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Abstract: Via the transformation of the convex ordering of distributions to the

Lorenz ordering of new distributions, the information ordering of Shannon entropies

is established. The measure of the difference between two Shannon entropies enjoys

some merits.
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1. Introduction

Khinchin (1957) claimed that the discrete Shannon entropy, which enjoys

many nice properties, is the unique uncertainty measure for discrete distribu-

tions. However, for the continuous data models the property of Shannon entropy

seems to be quite ambiguous compared to that of the discrete version. Shannon

himself pointed out that the continuous version is unsatisfactory, lacks invariance

under one-to-one transformation. Neither can the continous Shannon entropy be

directly obtained as the limit of a sequence of discrete entropies. In this note, we

focus on how to clarify some of these ambiguities. A presentation indicates that

the difference between two Shannon entropies is invariant under one-to-one trans-

formations. We may note that the difference between two Shannon entropies is

essentially symmetric, while the Kullback-Leibler divergence is not. For the sake

of comparison, the ordering of Shannon entropies needs some appraisal. Kar-

lin and Rinott (1981) used the majorization ordering to compare the Shannon

entropies, and they further suggested (on page 351) using the notion of totally

positive of order 2 (TP2) to get a more complete theory on Shannon entropy com-

parisons. We adopt their suggestion to study the ordering of Shannon entropy

measures in terms of the notion of convex ordering of distribution functions. The

statistical inference for the one-sided one-sample problem considered by Barlow

and Doksum (1972) can then be further generalized to those of the G-sample

ordered restriction problems.

https://doi.org/10.5705/ss.202016.0366


1726 MING-TIEN TSAI

2. Main Results

Let X1, X2, · · · be independent random variables with a common continu-

ous distribution function F (x) which has absolutely continuous density function

f(x), x ∈ R with respect to Lebesgue measure. The Shannon entropy for f(x) is

denoted by

IS(f) =

∫ ∞
−∞
{− log f(x)}f(x)dx. (2.1)

We assume that the integrability of − log f(x) with respect to f(x) exists, and

denote this class of density functions by

F = {f : IS(f) <∞}. (2.2)

Note that the existence of moment generation function of − log f(x) implies the

existence of Shannon entropy. There are two types of distributions satisfying this

class of distributions: exponential-type distribution and Cauchy-type distribu-

tion.

For any two distributions Fg, Fg+1 ∈ F , it is said that Fg is c-ordered (convex

ordered) with respect to Fg+1 (Fg ≤c Fg+1) if and only if F−1g+1Fg is convex on

the interval where 0 < Fg(x) < 1 (van Zwet (1964)). It is known that Fg ≤c Fg+1

implies that fg(x)/fg+1(F
−1
g+1Fg(x)) is nondecreasing in x for 0 < Fg(x) < 1.

For the G-sample case,

IS(fg)− IS(fg+1) (2.3)

= −
∫ ∞
−∞

log fg(x)fg(x)dx+

∫ ∞
−∞

log fg+1(y)fg+1(y)dy

=

∫ 1

0
log fg+1(F

−1
g+1(u))du−

∫ 1

0
log fg(F

−1
g (u))du

=

∫ 1

0
log[

fg+1(F
−1
g+1(u))

fg(F
−1
g (u))

]du, for all g = 1, · · · , G− 1.

Barlow and Doksum (1972) considered the transformationH−1Fg
(u) =

∫ F−1
g (u)

0 fg+1

[F−1g+1Fg(t)]dt, u ∈ [0, 1], for all g = 1, · · · , G−1. It is easy to see that H−1Fg+1
(u) =

u, HFg+1
(u) is the uniform distribution on [0, 1]. If Fg ≤c Fg+1, then dH−1Fg

(u)/du

= fg+1(F
−1
g+1(u))/fg(F

−1
g (u)) is nonincreasing in u ∈ [0, 1]. Thus, H−1Fg

(u) is

concave on [0, 1] and HFg
(v) is convex on the interval H−1Fg

(0) < v < H−1Fg
(1).

Note that HFg
(v) is a distribution function, where H−1Fg

(0) < v < H−1Fg
(1), since

H−1Fg
(u) (the inverse function of HFg

(v)) is strictly increasing on [0, 1]. This trans-

formation depicts a Lorenz ordering of HFg
(v) with respect to HFg+1

(v) over the
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interval [0, 1]. Let hFg
(v) and hFg+1

(v) be the density function of HFg
(v) and

HFg+1
(v), respectively. Then, after some straightforward manipulations, we have

that
∫ 1
0 log[fg+1(F

−1
g+1(u))/fg(F

−1
g (u))]du = −

∫ 1
0 log hFg

(v)dv. Thus, by the in-

formation inequality we have that −
∫ 1
0 log hFg

(v)dv =
∫ 1
0 log[hFg+1

(v)/hFg
(v)]

hFg+1
(v)dv ≥ 0, for all g = 1, · · · , G− 1.

Theorem 1. If Fg ≤c Fg+1, then IS(fg) ≥ IS(fg+1), for all g = 1, · · · , G− 1.

The representation at equation (2.3) indicates that the difference between

two Shannon entropies is invariant under one-to-one transformations. If C(u) =

F−1g+1Fg(u), then [dH−1Fg
(u)/du]−1 = dC(u)/du. As such, the notion of convex

ordering and the transformation of Barlow and Doksum (1972) are essentially

the same, difference between C(u) and HFg
(u) being a constant. The transfor-

mation of Barlow and Doksum (1972) is used to transform the convex ordering

of distributions Fg and Fg+1 to the Lorenz ordering of distributions HFg
(u) with

respect to HFg+1
(u) (Gastwirth (1971)), which plays an important key for the

proof of Shannon entropy ordering. This works as well for the discrete variable

case, we outline it as in the following.

For any two discrete distributions Fg and Fg+1, let Fg(y) = p′i, y ∈ [ai, ai+1),

i = 1, · · · ,m and Fg(am+1) = 1, am+1 can be infinite, and let Fg+1(y) = pi, y ∈
[ai, ai+1), i = 1, · · · ,m and Fg+1(am+1) = 1. The discrete version of Barlow and

Dorsum’s transformation can be interpreted as follows: First, for HFg+1
(u) we

start from point (0, 0) and then attach a segment with length (pi − pi−1), i =

1, · · · ,m, p0 = 0, sequentially along the line with slope one to the end point

(1, 1). Then, HFg+1
(u) is the continuous uniform distribution on [0, 1]. The

distribution HFg
(u) can then be uniquely determinated by starting from the point

(0, 0) and attaching a segment with length that is the increasement (p′i − p′i−1)
times the corresponding change rate (p′i − p′i−1)/(pi − pi−1) sequentially along

the line with slope (p′i − p′i−1)/(pi − pi−1), i = 1, · · · ,m, p′0 = 0. Furthermore,

the convex ordering is the same as the monotone likelihood ratio ordering; we

have that Fg ≤c Fg+1 implies that (Fg(ai)−Fg(ai−1))/(Fg+1(ai)−Fg+1(ai−1)) is

nondecreasing in ai. Namely, Fg ≤c Fg+1 implies that the slope (p′i− p′i−1)/(pi−
pi−1) is nondecreasing in ai. Moreover, it is easy to see that ai is nondecreasing

in i. Thus, we may conclude that the HFg
(u) is a piecewise linear, continuous,

slope nondecreasing and convex function. Hence, it depicts the Lorenz ordering

of HFg
(u) with respect to HFg+1

(u) over the interval [0, 1]. Thus, the proof in

Theorem 1 can go through for the discrete variable case as well.
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3. Examples

The notions of totally positive of order 2, the convex ordering of two dis-

tributions, and the monotone likelihood ratio are essentially equivalent. In the

literature, there is a wide class of distributions with monotone likelihood ratio

(for the details see Lehmann (1986)), which ensures the ordering of Shannon

entropies by Theorem 1.

In biostatistics, many studies fall under the setup of the well-known Cox pro-

portional hazard (Cox (1972)); its basic model is that F̄g+1(x) = (F̄g(x))λg , λg >

0, for all g = 1, · · · , G − 1. When λg < 1 for all g = 1, · · · , G − 1, it is easy to

see that Fg(x) ≥c Fg+1(x), and hence by Theorem 1 we have IS(fg) ≤ IS(fg+1)

for distributions either continuous or discrete, for all g = 1, · · · , G − 1. Sim-

ilarly, when λg > 1, Fg(x) ≤c Fg+1(x), and hence IS(fg) ≥ IS(fg+1) for all

g = 1, · · · , G− 1.

Asymptotic relative efficiency is essentially defined via large deviation asymp-

totics. It is well known that the Sanov theorem and its generalizations reduce the

problem of large deviations to a minimization problem of Kullback-Leibler diver-

gence on the corresponding set of distributions. Quadratic form statistics, which

often have (asymptotic) noncentral χ2 distributions, play an important role in

statistics; the noncentral χ2 distributions have monotone likelihood ratios, thus

Theorem 1 is applicable. For procedures having the (asymptotic) noncentral χ2

density functions with the same noncentrality, but different degrees of freedom,

the method based on the asymptotic relative efficiency fails to compare them.

However, the method based on the difference between two Shannon entropies can

overcome the disadvantage of the method via large deviation asymptotics, such

as the Kullback-Leibler divergence.
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