 2 See the supplementary material of Ma et al. (2015).
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Proof of Lemma 3 By Lemma 2, given the selected samples {x∗j}n
∗
j=1, for

any h ∈ H 	HE, we have

h(x∗j) = 0 j = 1, . . . , n∗.

Note that {x∗j}n
∗
j=1 is the collection of {x∗(k)j }

nk
j=1 from k = 1, . . . , K slices,

hence

E∗n{h2(X)w(η0(X);Y )} =
K∑
k=1

|Sk|
n

{
1

nk

nk∑
j=1

h2(x
∗(k)
j )w(η0(x

∗(k)
j ); y

∗(k)
j )

}
= 0.

It follows that

V (h) =

∫
X
h2(x)vη0(x)fX(x) dx = E{h(X)2vη0(X)}−E∗n{h2(X)w(η0(X);Y ))}.

(S2.3)

By Condition 1, there exist a collection of functions φν ∈ H and a sequence

of nonnegative ρν such that V and J are simultaneously diagonalized, i.e.,

V (φν , φµ) = δνµ and J(φν , φµ) = ρν δνµ. Use φν ’s as basis functions and

expand h as h =
∑

ν hνφν , where hν = V (h, φν). Then, (S2.3) can be

written as

V (h) = E

{(∑
ν

hνφν(X)

)2

vη0(X)

}
−E∗n

{(∑
ν

hνφν(X)

)2

w(η0(X);Y )

}
.

Due to the fact that E(·) and E∗n(·) are both linear operators, we have

V (h) =
∑
ν

∑
µ

hνhµ
[
E{φν(X)φµ(X)vη0(X)}−E∗n{φν(X)φµ(X)w(η0(X);Y )}

]
.
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Applying the Cauchy-Schwarz inequality to obtain

V (h) 6 I1/2 ·
{∑

ν

∑
µ

h2νh
2
µ(1 + λρν)(1 + λρµ)

}1/2

(S2.4)

= I1/2 ·
∑
ν

h2ν(1 + λρν) (S2.5)

where

I =
∑
ν

∑
µ

1

1 + λρν

1

1 + λρµ

[
E{φν(X)φµ(X)vη0(X)}−E∗n{φν(X)φµ(X)w(η0(X);Y )}

]2
.

(S2.6)

Since φν ’s simultaneously diagonalize V and J ,

∑
ν

h2ν(1 + λρν) = (V + λJ)(h). (S2.7)

In light of (S2.4), to bound V (h), we need to investigate the magnitude of

I whose expression is given in (S2.6).

First, by inserting

En{φν(X)φµ(X)w(η0(X);Y )} =
1

n

n∑
i=1

φν(xi)φµ(xi)w(η0(xi); yi)

into the squared term in (S2.6) and applying the inequality (a + b)2 6

2a2 + 2b2, we obtain

I 6 2
∑
ν

∑
µ

1

1 + λρν

1

1 + λρµ

[
E{φν(X)φµ(X)vη0(X)} − En{φν(X)φµ(X)w(η0(X);Y )}

]2
+ 2

∑
ν

∑
µ

1

1 + λρν

1

1 + λρµ

[
En{φν(X)φµ(X)w(η0(X);Y )} − E∗n{φν(X)φµ(X)w(η0(X);Y )

]2
, 2I1 + 2I2.
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Next, we examine the magnitudes of I1 and I2 one by one.

Order of I1. Recall that E{w(η0(x); y)} = vη0(x), then

E
[
En{φν(X)φµ(X)w(η0(X);Y )}

]
= E{φν(X)φµ(X)vη0(X)}

and

var
[
En{φν(X)φµ(X)w(η0(X);Y )}

]
=

1

n
var{φν(X)φµ(X)w(η0(X);Y )}.

Therefore, the expectation of I1 is

E I1 =
∑
ν

∑
µ

1

1 + λρν

1

1 + λρµ
E
[
E{φν(X)φµ(X)vη0(X)} − En{φν(X)φµ(X)w(η0(X);Y )}

]2
=
∑
ν

∑
µ

1

1 + λρν

1

1 + λρµ

1

n
var{φν(X)φµ(X)w(η0(X);Y )}.

By Condition 4, var{φν(X)φµ(X)w(η0(X);Y )} 6 c3 for some constant c3 <

∞. Hence, by Lemma 4,

E I1 6
c3
n

(∑
ν

1

1 + λρν

)2

= O(n−1λ−2/r). (S2.8)

Order of I2. The expectation of I2 is

E I2 =
∑
ν

∑
µ

1

1 + λρν

1

1 + λρµ
E
[
En{φν(X)φµ(X)w(η0(X);Y )}−E∗n{φν(X)φµ(X)w(η0(X);Y )

]2
.

As in Lemma 1, we assume nk = n∗/K for all k and substitute ψ(x, y) by
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φν(x)φµ(x)w(η0(x); y) in (S1.4) to obtain

E
[
En{φν(X)φµ(X)w(η0(X);Y )} − E∗n{φν(X)φµ(X)w(η0(X);Y )

]2
6
K

n∗
E{φ2

ν(X)φ2
µ(X)w2(η0(X);Y )}

6
K

n∗
(c3 + 1),

where the constant c3 is the bound of var{φν(X)φµ(X)w(η0(X);Y )} in

Condition 4. Again, by Lemma 4,

E I2 6
K(c3 + 1)

n∗

(∑
ν

1

1 + λρν

)2

= O(n∗−1λ−2/r). (S2.9)

Putting (S2.8) and (S2.9) together and noticing n∗ � n, we obtain

E I 6 2 E I1 + 2 E I2 = O(n∗−1λ−2/r) +O(n−1λ−2/r) = O(n∗−1λ−2/r).

Therefore I = Op(n
∗−1λ−2/r) and V (h) 6 (V + λJ)(h) · Op(n

∗−1/2λ−1/r).

The desired result follows from the fact n∗−1/2λ−1/r → 0.

Proof of Theorem 1 in the main paper By the representer theorem,

η̂, the minimizer of (2.1) in the main paper, has an explicit form as in (2.2)

of the main paper. Given the effective model space HE, let η̂E be the

projection of η̂ to HE relative to the reproducing kernel Hilbert space inner

product. The proposed estimator η̂A uses basis functions from HE while η̂

uses the full basis from H.



PING MA, NAN ZHANG, JIANHUA Z. HUANG AND WENXUAN ZHONG

According to Theorem 9.17 in Gu (2013), η̂ converges to the true func-

tion η0 with certain rate. Notice that

η̂A − η0 = (η̂A − η̂E) + (η̂E − η̂) + (η̂ − η0).

It suffices to show that both η̂E − η̂ and η̂A − η̂E converge to zero at the

same or a faster rate. We achieve this in two steps.

Step 1. We show that η̂E converges to η0 with the same rate as η̂.

To this end, note that η̂ − η̂E ∈ H 	 HE ⊆ HJ and η̂ ∈ HE, therefore

J(η̂ − η̂E, η̂E) = 0.

For any functions g, h ∈ H, define

Ag,h(α) =
1

n

n∑
i=1

l{(g + αh)(xi); yi}+
λ

2
J(g + αh).

It can be easily shown that

dAg,h(α)

dα

∣∣∣∣
α=0

=
1

n

n∑
i=1

u(g(xi); yi)h(xi) + λJ(g, h). (S2.10)

Since η̂ is the minimizer of (2) in the main paper over H, Ag,h(α) reaches

its minimum at α = 0 when g = η̂ and h = η̂− η̂E. Thus, for this choice of

g and h, the derivative in (S2.10) is zero. It follows that

λJ(η̂, η̂ − η̂E) = − 1

n

n∑
i=1

u(η̂(xi); yi){η̂(xi)− η̂E(xi)}. (S2.11)

The fact that J(η̂ − η̂E, η̂E) = 0 implies J(η̂ − η̂E) is equal to J(η̂, η̂ − η̂E).
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Thus

λJ(η̂ − η̂E) = − 1

n

n∑
i=1

u(η̂(xi); yi){η̂(xi)− η̂E(xi)} , S1 + S2, (S2.12)

where

S1 = − 1

n

n∑
i=1

{u(η̂(xi); yi)− u(η0(xi); yi)}{η̂(xi)− η̂E(xi)},

S2 = − 1

n

n∑
i=1

u(η0(xi); yi){η̂(xi)− η̂E(xi)}.

We next study the orders of the two terms S1 and S2 under Conditions 1,

2 and 4, and λ→ 0, nλ2/r →∞.

For S1, since u(η(x), y) is differentiable with respect to η(x), it follows

by the mean value theorem and Condition 3 that there exists a constant

γ ∈ [c1, c2] such that

S1 = −γ
n

n∑
i=1

w(η0(xi); yi){η̂(xi)− η0(xi)}{η̂(xi)− η̂E(xi)}.

Applying Lemma 5 to the right hand side of the above, we have

|S1| = γ V (η̂ − η0, η̂ − η̂E) + {(V + λJ)(η̂ − η0)(V + λJ)(η̂ − η̂E)}1/2 op(1)

= {(V + λJ)(η̂ − η0)(V + λJ)(η̂ − η̂E)}1/2Op(1)

For S2, recall φν ∈ H are eigenfunctions which simultaneously diago-

nalize V and J such that V (φν , φµ) = δνµ and J(φν , φµ) = ρνδνµ. Write

η̂ − η̂E =
∑

ν(η̂ − η̂E)νφν , where (η̂ − η̂E)ν = V (η̂ − η̂E, φν). Plugging it in
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S2 and applying Cauchy-Schwarz inequality, we have

|S2| =
∣∣∣∣∑
ν

(η̂ − η̂E)ν

{
1

n

n∑
i=1

u(η0(xi); yi)φν(xi)

}∣∣∣∣
6

{∑
ν

β2
ν

1 + λρν

}1/2{∑
ν

(η̂ − η̂E)2ν(1 + λρν)

}1/2

where βν = 1
n

∑n
i=1 u(η0(xi); yi)φν(xi) possesses properties E(βν) = 0 and

var(βν) = σ2/n. In fact

E(βν) = E{u(η0(X);Y )φν(X)} = EX

[
E{u(η0(X);Y )|X}φν(X)

]
= 0

and

E(β2
ν) =

1

n
E{u2(η0(X);Y )φ2

ν(X)} =
1

n
EX

[
E{u2(η0(X);Y )|X}φ2

ν(X)}
]

=
σ2

n
EX{vη0(X)φ2

ν(X)} =
σ2

n
V (φν) =

σ2

n
.

Furthermore, by Lemma 4,

E

{∑
ν

β2
ν

1 + λρν

}
=
σ2

n

∑
ν

1

1 + λρν
= O(n−1λ−1/r). (S2.13)

and it can be shown by a similar argument as in (S2.7) that

∑
ν

(η̂ − η̂E)2ν(1 + λρν) = (V + λJ)(η̂ − η̂E). (S2.14)

Combining (S2.13) and (S2.14), we obtain

S2 6 {(V + λJ)(η̂ − η̂E)}1/2Op(n
−1/2λ−1/(2r)).

Now we are ready to determine the order of (V + λJ)(η̂ − η̂E). By

Lemma 3, V (η̂ − η̂E) is dominated by λJ(η̂ − η̂E) since η̂ − η̂E ∈ H 	HE.
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Thus, (V + λJ)(η̂− η̂E) converges to zero at the same order as λJ(η̂− η̂E).

Therefore, it follows (S2.12) that

(V + λJ)(η̂ − η̂E) � λJ(η̂ − η̂E) = S1 + S2

6 {(V + λJ)(η̂ − η0)(V + λJ)(η̂ − η̂E)}1/2Op(1)

+ {(V + λJ)(η̂ − η̂E)}1/2Op(n
−1/2λ−1/(2r)).

After canceling out {(V +λJ)(η̂− η̂E)}1/2 and taking squares on both sides,

we obtain

(V + λJ)(η̂ − η̂E) 6 (V + λJ)(η̂ − η0)Op(1) +Op(n
−1λ−1/r)

� (V + λJ)(η̂ − η0)

= Op(n
−1λ−1/r + λp).

Step 2. We show that η̂A, the smoothing spline estimator via adaptive

sampling scheme, converges to η0 with the same convergence rate as η̂E.

Since η̂ is the minimizer of (2.2) in the main paper over H, Ag,h(α)

reaches its minimum at α = 0 when g = η̂ and h = η̂A − η̂E. Arguing as in

the proof of (S2.11), we have

λJ(η̂, η̂A − η̂E) = − 1

n

n∑
i=1

u(η̂(xi); yi){η̂A(xi)− η̂E(xi)}. (S2.15)

Since η̂A is also the minimizer of (2.2) in the main paper over HE, Ag,h(α)

reaches its minimum at α = 0 when g = η̂A and h = η̂A− η̂E. Thus, similar
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to the previous result, we have

λJ(η̂A, η̂A − η̂E) = − 1

n

n∑
i=1

u(η̂A(xi); yi){η̂A(xi)− η̂E(xi)}. (S2.16)

We subtract (S2.15) from (S2.16) to obtain

λJ(η̂A − η̂, η̂A − η̂E) =
1

n

n∑
i=1

{u(η̂(xi); yi)− u(η̂A(xi); yi)}{η̂A(xi)− η̂E(xi)}.

Recall that η̂E is the projection of η̂ onto HE and η̂A − η̂E ∈ HE, then

(η̂−η̂E) ⊥ (η̂A−η̂E). Such orthogonality implies that J(η̂−η̂E, η̂A−η̂E) = 0

and further

J(η̂A− η̂E) = J(η̂A− η̂, η̂A− η̂E) + J(η̂− η̂E, η̂A− η̂E) = J(η̂A− η̂, η̂A− η̂E).

With this result, some algebra yields

1

n

n∑
i=1

{u(η̂A(xi); yi)− u(η̂E(xi); yi)}{η̂A(xi)− η̂E(xi)}+ λJ(η̂A − η̂E)

(S2.17)

=
1

n

n∑
i=1

{u(η̂(xi); yi)− u(η̂E(xi); yi)}{η̂A(xi)− η̂E(xi)}

(S2.18)

By the mean value theorem, Condition 3 and Lemma 5, there exists a

constant ζ ∈ [c1, c2] such that the left hand side of (S2.17) equals

ζ V (η̂A−η̂E)+op{(V+λJ)(η̂A−η̂E)}+λJ(η̂A−η̂E) = (V+λJ)(η̂A−η̂E){1+op(1)}.

Similarly the right hand side of (S2.17) is bounded by

{(V + λJ)(η̂ − η̂E)(V + λJ)(η̂A − η̂E)}1/2Op(1).
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Combining the above two results, we obtain that

(V +λJ)(η̂A−η̂E){1+op(1)} = {(V +λJ)(η̂−η̂E)(V +λJ)(η̂A−η̂E)}1/2Op(1).

Canceling out a term from both sides to obtain

(V + λJ)(η̂A − η̂E) � (V + λJ)(η̂ − η̂E) = Op(n
−1λ−1/r + λp). (S2.19)

Putting results from Step 1 and 2 together, we conclude the proof with

the convergence rate

(V + λJ)(η̂A − η0) = Op(n
−1λ−1/r + λp).

S3 Derivation of generalized approximate cross-validation

The minimizer of (2.6) in the main paper satisfies the normal equationSTwSw STwRw

RT
wRw RT

wRw + (nλ)Q


d

c

 =

STwỸw

RT
wỸw

 , (S3.1)

where Sw = W̃ 1/2S, Rw = W̃ 1/2R, and Ỹw = W̃ 1/2Ỹ. The normal equation

of (S3.1) can be solved by the pivoted Cholesky decomposition followed

by backward and forward substitutions (Kim and Gu (2004)). On the

convergence of Newton iteration, the “fitted values” of Ŷw = Swd + Rwc

by minimizing (2.4) in the main paper can be written as Ŷw = Aw(λ)Ỹw,
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where the smoothing matrix

Aw(λ) = (Sw, Rw)

STwSw STwRw

RT
wRw RT

wRw + (nλ)Q


+STw

RT
w

 ,

where Sw = W̃ 1/2S, Rw = W̃ 1/2R, Ỹw = W̃ 1/2Ỹ, and C+ denotes the

Moore-Penrose inverse of C satisfying CC+C = C, C+CC+ = C+, (CC+)T =

CC+ and (C+C)T = C+C.

A data-driven approach for the selection of the tuning parameter λ

(including θ) is to choose λ which minimizes the generalized approximate

cross-validation score (Gu and Xiang (2001)), one version of which was

derived by Gu and Xiang (2001) and is of the following form,

GACV (λ) = − 1

n

n∑
i=1

{Yiη̂A(xi)−b(η̂A(xi))}+
tr(AwW̃

−1)

n− trAw

1

n

n∑
i=1

Yi(Yi−µ̂(xi)).

(S3.2)

One may employ standard nonlinear optimization algorithms to minimize

the generalized approximate cross-validation score. In particular, we use

the modified Newton algorithm developed by Dennis and Schnabel (1996)

to find the minimizer. η̂A and µ̂ are evaluated at the minimizer of (2.1) in

the main paper with fixed tuning parameters, and Aw and W̃ are evaluated

at the values given at the convergence of the Newton iterations.
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