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Abstract: Second-generation sequencing technologies have replaced array-based

technologies and become the default method for genomics and epigenomics analysis.

Second-generation sequencing technologies sequence tens of millions of DNA/cDNA

fragments in parallel. After the resulting sequences (short reads) are mapped to the

genome, one gets a sequence of short read counts along the genome. Effective ex-

traction of signals in these short read counts is the key to the success of sequencing

technologies. Nonparametric methods, in particular smoothing splines, have been

used extensively for modeling and processing single sequencing samples. However,

nonparametric joint modeling of multiple second-generation sequencing samples is

still lacking due to computational cost. In this article, we develop an adaptive

basis selection method for efficient computation of exponential family smoothing

splines for modeling multiple second-generation sequencing samples. Our adaptive

basis selection gives a sparse approximation of smoothing splines, yielding a lower-

dimensional effective model space for a more scalable computation. The asymptotic

analysis shows that the effective model space is rich enough to retain essential fea-

tures of the data. Moreover, exponential family smoothing spline models computed

via adaptive basis selection are shown to have good statistical properties, e.g.,

convergence at the same rate as that of full basis exponential family smoothing

splines. The empirical performance is demonstrated through simulation studies

and two second-generation sequencing data examples.

Key words and phrases: Bisulfite sequencing, generalized linear model, nonpara-

metric regression, penalized likelihood, RNA-seq, sampling.

1. Introduction

With the rapid development of biotechnologies, second-generation sequenc-

ing technologies have become default methods for various genomics and epige-

nomics analysis: RNA-seq for gene expression analysis (Mortazavi et al. (2008);

Wilhelm et al. (2008); Nagalakshmi et al. (2008)), bisulfite sequencing for DNA

methylation analysis (Cokus et al. (2008); Lister et al. (2008)), and ChIP-seq
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for genome-wide protein-DNA interaction analysis (Boyer et al. (2005); John-

son et al. (2007); Dixon et al. (2012)). Compared to their hybridization-based

counterparts, e.g., microarry and ChIP-chip, second generation sequencing tech-

nologies offer up to a single-nucleotide resolution signal. Moreover, tens of mil-

lions of DNA or cDNA fragments can be sequenced in parallel. As the second-

generation sequencing technologies become mature and cost-effective, conducting

experiments with samples at multiple conditions, and/or of multiple tissue types,

and/or at different time points becomes common. The large volume of data not

only facilitates discovery in biology but also requires development of novel sta-

tistical methods for analysis.

After mapping the resulting sequences to a reference genome, researchers get

a sequence of read counts, each of which corresponds to one nucleotide position,

standing for the number of reads mapped onto that position. These short read

counts may reflect certain biological interests, and statistical modeling and in-

ference are indispensable for making discoveries (Li, Jiang and Wong (2010); Ji

et al. (2014)). Whereas generalized linear models have been used in many studies

(Li, Jiang and Wong (2010); Kuan et al. (2011); Dalpiaz, He and Ma (2013)), ver-

satile nonparametric modeling provides satisfactory performance (Zheng, Chung

and Zhao (2011); Jaffe et al. (2012)). However, while each sequencing sample

provides a genome size data set, multiple samples give rise to data sets of size in

the tens of millions. Such a large volume of data makes application of many sta-

tistical models computationally infeasible. In this paper, we propose a scalable

computational method for a class of flexible nonparametric regression models,

exponential family smoothing splines (O’sullivan, Yandell and Raynor Jr (1986);

Wahba et al. (1995)).

We first describe two typical contexts which motivate our methodology. Here

and in the following, let Yi denote the ith read count, which associates with some

covariates xi, where i = 1, . . . , n.

Example 1. Profiling time course gene expression and isoform expression in

RNA-Seq. In many studies, researchers are interested in measuring the quan-

tities of mRNAs molecules, i.e., quantifying gene/isoform expressions. mRNAs

over time points in a certain biological process are quantified using RNA-seq.

After mapping, read counts at each nucleotide position of the whole genome are

obtained at each time point. A simple proposal for estimating gene/isoform ex-

pression is to average the short-read counts across all nucleotides within exons in

each gene then normalize them by the total read counts (Cloonan et al. (2008)).

However, the resulting gene/isoform expression levels may not be accurate due
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to significant sequencing bias of short-read counts (Dohm et al. (2008)). It has

been observed that short-read counts at a nucleotide position tend to correlate

with GC content (the percentage of bases that are either guanine or cytosine in

a DNA sequence) in its neighborhood (Risso et al. (2011)). It is thus crucial to

take into account the GC bias inherited in the RNA-seq technology while mod-

eling the variation of short-read counts within each single gene over time. It is

typical to use a regression model to remove GC bias. In particular, the response

Yi is the short-read count of the ith nucleotide in a gene, covariates include time

factor t and a multivariate xi = (x〈i1〉, . . . , x〈iK〉) which quantifies the GC content

in the surrounding K neighborhoods of ith nucleotide. Any model component

involving xi is the GC bias and should be removed.

Example 2. Identifying differentially methylated regions using bisulfite sequenc-

ing. DNA methylation is an essential epigenetic mechanism that regulates gene

expression, cell differentiation, and development. A current technique for measur-

ing DNA methylation levels is bisulfite sequencing. In our example, the methy-

lation levels are measured at two different conditions. The goal is to compare

the DNA methylation levels and identify the differentially methylated regions

(DMRs). The total number of the mapped reads at the ith position is denoted

as Ni, and that of methylated reads is denoted as Yi. To identify the differentially

methylated regions, we build a regression model between (Ni, Yi) and a bivariate

covariate xi = (x〈i1〉, x〈i2〉) where x〈i1〉 relates to the genomic location and x〈i2〉
is a condition indicator. We then detect the differential regions according to the

diagnosis of the model components involving the condition indicator x〈i2〉.

Since short read data are clearly non-Gaussian, we adopt the exponential

family of distributions, a rich family of distributions for non-Gaussian data.

Specifically, the conditional distribution of Yi given the covariate xi is to have a

density of the form

f(Yi|xi) = exp[
{Yiη(xi)− b(η(xi))}

a(φ)
+ c(Yi, φ)], (1.1)

where i = 1, . . . , n, a > 0, b and c are known functions, η(x) is the regression

function to be estimated, and φ is the dispersion parameter, assumed to be a

constant, either known or considered as a nuisance parameter. The exponential

family includes normal, binomial, Poisson, negative binomial, and many other

distributions in a unified framework, and is broad enough to cover most practical

applications in second-generation sequencing data.
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Exponential family smoothing splines were developed by O’sullivan, Yandell

and Raynor Jr (1986) for the univariate case and Wahba et al. (1995) extended

them to the multivariate case. Wide application of exponential family smoothing

splines has been hindered because of computational cost O(n3) where n is sample

size. Since the sample size of the second-generation sequencing data is in tens of

millions, such computation is prohibitively expensive. Numerous solutions have

been proposed to address the computational issue for smoothing splines with

Gaussian responses (Luo and Wahba (1997); Kim and Gu (2004); Ma, Huang

and Zhang (2015)). For exponential family smoothing splines, Gu and Kim

(2002) obtained a lower-dimensional approximation of the estimates by randomly

selecting a subset of basis functions. Such an approximation approach was also

adopted by Kim and Gu (2004) for Gaussian regression. Ma, Huang and Zhang

(2015) pointed that the simple random sampling strategy may fail to detect subtle

signals when responses are Gaussian.

Extending the simple random sampling strategy of Gu and Kim (2002),

we develop an adaptive basis selection method to construct a lower-dimensional

space, called the effective model space, and then approximate exponential family

smoothing splines there. Our basis sampling method uses the information from

the response variable and thus distinguishes itself from the simple random basis

sampling approach. A key adaptive step in our method is to slice the range of

response variable. However, for second-generation sequencing data sets, different

distribution assumptions require different slicing procedures. We provides prac-

tical guidance according to canonical parameter in data examples. As with the

simple random sampling strategy of Gu and Kim (2002), the proposed method

gives rise to a more scalable computation when approximating exponential family

smoothing splines with large data sets. Because the response information is used

in the sampling of basis functions, the adaptive basis selection provides more

accurate estimates than the simple random sampling, as is evident in our simu-

lation studies. Our asymptotic functional eigenvalue analysis shows the effective

model space is rich enough to retain the essential information of true regres-

sion functions, and the approximated exponential family smoothing splines via

adaptive basis selection converge to the truth at the same convergence rate as

the full-basis exponential family smoothing splines. Our method is non-standard

because of the response-dependent sampling scheme, and we provide practical

guidelines for choosing the dimension of the effective model space.

The remainder of the article is organized as follows. In Section 2, we develop

the adaptive basis selection method for exponential family smoothing splines.



ADAPTIVE BASIS SELECTION 1761

The asymptotic analysis is presented in Section 3. Simulation and data analysis

follow in Sections 4 and 5. A few remarks in Section 6 conclude the article.

Proofs of the theorems are in the supplementary material.

2. Efficient Computation via Adaptive Basis Selection

In this section, we review the penalized likelihood method for fitting exponen-

tial family smoothing spline models and investigate the computation complexity,

then develop the adaptive basis selection method to efficiently approximate the

estimator in a low-dimensional function space.

2.1. Penalized likelihood approach

We estimate η by minimizing the penalized likelihood functional

− 1

n

n∑
i=1

{Yiη(xi)− b(η(xi))}+
λ

2
J(η), (2.1)

where the first term is derived from the negative log likelihood, and J(η) = J(η, η)

is a quadratic functional penalizing the roughness of η. The smoothing parameter

λ then controls the trade-off between the goodness-of-fit and smoothness of η.

Example 1 (continued) Profiling time course gene expressions in RNA-Seq.

We assume the short-read count Y given the covariate x is Poisson distributed,

Y |x ∼ Poisson(λ(x)) with density λ(x)Y e−λ(x)/Y !. Here η(x) = log λ(x) at (1.1).

Sun et al. (2016) models the read count Y by a negative binomial distribution to

account for excessive variation in read counts. Thus, Y |x ∼ NegBinomial(r, p(x))

with density
(
Y+r−1
Y

)
p(x)Y (1− p(x))r, so η(x) = log p(x).

Example 2 (continued) Identifying differentially methylated regions. We as-

sume the number of methylated reads Y given covariate x at position is bino-

mial, Y |x ∼ Binomial(N, p(x)) with density
(
N
Y

)
p(x)Y (1− p(x))N−Y and η(x) =

log{p(x)/(1− p(x))}.
The standard formulation of smoothing splines restricts minimizing (2.1) to

a reproducing kernel Hilbert space (RKHS) H = {η : J(η) < ∞}. To prevent

interpolation, the null space of J , NJ = {η : J(η) = 0}, is assumed to be a

finite dimensional linear subspace of H with basis {φi: i = 1, . . . ,m}. Denote the

orthogonal decomposition of H by NJ⊕HJ where HJ is still a reproducing kernel

Hilbert space. Let RJ(x, y) be the reproducing kernel of HJ . The representer

theorem (Wahba (1990)) shows that the minimizer of (2.1) in the RKHS H has

the simple form
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η(x) =

m∑
ν=1

dνφν(x) +

n∑
i=1

ciRJ(xi, x), (2.2)

where coefficients dν and ci are to be estimated from data.

When x is multivariate, the functional analysis of variance (ANOVA) de-

composition of a function η is

η(x) = η0 +

d∑
j=1

ηj(x〈j〉) +

d∑
j=1

d∑
k=j+1

ηjk(x〈j〉, x〈k〉) + · · ·+ η1,...,d(x〈1〉, . . . , x〈d〉),

(2.3)

where the η0 is a constant, the ηj ’s are the main effects, the ηjk’s are the two-

way interactions, etc. The identifiability of the terms in (2.3) is ensured by

side conditions through averaging operators (Wahba (1990); Gu (2013)). When

estimating η from (2.1) with structure (2.3), we consider ηj ∈ H〈j〉, where H〈j〉 is

an RKHS with tensor sum decomposition H〈j〉 = H0〈j〉⊕H1〈j〉, H0〈j〉 is the finite-

dimensional “parametric” subspace consisting of parametric functions, and H1〈j〉
is the “nonparametric” subspace consisting of smooth functions. The induced

tensor product space is

H = ⊗dj=1H〈j〉 = ⊕S [(⊗j∈SH1〈j〉)⊗ (⊗j /∈SH0〈j〉)] = ⊕SHS ,

where the summation runs over all subsets S ⊆ {1, . . . , d}. The corresponding

penalty function is J(η) =
∑
S θ
−1
S JS(ηS) with ηS ∈ HS , where θS > 0 are extra

smoothing parameters, and JS is the square norm in HS . The subspaces HS
form two large subspaces: NJ = {η : J(η) = 0}, which is the null space of

J(η), and H	NJ with the reproducing kernel RJ =
∑
S θSRS where RS is the

reproducing kernel in HS . The smoothing spline estimator in such a reproducing

kernel Hilbert space is called a tensor product smoothing spline.

In Example 2, covariates are of mixed types, continuous and discrete. Con-

sider a bivariate function η(x, τ), where x ∈ [0, 1] and τ ∈ {1, . . . , t}. One can

write η(x, τ) = η∅+η1(x)+η2(τ)+η1,2(x, τ), where η∅ is a constant, η1(x) is a func-

tion of x satisfying η1(0) = 0, η2(τ) is a function of τ satisfying
∑t

τ=1 η2(τ) = 0,

and η1,2(x, τ) satisfies η1,2(0, τ) = 0, ∀τ , with
∑t

τ=1 η1,2(x, τ) = 0, ∀x. Regarding

the quadratic functional J , one can use

J(η) = θ−11

∫ 1

0
(
d2η1
dx2

)2dx+ θ−11,2

∫ 1

0

t∑
τ=1

(
d2η1,2
dx2

)2dx.

The null space NJ has dimension 2t with basis functions

{1, x, I[τ=j] −
1

t
, (I[τ=j] −

1

t
)x, j = 1, . . . , t− 1}.
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The reproducing kernel of HJ is

RJ(x1, τ1;x2, τ2) = θ1

∫ a

0
(x1 − u)+(x2 − u)+du+ θ1,2(I[τ1=τ2] −

1

t
)∫ a

0
(x1 − u)+(x2 − u)+du.

General discussions of reproducing kernels can be found in Section 2.4 of Gu

(2013).

For the exponential family, E[Y |x] = b′(η(x)) = µ(x) and var[Y |x] = b′′(η(x))

a(φ) = ν(x)a(φ). When the likelihood function at (2.1) has a unique minimizer in

NJ , the minimizer η̂ of (2.1) uniquely exists. Fixing the smoothing parameter λ

(and ones hidden in J(η), if present), (2.1) may be minimized through a Newton

iteration. Write l(η(xi);Yi) = −Yiη(xi) + b(η(xi)), u(η(xi);Yi) = −Yi + b′(η(xi)),

and w(η(xi);Yi) = b′′(η(xi)) = ν(xi). The quadratic approximation of l(η(xi);Yi)

at the current estimate η̃(xi) is given by

l(η(xi;Yi) ≈ l(η̃(xi);Yi) + ũi(η(xi)− η̃(xi)) +
w̃i(η(xi)− η̃(xi))

2

2

=
w̃i(Ỹi − η(xi))

2

2
+ Ci,

where ũi = u(η̃(xi);Yi), w̃i = w(η̃(xi);Yi), Ỹi = η̃(xi)− ũi/w̃i and Ci is indepen-

dent of η(xi). The Newton iteration can thus be performed by minimizing the

penalized weighted least squares,
n∑
i=1

w̃i(Ỹi − η(xi))
2 + nλJ(η). (2.4)

Although fast algorithms (Reinsch (1967)) are available when x is univariate,

solving the problem for multivariate x requires O(n3) operations, see Section 3.4

of Gu (2013). The high computational cost of smoothing splines renders it inap-

plicable for modeling second-generation sequencing data. In our two examples,

sample sizes are 48,660 and 22,588.

2.2. Adaptive basis selection

To alleviate the computational cost of smoothing splines, one can restrict

the minimizer of (2.1), or equivalently (2.4), to a reduced subspace of H. Such

a subspace is called an effective model space. Following Ma, Huang and Zhang

(2015), we develop an adaptive basis sampling approach to selecting a subset of

full basis functions and constructing an effective model space. For an effective

model space the computational cost in constructing it is cheap, and the essential
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information of the true function η is retained.

Adaptive basis selection algorithm

(1) Divide the range of the responses {Yi}ni=1 or derived data into K disjoint

intervals, denoted by S1, S2, . . . , SK .

(2) For k = 1, . . . ,K, take a random sample x
∗(k)
1 , . . . , x

∗(k)
nk of size nk with

replacement, from original sample xi with probability |Sk|−1Iyi∈Sk
, where

|Sk| is the number of observations in Sk. Denote the combined sample as

x∗1, . . . , x
∗
n∗ with sample size n∗.

(3) Minimize (2.1) over

HE = NJ ⊕ span{RJ(x∗j , ·), j = 1, . . . , n∗},

where HE is the effective model space. The minimizer has the expression

η̂A(x) =

m∑
i=1

dνφν(x) +

n∗∑
j=1

cjRJ(x∗j , x), (2.5)

where η̂A(x) is an exponential family smoothing spline estimate through

adaptive basis selection.

When dividing the range of response variable at step (1), we take the spe-

cific exponential family distribution assumption into account. In Example 1, re-

sponses follow a Poisson distribution and we can apply slicing directly on {Yi}ni=1.

In Example 2, Yi is binomial, we propose to divide the range of ratio Yi/Ni to

avoid possible heterogeneity in count data. Such ratios are empirical estimates

of the success probabilities that are connected with the canonical parameter of

binomial distribution monotonically.

Substituting (2.5) into (2.4), the numerical problem is to minimize

(Ỹ − Sd−Rc)T W̃ (Ỹ − Sd−Rc) + nλcTQc (2.6)

with respect to d, c, where Ỹ = (Ỹ1, . . . , Ỹn)T , S is n×m with the (i, ν)th entry

φν(xi), R is n×n∗ with the (i, j)th entry RJ(xi, x
∗
j ), Q is n∗×n∗ with the (j, k)th

entry RJ(x∗j , x
∗
k), and W̃ = diag(w̃1, . . . , w̃n).

The tuning parameter λ (including θ) is chosen by generalized approximate

cross-validation (Gu and Xiang (2001)). See more details in the supplementary

material.

3. Asymptotic Analysis

We develop an asymptotic analysis analogous to that in Ma, Huang and

Zhang (2015) to guide the construction of the effective model space and establish

the convergence rate of the smoothing spline with adaptive basis selection.Proofs
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of results in this section are in the supplementary materials.

3.1. Regularity conditions and rate of convergence

We have l(η(x); y) = −yη(x) + b(η(x)) and u(η; y) = dl/dη, w(η; y) = d2l/

dη2. Assume that

E{u(η0(X);Y )|X} = 0, E{u2(η0(X);Y )|X} = σ2 E{w(η0(X);Y )|X},

and write vη(x) = E{w(η(x);Y )|X = x}. Let fX(·) be the marginal density of

the predictor variable X and take

V (g) =

∫
X
g2(x)vη0(x)fX(x) dx.

Condition 1. V is completely continuous with respect to J .

Here, there exists a sequence of eigenfunctions φν ∈ H and the associated

nonnegative increasing sequence of eigenvalues ρν such that V (φν , φµ) = δνµ and

J(φν , φµ) = ρνδνµ where δνµ is the Kronecker delta.

Condition 2. For some r>1 and β>0, we have ρν>βν
r for sufficiently large ν.

The growth rate of the eigenvalues ρν of J with respect to V essentially

dictates how fast λ should approach to zero. See Section 9.1 of Gu (2013).

Condition 3. For η in a convex set B0 around η0 containing η̂ and η̃,

c1w(η0(x); y) 6 w(η(x); y) 6 c2w(η0(x); y)

holds uniformly for some 0 < c1 < c2 <∞, ∀x ∈ X , ∀y.

Roughly speaking, Condition 3 concerns the equivalence of information within

B0.

Condition 4. There is a constant c3 <∞ such that var{φν(X)φµ(X)w(η0(X);

Y )} 6 c3 for all ν, µ.

As the φν ’s forms an orthonormal system relative to V (·, ·) such that

E{φν(X)φµ(X)w(η0(X);Y )} = V (φν , φµ) = δνµ,

one has E{φ2ν(X)φ2µ(X)w2(η0(X);Y )} 6 c3 + 1. Condition 4 basically requires

that the fourth moments of the φν(X) be uniformly bounded.

Theorem 1. If
∑

i ρ
p
iV (η0, φi)

2 < ∞ for some p ∈ [1, 2], and Conditions 1-4

hold, as λ→ 0 and n∗λ2/r →∞, we have

(V + λJ)(η̂A − η0) = Op(n
−1λ−1/r + λp).
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In particular, when λ � n−r/(pr+1), the estimator η̂A achieves the optimal con-

vergence rate

(V + λJ)(η̂A − η0) = Op(n
−pr/(pr+1)).

Thus, under regularity conditions, the convergence rate of the smoothing

spline estimator using an adaptively selected basis is the same as that of the

smoothing spline estimator using the full basis, see Theorem 9.17 in Gu (2013).

3.2. The dimension of the effective model space

Utilizing our asymptotic analysis results, we can determine the dimension of

the effective model space HE . On one hand, Theorem 1 requires n∗λ2/r → ∞.

When λ � n−r/(pr+1), we can choose n∗ � n2/(pr+1)+δ, where δ is an arbitrary

small positive number. On the other hand, constant p depends on the smoothness

of η: for roughest η satisfying J(η) < ∞, we have p = 1, whereas for the

smoothest η, we have p = 2.

Take the univariate cubic smoothing spline as an example: J(η) =
∫

(η′′)2

with r = 4 and λ � n−4/(4p+1). The proper dimension of the effective model

space is n∗ = n2/(4p+1) + δ, which is in the range of O(n2/9+δ) and O(n2/5+δ)

for p ∈ [1, 2]. For the linear smoothing spline, J(η) =
∫

(η′)2 and r = 2. The

dimension of the effective model space ranges from O(n2/5+δ) to O(n2/3+δ) for

p in [1, 2]. In our simulations and examples, we take dimension of the effective

model space n∗ to be between 4n2/9 and 20n2/9 for the cubic smoothing spline

with selected basis, and between 4n2/5 and 20n2/5 for the linear smoothing spline

with selected basis.

4. Simulation Study

We approximated the exponential family smoothing spline estimate via adap-

tive basis sampling and that with uniform basis sampling (Kim and Gu (2004))

to three multivariate test functions. Exponential family distributions considered

here include the negative binomial, Poisson, and binomial. When generating

predictors x, a random design was adopted: n = 1,600 points were uniformly

generated from the domains. Responses were correspondingly generated under

each distribution assumption. The number of slices was suggested by Scott’s

method (Scott (1992)) and based on our asymptotic results, the dimension of

the effective model space was set to 10n2/9, which meant n∗ = 52 basis functions

were sampled for both sampling methods for approximating exponential family

smoothing splines.
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We first took the bivariate blocks function with negative binomial distribu-

tion as an example. The bivariate blocks function is a direct generalization of

the univariate blocks function (Donoho and Johnstone (1994)) to bivariate case.

Let blocks(·) be the univariate blocks function, then the bivariate blocks function

is blocks2(x〈1〉, x〈2〉) = blocks(x〈1〉). For the negative binomial distribution with

parameters (α, p), we set the success probability at p = (blocks2 +2.5)/8 and the

target number of successful trials at α = 3.

Examples were constructed from the joint probability density of a d-dimensional

nonparanormal distribution (Liu, Lafferty and Wasserman (2009))

pdα(x) = (2π)−d/2|Σ|−1/2 exp

{
−1

2
f(x)>Σ−1f(x)

} d∏
j=1

|f ′j(xj)|, (4.1)

where Σ was a d×d matrix with diagonal entries 1, super and sub diagonal entries

0.5 and other entries 0; the jth component of f(x) was fj(x) = αj sign(x) |x|αj

with αj ’s as shape parameters.

A second example was a bivariate copula density function with Poisson dis-

tribution. The bivariate copula density was obtained by setting d = 2 and

α = (2, 3)> in (4.1). For the Poisson distribution, the mean parameter was λ =

1 + 2(2π)p/2|Σ|1/2 pdα. Our third example was a four-dimensional copula density

function with binomial distribution. We took d = 4 and α = (0.1, 0.1, 0.1, 0.1)>

in (4.1). For binomial distribution with parameters (m, p), the number of trials

was m = 50 and the success probability was p = exp(pdα)/{1 + exp(pdα)}.
To evaluate the performance of each approximation method, we repeated

the experiment 100 times under each simulation set-up, and calculated the mean

squared error (MSE) for the estimate. For the binomial and negative binomial

distributions MSE =
∑n

i=1{p̂(xi) − p(xi)}2, and for the Poisson distribution

MSE =
∑n

i=1{λ̂(xi)− λ(xi)}2. Boxplots of MSEs for the three multivariate test

functions are displayed in Figure 1. The proposed adaptive basis sampling scheme

enables exponential family smoothing splines to be more accurate and stable.

Further calculation shows that, under the three simulation set-ups, smoothing

splines with adaptive basis sampling outperform those with uniform basis sam-

pling 69, 96 and 76 times of 100 experiments, respectively.

Figures 2 and 3 display the visualization for the two bivariate examples for a

single run. In Figure 2, the probability parameter of the negative binomial distri-

bution is a bivariate blocks function that has many abrupt local jumps in the x〈1〉
direction. The proposed method successfully recovers such fine scale information

while the uniform basis sampling fails. In Figure 3, the mean parameter of the
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Figure 1. Boxplots of MSE for multivariate simulation studies. Left: bivariate blocks
function with negative binomial distribution; middle: bivariate copula density function
with Poisson distribution; right: four-dimensional copula density function with binomial
distribution. UBS and ABS stand for exponential family smoothing spline estimator
under uniform and adaptive basis sampling strategies.

Poisson distribution behaves relatively smoothly. There are four peaks across

the domain: two are significantly higher than the others. The estimate with

adaptively sampled basis apparently provides a better fit: the two large peaks

recovered are closer to the truth.

5. Examples

In this section, we analyze the data sets from Examples 1 and 2.

5.1. Modeling the time course gene expression and isoform expression

profiles using RNA-seq

Drosophila melanogaster (fruit fly) shares a substantial genetic content with

humans and has been used as a translational model for human development. To

study Drosophila melanogaster development, Graveley et al. (2011) conducted

time course RNA-seq experiments. In these experiments, the authors collected

12 embryonic RNA samples at two-hour intervals for 24 hours in the stage of

early embryos. The samples were then sequenced using an Illumina Genome

Analyzer IIx platform.

We are interested in estimating time course gene and isoform expressions

at the early embryos stage. It is necessary to take into account the sequencing

bias, in particular the GC bias. We fulfill the task in two steps. First, we

attempt a nonparametric model to model time course gene expression profiles

while accounting for the GC bias. Since the read in Graveley et al. (2011) is 76
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Figure 2. Bivariate blocks function with negative binomial distribution. Perspective
plots of true probability, fitted values by smoothing splines via uniform basis sampling
and adaptive basis sampling.
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Figure 3. Bivariate copula density function with Poisson distribution. Perspective plots
of true mean parameter, fitted values by smoothing splines via uniform basis sampling
and adaptive basis sampling.

base-pair long, we count the GC content in each read length interval. We denote

short-read counts at the jth nucleotide at time point t by Yjt, the number of GC

counts in the neighborhood of 1 to 76 nucleotides away from the jth nucleotide

by x〈1j〉, that in the neighborhood of 77 to 152 nucleotides away from the jth

nucleotide by x〈2j〉, and that in the neighborhood of 153 to 228 nucleotides away

from the jth nucleotide by x〈3j〉. We built a nonparametric Poisson model for

the short-read counts: Yjt ∼ Poisson(λjt), with

log(λjt) = C + η0(j, t) + η(x〈1j〉, x〈2j〉, x〈3j〉), (5.1)

where η0(j, t) represents the time trend along the gene, and η(x〈1ij〉, x〈2ij〉, x〈3ij〉)

is the sequencing bias due to GC content. We applied functional ANOVA decom-
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position to η0(j, t) and η(x〈1〉, x〈2〉, x〈3〉) and all main effects, two-way and three-

way interactions of covariates were kept η0(j, t) = C1 +η01(j)+η02(t)+η012(j, t),

η(x〈1j〉, x〈2j〉, x〈3j〉) = C2 +

3∑
k=1

ηk(x〈kj〉) +

3∑
k=1

3∑
l=j+1

ηkl(x〈kj〉, x〈lj〉)

+ η123(x〈1j〉, x〈2j〉, x〈3j〉).

We then fit the exponential family smoothing spline models using the penalized

likelihood (2.1) for each gene. The total number of observations during all twelve

time courses is over 50, 000, which renders standard computations infeasible.

Instead, we used the proposed adaptive basis sampling method when fitting the

exponential family smoothing spline models.

Here is detailed algorithmic information of the analysis of the RNA-seq data

of two genes: heat shock protein cognate 4 (Hsc70-4), and elongation factor 2b

(Ef2b), which are 3, 974 and 4, 055 bp long when only exons are kept, respectively.

Using our adaptive basis selection method for fitting exponential family smooth-

ing spline models, we took the dimension of the effective model space n∗ = 72 for

both genes. The computing times for running the exponential family smoothing

spline models with adaptive basis selection were 95 and 124 CPU seconds on a

2.90 GHz Intel Xeon computer. To assess the adequacy of the exponential fam-

ily smoothing splines estimates via adaptive basis selection, we computed the

quasi-R2 (Li, Jiang and Wong (2010)),

R2 = 1− d

d0
(5.2)

where d is the deviance of the fitted model and d0 is the deviance of the null

model with only constant mean. The quasi-R2 of the fitted exponential family

smoothing spline model via adaptive sampling method was 0.87 for Hsc70-4, and

0.86 for Ef2b. Figure 4 and 5 display the estimated counts exp{αi + η0(t)} by

removing GC bias η from λijt in two genes.

As a second step, we estimated the isoform expression using the Poisson

model and maximum likelihood method developed in Jiang and Wong (2009).

Consider a gene with m exons of lengths (l1, l2, ..., lm) and k isoforms with ex-

pressions θ = (θ1, θ2, ..., θk). Suppose zi be GC biased-corrected read counts

(obtained in the first step) fall in ith exon. We assumed that zi is Poisson with

mean λi. For instance, the λi for the number of reads falling into exon i is

li
∑k

j=1 cijθj , where cij is an indicator function: 1 if isoform j contains exon i,

and 0 otherwise. Then a Poisson model was fitted to zi using maximum like-

lihood approach, see details in Jiang and Wong (2009). According to flybase
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Figure 4. Estimated counts after removing GC bias for two time courses of gene Hsc70-
4. Observed counts are in gray line and black line is the estimation, the blocks in the
bottom are exons.

21,678,000 21,680,000 21,682,000

0
20

0
60

0

Hour 14

Co
un

t

21,678,000 21,680,000 21,682,000

0
20

0
60

0
Hour 20

Co
un

t

Figure 5. Predicted counts after removing GC bias for two time courses of gene Ef2b.
Observed counts are in gray line and black line is the estimation, the blocks in the bottom
are exons.

Table 1. Raw read counts and fitted counts for all seven isoforms of gene Hsc70-4 at
Hour 6 and 12.

Hour 6
Isoform 1 Isoform 2 Isoform 3 Isoform 4 Isoform 5 Isoform 6 Isoform 7

Raw 1,522,416 1,492,814 1,466,414 1,468,447 1,503,038 1,495,502 1,506,437
Fitted 1,503,707 1,474,983 1,446,416 1,448,412 1,482,390 1,476,911 1,488,867

Hour 12
Isoform 1 Isoform 2 Isoform 3 Isoform 4 Isoform 5 Isoform 6 Isoform 7

Raw 1,486,773 1,443,093 1,435,028 1,435,856 1,450,492 1,445,258 1,450,323
Fitted 1,441,400 1,399,584 1,388,391 1,389,162 1,401,834 1,401,303 1,408,558

(www.flybase.org) annotation, there are seven known isoforms for Hsc70-4 gene

and three for Ef2b. We estimated the isoform expression for both Hsc70-4 and

Ef2b. The estimated isoform expressions at Hour 6 and 12 for Hsc70-4 and those

for Ef2b at Hour 14 and 20 are listed in Table 1 and 2.

www.flybase.org


1772 PING MA, NAN ZHANG, JIANHUA Z. HUANG AND WENXUAN ZHONG

Table 2. Raw read counts and fitted counts for all three isoforms of gene Ef2b at Hour
14 and 20.

Hour 14 Hour 20
Isoform 1 Isoform 2 Isoform 3 Isoform 1 Isoform 2 Isoform 3

Raw 1,824,904 1,809,689 1,824,718 1,773,156 1,766,892 1,778,588
Fitted 1,798,631 1,781,373 1,796,776 1,749,174 1,742,474 1,754,925

5.2. Differentially methylated DNA regions in Arabidopsis

DNA methylation is an important epigenetic mechanism that regulates gene

expression, cell differentiation, and development. The whole genome GC methy-

lation levels of four strains of Arabidopsis thaliana were measured using whole

genome bisulfite sequencing (Ji et al., 2014). The whole genome of Arabidopsis

is around 135 million bp. Two strains were from one generation and the other

two were taken from a second generation. The total number of GC methylated

nucleotides is 23, 361.

Let Yi,s,g and Ni,s,g be the methylated and total read counts at genetic po-

sition i in strain s of generation g, where s = 1, 2 and g = 1, 2. We built a

nonparametric mixed-effect binomial model (Gu and Ma (2005)) for the short-

read counts, Yi,s,g ∼ Binomial(Ni,s,g, p(i, s, g)), with the canonical parameter

specified by a nonparametric component and a random effect,

log
p(i, s, g)

1− p(i, s, g)
= η(i, g) + bs,

where η has a functional ANOVA structure,

η(i, g) = ηC + η1(i) + η2(g) + η12(i, g), (5.3)

and the random effect bs ∼ N(0, σ2) induces the strain correlation.

Our primary goal is to identify the differentially methylated regions between

two generations. Since the genome of Abrabidopsis is around 135 million bp, it is

computational impossible to apply smoothing spline models directly to the whole

genome. (Gu and Ma (2005)) suggested using the simple random basis sampling

method of Gu and Kim (2002) to reduce computational cost for large sample

data. Instead, we use the adaptive basis selection. We first divided the whole

genome into segments of length 20 k bp and then did an exhaustive search among

the segments. We fit exponential family smoothing splines to each segment using

the adaptive basis selection method, and employed an inferential tool, called

Kullback-Leibler projection, to identify differentially methylated regions.

For the DNA methylation data, we observed that short-read counts N(i, s, g)
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Figure 6. Mapped methylated read counts and fitted methylation level for a whole
genome bisulfite sequencing data of Arabidopsis thaliana. The grey lines in top panels
are the mapped methylation read counts for four strains of two generations. The black
lines in bottom panels are the fitted methylation levels. The thick bars in x-axises are
location of genes AT2G17540 (left) and AT2G17550 (right).

varied greatly with position i, and thus simply dividing the range of Yi,s,g can be

misleading. Alternatively we first calculated the ratio of methylated read counts

to total read counts at each position (these ratios are actually empirical estimates

of the success probabilities along the genome). Then we divided the range of the

ratios into disjoint intervals and followed the other steps in the adaptive basis

selection algorithm. The size of the effective model space was n∗ = 100 with

K = 10 and nk = 10, k = 1, . . . ,K. The CPU running time was about ten

minutes in a computer with an Intel Xeon 2.90 GHz processor with 64GB of

DDR3 RAM.

To identify differentially methylated regions between generations, we used

Kullback-Leibler projection (Gu (2004)) for the “testing” of components which

involve generation variable g, say η2(g) and η12(i, g). Generally, Kullback-Leibler

projection helps assess the plausibility of the null hypothesis that η belongs to

a smaller space H∗ ⊂ H. Thus, let η̂ be the minimizer of penalized likelihood

(2.1) in H. Let η̃ be the Kullback-Leibler projection of η̂ in a smaller space

H∗ ⊂ H, the minimizer of KL(η̂, η) for η ∈ H∗. Let ηC be the constant model
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as in (5.3). Based on an equality which holds for exponential family regression

with canonical links (Gu (2004, Sec. 3.2)),

KL(η̂, ηC) = KL(η̂, η̃) + KL(η̃, ηC),

one can calculate the ratio ρ = KL(η̂, η̃)/KL(η̂, ηC) which quantifies how much

of the structure of η̂ is lost by restricting within H∗. A small ρ indicates an

adequacy of H∗. For example, Gu (2004) suggests a reasonable threshold for ρ

could be in the range from 0.02 to 0.03.

An identified differentially methylated region (DMR) is plotted in Figure 6.

This DMR is in Arabidopsis chromosome 2 ranging from genome position 7,621,000

to 7,641,000, which is in the intergenic region between gene AT2G17540 and gene

AT2G17550 (TON1 RECRUITING MOTIF 26, TRM26). The Kullback-Leibler

projection ratio for the model that contains only η1(i) is 0.11; the ratio for the

model that contains both η1(i) and η2(g) is 0.08. Compared with a threshold

0.03, these ratios suggest that both η2(g) and η12(i, g) in (5.3) should be included.

That is, the methylation levels among this region are differentiated between gen-

erations. Since this DMR is in the intergenic region of the TON1 gene, it is

likely to be a partner of the TON1 gene. It was reported that in Arabidopsis

thaliana, the TON1 proteins have a key regulatory role in microtubule organiza-

tion at the cortex (Drevensek et al. (2012)). Thus, the identified DMR is likely to

concertedly work with the TON1 proteins to regulate microtubule organization.

6. Discussion

Proper modeling of second-generation sequencing data plays an important

role in navigating biological discovery. We develope an effective approximation of

exponential family smoothing spline via adaptive basis selection for nonparamet-

ric modeling of second-generation sequencing data. With this, we constructed a

lower-dimensional effective model space, in which exponential family smoothing

spline models are estimated. We established the asymptotic convergence rate

of smoothing splines via adaptive basis selection. More scalable computation

make exponential family smoothing spline models via adaptive basis selection an

appealing method for ultra-large sample sequencing data. We demonstrated its

good performance in both simulated studies and data examples.

Supplementary Materials

The online supplementary materials include more technical details and proofs

of the theoretical results.
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