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This supplement contains proof of Theorem 1.

Proof of Theorem 1

Consider the transformation model

H(Y ∗) = θ′0W
∗ + ϵ∗, (S1.1)

where H(·) is an unknown monotonically increasing function, ϵ∗ is the er-

ror, independent of W ∗, with unspecified distribution, and θ0 is a (d + 1)-

dimensional vector of regression coefficients. Accordingly, W ∗ can be de-

composed into W = (Z∗, X∗), where Z∗ is the covariate corresponding to

the fixed regression coefficient and X∗ is the other d-dimensional covariate.

Hence, the model can be rewritten as

H(Y ∗) = Z∗ + β′
0X

∗ + ϵ∗.
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We suppose the covariance decomposition satisfies that Z̃∗ := Z∗+β′
0X

∗

is irrelevant of X∗. Such a decomposition always exists since θ′0W
∗ is a one-

dimensional vector in a (d+1)-dimensional linear space of random variables

with inner product defined as ⟨X, Y ⟩ = E(XY ), so it has a d-dimensional

orthogonal compliment which can be defined as X∗. Furthermore, Z̃∗ and

X∗ are supposed to be independent.

Consistency:

Define g(β) = E[I{Y1 < Y2}I{βX1 + Z1 < βX2 + Z2}] and gn(β) =

1
n2−n

∑
i ̸=j I{Yi < Yj}I{βXi + Zi < βXj + Zj}.

Step 1. We show that g(β) has a unique maximum at β = β0.

In the response-based sampling, the conditional distribution of (X,Z)|Y

in the sample is the same as the conditional distribution of (X∗, Z∗)|Y ∗ in

the population. Therefore, for any t1 < t2,

E[I{Y1 < Y2}I{βX1 + Z1 < βX2 + Z2}|Y1 = t1, Y2 = t2]

= P (βX1 + Z1 < βX2 + Z2|Y1 = t1, Y2 = t2)

= P (βX∗
1 + Z∗

1 < βX∗
2 + Z∗

2 |Y ∗
1 = t1, Y

∗
2 = t2)

= P (Z∗
1 − Z∗

2 < βX∗
2 − βX∗

1 |β0X
∗
1 + Z∗

1 + ϵ∗1 = H(t1), β0X
∗
2 + Z∗

2 + ϵ∗2 = H(t2))

= P (Z̃∗
1 − Z̃∗

2 < (β − β0)(X
∗
2 −X∗

1 )|Z̃∗
1 + ϵ∗1 = t̃1, Z̃

∗
2 + ϵ∗2 = t̃2)

=

∫
P (ξ(β) > s1 − s2)fZ̃∗(s1)fϵ∗(t̃1 − s1)fZ̃∗(s2)fϵ∗(t̃2 − s2)ds1ds2∫

fZ̃∗(s)fϵ∗(t̃1 − s)ds
∫
fZ̃∗(s)fϵ∗(t̃2 − s)ds

, (S1.2)
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where t̃i = H(ti), i = 1, 2.

The denominator is irrelevant with β. The numerator will be proved to

have a unique maximum at β = β0. The numerator can be written as

1

2

∫
[1− sgn(s1 − s2)P (|ξ(β)| < |s1 − s2|)]

fZ̃∗(s1)fϵ∗(t̃1 − s1)fZ̃∗(s2)fϵ∗(t̃2 − s2)ds1ds2

=
1

2

∫
fZ̃∗(s1)fϵ∗(t̃1 − s1)fZ̃∗(s2)fϵ∗(t̃2 − s2)ds1ds2 +Π(β)

where

Π(β) = −1

2

∫
sgn(s1 − s2)P (|ξ(β)| < |s1 − s2|)

fZ̃∗(s1)fϵ∗(t̃1 − s1)fZ̃∗(s2)fϵ∗(t̃2 − s2)ds1ds2.

It then suffices to show that Π(β) is uniquely maximized at β = β0. To

this end, write

Π(β) =
1

2

∫
s1<s2

g∗β(|s1 − s2|)fZ̃∗(s1)fϵ∗(t̃1 − s1)fZ̃∗(s2)fϵ∗(t̃2 − s2)ds1ds2

−1

2

∫
s1>s2

g∗β(|s1 − s2|)fZ̃∗(s1)fϵ∗(t̃1 − s1)fZ̃∗(s2)fϵ∗(t̃2 − s2)ds1ds2

=
1

2

∫
s1<s2

g∗β(|s1 − s2|)fZ̃(s1)fZ̃(s2)

[fϵ∗(t̃1 − s1)fϵ∗(t̃2 − s2)− fϵ∗(t̃1 − s2)fϵ∗(t̃2 − s1)]ds1ds2,

(S1.3)

where we define g∗β(t) = P (|ξ(β)| < t) and then g∗β0
= 1 since ξ(β0) ≡ 0.
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Since g∗(·) is only maximized at β = β0 by assumption, to show that β0

is the unique maximizer of g(β), we only need to prove that the quantity

in the square brackets is positive for all t̃1 < t̃2 and s1 < s2.

Now we show

h(t̃1 − s1) + h(t̃2 − s2) > h(t̃1 − s2) + h(t̃2 − s1)

for all t̃1 < t̃2 and s1 < s2, where h = log fϵ.

By the fact that fϵ∗ is log-concave,

∂

∂t
(h(t− s1)− h(t− s2)) =

∫ t−s1

t−s2

d2

ds2
h(s)ds < 0.

Therefore h(t− s1)− h(t− s2) is decreasing in t. As a result,

h(t̃1 − s1) + h(t̃2 − s2) > h(t̃1 − s2) + h(t̃2 − s1).

Step 2. We show that

sup
β

|gn(β)− g(β)| = Op(

√
log n

n
). (S1.4)

For each n ∈ N , let {βn1 , · · · , βnm} be a 1/n2-net of B, which means

that

B ⊂ ∪m
k=1B(βnk

,
1

n2
).

Then m = O(n2d).
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For M > 1, we have

P (sup
β
[gn(β)− g(β)] > M

√
log n

n
)

≤ P ( sup
k=1,··· ,m

[gn(βnk
)− g(βnk

)] > (M − 1)

√
log n

n
)

+P (sup
β
[gn(β)− g(β)]− sup

k=1,··· ,m
[gn(βnk

)− g(βnk
)] >

√
log n

n
).(S1.5)

By Hoeffding’s inequality (1963) for U-statistics, the first term in the

right hand side of (S1.5) can be bounded by O(n2d−(M−1)2/4). Using Cheby-

shev’s inequality, the second term in the right hand side of (S1.5) is bounded

by O( 1
n2 ).

Now we have shown that

P (sup
β
[gn(β)− g(β)] > M

√
log n

n
)

= O(n2d−(M−1)2/4) +O(
1

n log n
). (S1.6)

Since the last equality still holds if we replace gn and g by −gn and −g,

it can be written as

P (sup
β

|gn(β)− g(β)| > M

√
log n

n
)

= O(n2d−(M−1)2/4) +O(
1

n log n
). (S1.7)

Then it follows equality (S1.4).

Step 3. We show that β̂n converges to β0 in probability.
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Since β0 is the unique maximizer of g, and β̂n is the maximizer of gn,

we have

0 ≤ g(β0)− g(β̂n)

= [g(β0)− gn(β0)]− [g(β̂n)− gn(β̂n)]− [gn(β̂n)− gn(β0)]

≤ [g(β0)− gn(β0)]− [g(β̂n)− gn(β̂n)]

= Op(

√
log n

n
) +Op(

√
log n

n
)

= Op(

√
log n

n
) (S1.8)

On the other hand, by the differentiability of density functions of Z̃

and X, note that β0 is the unique maximizer of g and ġ(β0) = 0, the Taylor

expansion can then be written as

g(β̂n)− g(β0) = −(β̂n − β0)
′A(β̂n − β0) + op(β̂n − β0)

2, (S1.9)

where A is the negative hessian matrix of g at β0, which is a positive definite

matrix.

Compare the last two equations, it follows that

β̂n − β0 = Op(
4

√
log n

n
) = op(n

−1/5). (S1.10)

The consistency is proved.

Asymptotic normality:
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We still use the notation of g and gn as above. Furthermore, denote

ϵn(β) = gn(β)− g(β). (S1.11)

Standard decomposition of U-statistics gives

ϵn(β)− ϵn(β0) =
1

n

n∑
i=1

bi(β) +
1

n2 − n

∑
i<j

dij(β), (S1.12)

where

bi(β) = E[aij(β) + aji(β)− 2Eaij(β)|Zi, Xi, Yi], (S1.13)

dij(β) = aij(β) + aji(β)− 2Eaij(β)− bi(β)− bj(β). (S1.14)

and

aij(β) = [I{Zi + β′Xi > Zj + β′Xj} − I{Zi + β′
0Xi > Zj + β′

0Xj}]

I{Yi > Yj}. (S1.15)

Note that Ebi(β) ≡ 0, Taylor expansion gives

1

n

n∑
i=1

bi(β) = (β − β0)
′ 1

n

n∑
i=1

ḃi(β0) + op(|β − β0|)2. (S1.16)

Using exponential inequality again, similar to the step 2 in the proof of

consistency, we have

sup
|β−β0|=op(n−1/5)

| 1

n2 − n

∑
i<j

dij(β)| = op(n
−1). (S1.17)
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So far we have shown that

gn(β)

= g(β) + ϵn(β)

= g(β0)−
1

2
(β − β0)

′A(β − β0) + (β − β0)
′ 1

n

n∑
i=1

ḃi(β0) + ϵn(β0) + op(|β − β0|)2

+op(n
−1)

= fn(β) + ϵn(β0) + op(n
−1), (S1.18)

where

fn(β)

= g(β0)−
1

2
(β − β0)

′A(β − β0) + (β − β0)
′ 1

n

n∑
i=1

ḃi(β0) + op(|β − β0|)2

= g(β0)−
1

2
(β − β0)

′An(β − β0) + (β − β0)
′ 1

n

n∑
i=1

ḃi(β0)

= g(β0)−
1

2
{A1/2

n [β − β0 − A−1
n

1

n

n∑
i=1

ḃi(β0)]}′{A1/2
n [β − β0 − A−1

n

1

n

n∑
i=1

ḃi(β0)]}

+
1

2
(
1

n

n∑
i=1

ḃi(β0))
′A−1

n (
1

n

n∑
i=1

ḃi(β0)), (S1.19)

where we let op(|β−β0|)2 = cn|β−β0|2 with cn = op(1) and An = A−2cnI.

So the maximizer of fn is

γ̂n = β0 + A−1
n

1

n

n∑
i=1

ḃi(β0) (S1.20)
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Suppose that β̂n is the maximizer of gn, then

0 ≤ fn(γ̂n)− fn(β̂n)

= [fn(γ̂n) + ϵn(β0)− gn(γ̂n)]− [fn(β̂n) + ϵn(β0)− gn(β̂n)]− [gn(β̂n)− gn(γ̂n)]

≤ [fn(γ̂n) + ϵn(β0)− gn(γ̂n)]− [fn(β̂n) + ϵn(β0)− gn(β̂n)]

= op(n
−1) + op(n

−1)

= op(n
−1). (S1.21)

On the other hand, from the expression of fn,

fn(γ̂n)− fn(β̂n)

=
1

2
{A1/2

n [β̂n − β0 − A−1
n

1

n

n∑
i=1

ḃi(β0)]}′{A1/2
n [β̂n − β0 − A−1

n

1

n

n∑
i=1

ḃi(β0)]}.

(S1.22)

Compare (S1.21) and (S1.22), finally we have

β̂n = β0 + A−1
n

1

n

n∑
i=1

ḃi(β0) + op(n
−1/2)

= β0 + A−1 1

n

n∑
i=1

ḃi(β0) + (A−1
n − A−1)

1

n

n∑
i=1

ḃi(β0) + op(n
−1/2)

= β0 + A−1 1

n

n∑
i=1

ḃi(β0) + op(n
−1/2), (S1.23)

where the last equation comes from that

A−1
n − A−1 = op(1)
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and

1

n

n∑
i=1

ḃi(β0) = Op(n
−1/2)

by the definition of An and the central limit theorem.

Therefore,

√
n(β̂n − β0) = A−1 1√

n

n∑
i=1

ḃi(β0) + op(1) → N(0,Σ)

in distribution, where

Σ = A−1V ar{ḃ1(β0)}(A−1)′.

We further define B = V ar{ḃ1(β0)} and the proof is done.


