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Abstract: An m × n matrix A = (ai,j) is circulant if ai+1,j+1 = ai,j where the

subscripts are reduced modulo n. A question arising in stream cypher cryptanalysis

is reframed as follows: For given n, what is the maximum value of m for which there

exists a circulant m × n (±1)-matrix A such that AAT = nIm. In 2013, Craigen

et al. called such matrices circulant partial Hadamard matrices (CPHMs). They

proved some important bounds and compiled a table of maximum values of m for

small n via computer search. The matrices and algorithm are not in the literature.

In this paper, we introduce general difference sets (GDSs), and derive a result that

connects GDSs and CPHMs. We propose an algorithm, the difference variance

algorithm (DVA), which helps us to search GDSs. In this work, the GDSs with

respect to CPHMs listed by Craigen et al. when r = 0, 2 are found by DVA, and

some new lower bounds are given for the first time.

Key words and phrases: Circulant partial hadamard matrices, functional magnetic

resonance imaging (fMRI), general difference sets.

1. Introduction

Difference sets play a crucial role in combinatorial design theory, and pro-

vide powerful tools for obtaining experimental designs that possess advantageous

statistical properties. A well-known application of difference sets is on the con-

struction of symmetric balanced incomplete block designs (SBIBDs) (Andersen

(1990); Bose (1939); Wallis (2007)). Difference sets can also be applied to obtain

Hadamard matrices (Hadamard (1893)), which are closely connected to SBIBDs,

and are widely considered in design of experiments for rendering useful solutions

to some challenging problems (Hedayat et al. (1978)). Recently, Kao (2013, 2014)

reported a modern application of difference sets in brain imaging studies. In par-

ticular, Paley difference sets are applied to obtain optimal designs for functional

magnetic resonance imaging (fMRI) experiments. As a major drawback, this

difference method works only for limited situations, and fails to find designs for
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other cases that might be encountered in practice. Another useful combinato-

rial construction in design of experiments is the ‘r-row-regular circulant partial

Hadamard matrix’ (Craigen et al. (2013)). An application of these matrices in

constructing good fMRI designs is also discussed in (Kao (2015)). With given

integers m, n, and r, an m-by-n, r-row-regular CPHM, abbreviated r-H(m×n),

is a ±1 circulant matrix H with Hj = rj and HHT = nIm; here, j is an

all-ones vector, Im is an identity matrix of order m, and HT is the transpose

of H. When m = n, an r-H(m × n) is a circulant Hadamard matrix that as

conjectured by Ryser (1963), may not exist when n > 4. For m < n, Low et

al. (2005) considered an exhaustive computer search to find some 0-H(m × n)

yielding the maximum m for each n = 4t ≤ 52. However, such a search for

obtaining 0-H(m×n) with the maximum m can be clumsy when n is large. This

also largely hinders the usefulness of CPHMs; e.g., in fMRI studies, n can easily

be tens or hundreds. A novel, efficient approach is called for.

We present a general combinatorial construction, general difference set (GDS),

which is useful because it provides a unified framework for r-H(m× n) and the

difference sets that are widely considered in the literature. As is to be seen,

the latter constructs are either special cases of GDS or can be constructed by

some GDS. We provide the definition and some useful general properties of the

GDS. We then work on the GDSs that render r-H(m× n), which are useful for

fMRI studies and such other applications as stream cipher encryption (Low et al.

(2005)). Unfortunately, obtaining such GDSs remains a challenging combinato-

rial problem. To tackle this, we propose an efficient and effective computational

approach through a difference variance algorithm (DVA). The DVA allows us to

efficiently identify useful r-H(m × n) without much computational effort. For

clarity, we focus only on cases where r = 0 and 2, but the DVA can also work for

other cases.

In Section 2, we provide the definition and some useful properties of the

GDS. The connection between the GDS and r-H(m×n) is established in Section

3. We then describe our proposed algorithm, DVA, for obtaining some useful

GDSs in Section 4. Discussion and conclusion are in Section 5.

2. Preliminaries and Definitions

The difference method is a powerful tool for constructing such high-quality

experimental designs as BIBDs. A (v, k, λ) difference set defined in Zv = {1, . . . ,
v} is a set D = {d1, . . . , dk} that is k-subset of Zv for which every element in
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Zv \ {v} can be expressed as di − dj for i 6= j in exactly λ ways. It is worth

mentioning that Zv usually denotes the collection of integers from 0 to v − 1 in

the literature, but here we use Zv to denote the set of integers 1, . . . , v. When

(v, k, λ) = (4t− 1, 2t− 1, t− 1) and v is a prime power, we have the well-known

Paley difference set (Paley (1933)) that consists of all the quadratic residues in

GF (v) (The Galois field with v elements). Following (Kao (2015)), the Paley

difference sets can also be adopted to obtain some 0-H(m × n), although this

was not pointed out in that paper. While this method gives an infinite number

of 0-H(m × n), the value of m for each n may be relatively small compared to

the maximum possible m. For example, the Paley difference set can achieve an

0-H(5×20), but the maximum m for this n = 20 is m = 7 (Craigen et al. (2013);

Low et al. (2005)). Clearly, the existence of r-H(m× n) implies the existence of

r-H((m − 1) × n). For a statistical linear model setting, m also corresponds to

the number of factors we can orthogonally estimate. Obtaining r-H(m×n) with

a large m is thus of great interest.

In this study, we present a powerful method to construct r-H(m× n). The

main idea is to make use of general difference sets (GDS).

Definition 1. A (v, k;λ1, . . . , λv−1) GDS is a set D = {d1, . . . , dk} of distinct

elements of Zv such that the difference l appears λl times in the multiset {di−dj
(mod v) | di, dj ∈ D, i 6= j} for l = 1, . . . , v − 1.

If λ1, . . . , λv−1 are all λ, then the GDS reduces to an ordinary (v, k, λ) dif-

ference set, and thus use (v, k, λ) to denote the parameters of GDS when all the

λs’s are equal.

Definition 2. Let D be a GDS in Zv. The incidence matrix of D is an v × v
matrix A = (ai,j) with

ai,j =

{
−1 if j ∈ D + (i− 1),

+1 otherwise,

where D + (i − 1) = {x + (i − 1) | x ∈ D} and all elements are reduced modulo

v; i, j = 1, . . . , v.

The first row of A is a binary sequence with ai,j = −1 where j ∈ D and all

the others are +1. Then the information matrix of A can be directly obtained.

Theorem 1. Let A be the incidence matrix of a (v, k;λ1, . . . , λv−1) GDS. Then

M = AAT is an v × v circulant matrix with entries mi,j = v when i = j

and mi,j = v − 4k + 4λl when i 6= j, where l = j − i (mod v). Furthermore,

M = ATA.
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Proof. Let ai be the ith row of A and Bi = D + (i − 1) for i = 1, . . . , v. It is

clear that mi,i = ai · ai = v and mi,j = ai · aj = aj · ai = mj,i. By the definition,

if Bj = Bi+ (j− i) (mod v) as i 6= j, then we have |Bi∩Bj | = λl where l = j− i
(mod v). It is easy to verify that ai,s · aj,s = −1 if s ∈ (Bi \Bj) ∪ (Bj \Bi), and

ai,s · aj,s = 1 otherwise. This implies that mi,j = (+1)[v − (|Bi| + |Bj | − 2|Bi ∩
Bj |)] + (−1)(|Bi|+ |Bj | − 2|Bi ∩Bj |). Since |Bi|+ |Bj | − 2|Bi ∩Bj | = 2k − 2λl,

we have mi,j = v − 4k + 4λl. In addition, our claim that M = AAT = ATA

directly follows from the fact that A is a circulant matrix.

Example 1. Consider a set D = {1, 2, 3, 5} in Z8. Since the differences 3 and 5

appear exactly once and the others twice, D is a (8, 4; 2, 2, 1, 2, 1, 2, 2) GDS. Let

A be the incidence matrix of D. With Definition 2 and Theorem 1, we obtain

the matrix M = AAT as

M =



8 0 0 −4 0 −4 0 0

0 8 0 0 −4 0 −4 0

0 0 8 0 0 −4 0 −4

−4 0 0 8 0 0 −4 0

0 −4 0 0 8 0 0 −4

−4 0 −4 0 0 8 0 0

0 −4 0 −4 0 0 8 0

0 0 −4 0 −4 0 0 8


.

From M , one can easily see that an 0-H(3×8) can be formed by cyclically right-

shifting the first row, (−1,−1,−1, 1,−1, 1, 1, 1), of A three times. This is because

the upper-left 3-by-3 submatrix of M is 8I3. By moving this 3-by-3 ‘window’

along the diagonal of M , we again have matrices of 8I3. This implies that any

three consecutive rows of A form an 0-H(3× 8), which also is guaranteed by the

fact that a cyclic shift of an 0-H(3× 8) remains an 0-H(3× 8).

A procedure equivalent to that in (Kao (2015)) can be used to obtain the

difference set D by adjusting the Paley difference set. It might be a systematic

way to get an 0 − H(m × n), but m is generally very small. The exhaustive

computer search (Low et al. (2005)) can be used to identify some 0-H(m × n)

with the maximum m, but is inefficient. In what follows, we provide some results

for establishing the connection between the GDS and r-H(m × n) for a general

r. We then propose an efficient algorithm for finding such r-H(m × n) with a

large, if not the maximum, m.
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3. Main Results

For convenience, here, Ãm denotes an m×n matrix consisting of the first m

rows of an n× n matrix A. We also use ID(λ) to denote the index α such that

λ1, . . . , λα−1 are all λ, but λα 6= λ where α > 1.

Theorem 2. Let D be a (n, k;λ1, . . . , λn−1) GDS, where n ≡ 0 (mod 4), and

let A be its incidence matrix. Then α is the maximum number of rows such that

Ãα is an r-H(α × n) if and only if k = (n − r)/2 and ID((n − 2r)/4) = α.

Furthermore, Ãα+1 is not an r-H((α+ 1)× n).

Proof. By Theorem 1, if Ãα is an r-H(α × n) with the ith row ai, then 0 =

ai · aj = n − 4k + 4λj−i for i 6= j. Since each row sum of A equals r, we have

k = (n − r)/2. It follows that λj−i = (n − 2r)/4 for 1 ≤ i, j ≤ α and i 6= j, so

ID((n− 2r)/4) = α.

Conversely, since ID((n − 2r)/4) = α, we have λi = (n − 2r)/4 for all

i = 1, . . . , α−1, but λα 6= (n−2r)/4. In addition, each row of A contains (n−k)

(+1)’s and k (−1)’s, so that the row sums of A are (n−k)−k = n−2((n−r)/2) =

r. It is also clear that we have Ãαjn = rjα. Moreover, from Theorem 1, the

(i, i)-entry of ÃαÃ
T
α is n, and its (i, j)-entry is n − 4((n − r)/2) + 4λj−i =

n − 2(n − r) + (n − 2r) = 0 when i 6= j. It follows that Ãα is an r-H(α × n).

Because λα 6= λα−1, it is clear that Ãα+1 is not an r-H((α+ 1)× n).

For clarity, we focus on the cases r = 0 and r = 2. Then Theorem 2 has the

following corollary.

Corollary 1. Let D be a (n, k;λ1, . . . , λn−1) GDS, where n ≡ 0 (mod 4), and

let Ã be the incidence matrix of D. Then

(i) If k = n/2 and ID(n/4) = α, Ãα is an 0-H(α× n).

(ii) If k = (n/2)− 1 and ID((n/4)− 1) = n/2, Ãn/2 is an 2-H((n/2)× n).

Consider the theoretical upper bound of α. From the definition of GDS, it

is obvious that λl = λn−l because the frequencies of l = i − j and −l = j − i
are the same. Once λ1, . . . , λn/2 are all λ, all λl must equal λ. This implies that

an r-H(α × n) can be extended to be an r-H(n × n) if α > n/2. However, this

contradicts Ryser’s conjecture. If Ryser’s conjecture were true, then α ≤ n/2.

It can be easily proved that the equality holds only if r = 2 by counting the

allocation of lambdas. Craigen et al. (2013) has proven that m < n/2 as r = 0

by linear algebra, it can also be proven by a discussion of differences.

There might be many GDSs having the same parameters, resulting in mul-

tiple r-H(m × n). In Table 2, we list the GDS for obtaining r-H(m × n) when
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8 ≤ n ≤ 76 and r = 0, 2. In fMRI experiment, the model matrix for estimating

HRF can be viewed as the transpose of an r-H(m × n), so r is relevant to the

treatment setting of each effect. We only consider the cases r = 0, 2 in order to

avoid the bias of the estimation in practice. In fact, we can find more if r > 2.

These GDSs are obtained by using an efficient computer algorithm introduced in

the next section. With our algorithm, practitioners can easily construct CPHMs.

4. Difference Variance Algorithm

We propose an efficient algorithm for searching the GDSs of the required

r-H(m × n). We define a function f that maps a GDS to the frequency of

occurrence of each difference. In particular, let D be a collection of all k-subsets

of Zn. Define f : D → N n−1 by D 7→ (λ1, . . . , λn−1) where N is the non-

negative integers. Define SP as a circulant matrix of order n with the first row

(0, 1, . . . , n− 1). If all elements in Zn are considered as the ordered vertices on a

ring, then the value of each entry (x, y) in SP is the shortest distance between

x and y, or y − x(mod n). Let SP[D] be a matrix constructed by deleting the

jth column and row of SP for all j ∈ Zn \D. Each λi of f(D) can directly be

obtained by counting the frequency the element i in SP[D]. In our algorithm,

we use this method to find f(D) for any given D ∈ D. Here is a criterion to

determine whether a GDS is good or not under the condition of Theorem 2. Let

D be a (n, k;λ1, . . . , λn−1) GDS with k = (n− r)/2, and take

dvar(D,M) =

M−1∑
i=1

(M − i)(λi − ((n− 2r)/4))2

M − 1
, (4.1)

where M is a possible maximum value of m such that an r-H(m × n) exists.

Equation (4.1) evaluates the weighted least-square distance from the optimal

condition λi = (n−2r)/4. The order of f(D) is significant, because it corresponds

to the value of ID((n − 2r)/4) in Theorem 2. Hence, we set the weight M − i
for each term. If dvar(D,M) = 0, then the corresponding incidence matrix ÃM

is an r-H(M × n) and ID((n − 2r)/4) = M . Thus, dvar-value is our objective

function. For fixed M in general, the smaller the dvar-value is, the bigger the m

we get.

As a toy example, we evaluate the dvar-value of all combinations of 0-H(m×
n) when n = 28. There are total 40, 116, 600 combinations, but only 784 of them

attain the maximum value of m = 9. By exchanging the signs and shifting the

initial vector, there are only 28 distinct 0-H(9 × 28). However, some of them

might be isomorphic. This suggests the difficulty of searching CPHMs when
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Table 1. The difference variance algorithm

1: Randomly generate a subest D of Zn

2: Evaluate dvar(D,M)
3: while GM 6= 0 do
4: Obtain a class of sets via EXCHANGE operation
5: Evaluate the dvar-value of each set to get the LM
6: if LM < GM then
7: update the GM and set D
8: else
9: if LM = GM then

10: perform the ADJUST operation
11: end if
12: else go to Step 1
13: end if
14: end while

n is large. Instead of exhaustive search, we propose an algorithm, difference

variance algorithm (DVA), to find the required GDSs. DVA is an ordinary hill-

climbing search that processes breadth-first search from a random starting point

in the search space by a greedy algorithm according to dvar-value. The DVA is

summarized as Table 1.

4.1. Initialization step

Users input three positive integers n, r, and M , where n is a multiple of

4, r could be 0 or 2, and M is a possible maximum value of m such that an

r-H(m × n) exists. Randomly choose ((n − r)/2) − 2 elements from {3, · · · , n}
with the elements 1 and 2 to be a set D. Evaluate the dvar(D,M) via f(D) and

(4.1). The global maximum (GM) is the smallest dvar-value of all searched sets.

In this step, GM = dvar(D,M).

4.2. EXCHANGE operation and ADJUST operation

The EXCHANGE operation generates a class of sets by individually exchang-

ing each element in D \ {1, 2} and its complement except the elements 1 and 2.

Therefore, it produces [(n− 1)2 − (r + 1)2]/4 different sets. The local minimum

(LM) is the smallest dvar-value of a set in the class.

The ADJUST operation is the most important procedure in DVA. In our

experience, EXCHANGE may result in few sets, say D′, whose dvar-value are

GM , but they still may be used to get smaller dvar-value via the EXCHANGE

operation. In this, we obtain LM ′ for each set D ∈ D′ via EXCHANGE. If



1722 YUAN-LUNG LIN, FREDERICK KIN HING PHOA AND MING-HUNG KAO

LM ′ < GM , then update the GM and set D. If LM ′ ≥ LM = GM , then

go to Step 1. The algorithm may get stuck when we have more than two local

minimum points in the search space. This procedure may cause these sets D′ to

switch to each other via EXCHANGE, so we jump to other points in order to

avoid getting stuck.

Repeatedly using the EXCHANGE operation, we could get better GDSs

from the previous one. In addition, the ADJUST operation helps us to find some

specific GDSs and avoid getting stuck. The program will stop generally when we

find the required GDSs, but it is allowed to weaken the condition. For example.

the condition in Step 3 could be set as GM > 0.2. When n is large, it is hard

to find the required GDSs. But we may find a good (if not optimal) GDS if we

relax the condition.

5. Discussion and Conclusion

Compared to complete enumeration, the general difference set (GDS) is a

powerful and efficient tool for the construction of circulant-type designs. We

point out the relationship between combinatorial designs and circulant partial

Hadamard matrices. We propose a criterion to quantify a GDS and apply it

as DVA to find the GDS of an r-H(m × n). We depict 0-H(m × n) and 2-

H(m×n) constructed from specific GDSs, and 0-H(m×n) is proved as universally

optimal for estimating the HRF of a stimulus type and for comparing HRFs of

two stimulus types (Cheng and Kao (2015)). We have searched the CPHMs when

n > 52, see Table 2. Many new lower bounds have been discovered.

The results in this study are useful for fMRI experiments with two stimulus

types when the objective is to estimate the contrasts between HRFs. How to

extend the current result to designs of fMRI experiments with three or more

stimulus types remains an open question. In addition, although the current

search of CPHMs is much faster than complete enumeration, it may be possible

to further speed up the search via such parallel computing techniques as particle

swarm optimization.
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Table 2. GDS for Constructing r-H(m× n) for n ≤ 76.

n r max m General difference set
8 0 3 {1, 2, 3, 5}
8 2 4 {1, 2, 4}
12 0 5 {1, 2, 3, 6, 10, 12}
12 2 6 {1, 2, 3, 5, 10}
16 0 7 {1, 2, 3, 4, 6, 7, 9, 13}
16 2 8 {1, 2, 3, 5, 6, 8, 12}
20 0 7 {1, 6, 7, 10, 12, 14, 15, 16, 17, 18}
20 2 10 {1, 2, 3, 4, 6, 10, 15, 17, 18}
24 0 9 {1, 2, 3, 5, 6, 7, 10, 12, 13, 20, 21, 23}
24 2 12 {1, 2, 3, 4, 6, 8, 11, 12, 19, 21, 22}
28 0 9 {1, 2, 4, 5, 7, 13, 14, 18, 21, 22, 23, 24, 26, 28}
28 2 14 {1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 20, 22, 25}
32 0 12 {1, 2, 3, 7, 13, 14, 16, 19, 21, 23, 24, 25, 26, 27, 30, 31}
32 2 14 {1, 3, 5, 8, 9, 17, 18, 20, 22, 23, 26, 27, 28, 29, 30}
36 0 14 {1, 5, 7, 14, 16, 17, 18, 19, 22, 24, 25, 27, 28, 29, 31, 32, 35, 36}
36 2 18 {1, 2, 3, 4, 5, 8, 9, 11, 13, 14, 16, 17, 18, 24, 28, 30, 33}
40 0 17 {1, 2, 3, 6, 9, 15, 16, 17, 22, 25, 26, 27, 29, 30, 32, 34, 36, 37, 38, 40}
40 2 20 {1, 2, 4, 5, 6, 8, 10, 11, 12, 15, 17, 18, 19, 20, 23, 29, 33, 34, 36}
44 0 16 {1, 2, 3, 4, 5, 6, 10, 11, 13, 14, 15, 17, 18, 20, 21, 23, 29, 31, 35, 36, 40, 42}
44 2 18 {1, 2, 5, 6, 7, 9, 11, 12, 15, 17, 18, 19, 20, 21, 23, 24, 28, 30, 35, 37, 38}
48 0 17

{1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 16, 17, 18, 22, 26, 28, 31, 32, 33, 39, 40, 42, 45,
47}

48 2 24 {1, 3, 5, 6, 7, 8, 10, 11, 14, 16, 17, 18, 19, 22, 23, 24, 26, 33, 36, 37, 39, 44, 45}
52 0 20

{1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 15, 16, 19, 20, 23, 25, 28, 31, 36, 37, 38, 42, 44, 46,
47, 51}

52 2 26
{1, 3, 6, 7, 8, 9, 10, 12, 15, 16, 18, 19, 20, 23, 24, 25, 26, 28, 30, 37, 39, 40, 43,
47, 48}

56 0 23(*)
{1, 3, 5, 6, 9, 10, 11, 12, 13, 14, 18, 20, 21, 22, 23, 25, 26, 27, 28, 32, 38, 39,
43, 46, 47, 49, 52, 55}

56 2 28
{1, 2, 4, 5, 6, 7, 8, 12, 14, 15, 17, 18, 20, 22, 23, 24, 26, 27, 31, 37, 38, 39, 44,
47, 49, 53, 56}

60 0 18(*)
{1, 2, 3, 5, 7, 9, 10, 12, 13, 15, 16, 17, 18, 21, 22, 25, 27, 28, 29, 30, 38, 42, 45,
47, 48, 49, 52, 53, 54, 59}

60 2 30
{1, 2, 3, 4, 5, 6, 8, 10, 12, 13, 15, 16, 19, 22, 23, 24, 27, 28, 29, 37, 39, 41, 44,
47, 48, 50, 55, 56, 60}

64 0 17(*)
{1, 2, 6, 7, 8, 10, 12, 13, 15, 17, 18, 19, 21, 22, 25, 28, 30, 31, 32, 33, 35, 36,
40, 48, 49, 53, 54, 56, 60, 62, 63, 64}

64 2 32
{1, 2, 3, 4, 5, 7, 9, 11, 14, 15, 16, 19, 20, 21, 22, 24, 27, 28, 30, 31, 40, 42, 44,
45, 49, 50, 55, 57, 58, 61, 64}

68 0 17(*)
{1, 2, 3, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 25, 27, 29, 31, 36, 37, 40, 41,
46, 48, 49, 52, 54, 56, 57, 59, 62, 63, 66}

68 2 18(*)
{1, 4, 5, 7, 8, 10, 11, 12, 15, 19, 20, 21, 24, 25, 26, 27, 29, 33, 37, 39, 44, 50,
52, 53, 54, 55, 57, 60, 61, 62, 63, 64, 67}

72 0 17(*)
{1, 2, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 18, 19, 22, 23, 28, 29, 31, 37, 39, 40, 43,
45, 50, 52, 55, 56, 57, 59, 60, 62, 63, 64, 70, 72}

72 2 16(*)
{1, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 22, 23, 26, 28, 29, 33, 35, 37, 38, 43,
46, 47, 49, 54, 59, 60, 62, 64, 66, 67, 68, 69}

76 0 17(*)
{1, 2, 7, 8, 9, 11, 15, 18, 19, 20, 22, 23, 24, 29, 33, 34, 39, 41, 46, 47, 48, 49,
50, 51, 52, 54, 55, 56, 58, 59, 61, 62, 64, 67, 70, 71, 73, 75}

76 2 38
{1, 2, 4, 5, 6, 7, 9, 11, 12, 17, 21, 23, 24, 30, 32, 33, 34, 38, 41, 46, 48, 51, 52,
53, 54, 56, 57, 58, 60, 63, 64, 65, 66, 67, 69, 73, 74}
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