Coherence for Multivariate Random Fields

Department of Applied Mathematics, University of Colorado, Boulder, CO, USA

Supplementary Material

This supplementary material contains proofs for the results of the manuscript.

S1 Supplemental Material: Proofs

The following Lemma is useful in proving some results of the manuscript.

Lemma 1. Suppose $Z_1(\mathbf{s})$ is a stationary processes on \mathbb{R}^d with covariance function $C_1(\mathbf{h})$ having spectral density $f_1(\boldsymbol{\omega})$ and $Z_2(\mathbf{s}) = \int K(\mathbf{s} - \mathbf{u})Z_1(\mathbf{u})d\mathbf{u}$ where K is continuous, symmetric and square integrable with Fourier transform $f_K(\boldsymbol{\omega})$. Then $Z_2(\mathbf{s})$ has covariance function $C_2(\mathbf{h}) = \int \int K(\mathbf{u} + \mathbf{v} - \mathbf{h})K(\mathbf{v})C_1(\mathbf{u})d\mathbf{u}d\mathbf{v}$ with associated spectral density $f_2(\boldsymbol{\omega}) = f_1(\boldsymbol{\omega})f_K(\boldsymbol{\omega})^2$. Additionally, the cross-covariance function between Z_1 and Z_2 is $C_{12}(\mathbf{h}) = \int K(\mathbf{u} - \mathbf{h})C_1(\mathbf{u})d\mathbf{u}$ with spectral density $f_{12}(\boldsymbol{\omega}) = f_1(\boldsymbol{\omega})f_K(\boldsymbol{\omega})$.

The proof of this Lemma involves straightforward calculations involving convolutions and is not included here. We recall the spectral representation for a stationary vector-valued process $\mathbf{Z}(\mathbf{s}) \in \mathbb{R}^p, \mathbf{s} \in \mathbb{R}^d$ with matrix-valued covariance function $\mathbf{C}(\mathbf{h})$ having spectral measures $F_{ij}, i, j = 1, ..., p$ defined on the Borel σ -algebra \mathcal{B} on \mathbb{R}^d . There is a set of complex random measures $\mathbf{M} = (M_1, ..., M_p)$ on \mathcal{B} such that if $B, B_1, B_2 \in \mathcal{B}$ are disjoint, $\mathbb{E}M_i(B) = 0, \mathbb{E}(M_i(B)\overline{M_j(B)}) = F_{ij}(B)$ and $\mathbb{E}(M_i(B_1)\overline{M_j(B_2)}) = 0$ for i, j = 1, ..., p. Then $\mathbf{Z}(\mathbf{s})$ has the spectral representation

$$\mathbf{Z}(\mathbf{s}) = \int \exp(i\boldsymbol{\omega}^{\mathrm{T}}\mathbf{s}) \mathrm{d}\mathbf{M}(\boldsymbol{\omega}),$$

see (Gihman and Skorohod, 1974) for details. If all F_{ij} admit associated spectral densities f_{ij} , then in shorthand we write $\mathbb{E}(\mathrm{d}M_i(\boldsymbol{\omega})\overline{\mathrm{d}M_j(\boldsymbol{\omega})}) = f_{ij}(\boldsymbol{\omega})\mathrm{d}\boldsymbol{\omega}.$

Proof of Theorem 2. The spectral representation implies

$$Z_i(\mathbf{s}) = \int \exp(i\boldsymbol{\omega}^{\mathrm{T}}\mathbf{s}) \mathrm{d}M_i(\boldsymbol{\omega}),$$

for complex-valued random measures M_i , i = 1, 2. Then if K has Fourier transform F_K ,

$$\int K(\mathbf{u} - \mathbf{s}) Z_2(\mathbf{u}) d\mathbf{u} = \int \int K(\mathbf{u} - \mathbf{s}) \exp(i\boldsymbol{\omega}^{\mathrm{T}} \mathbf{u}) dM_2(\boldsymbol{\omega}) d\mathbf{u}$$
$$= \int \exp(i\boldsymbol{\omega}^{\mathrm{T}} \mathbf{s}) F_K(\boldsymbol{\omega}) dM_2(\boldsymbol{\omega})$$

by a change of variables. Then, using that $f_{ii}(\boldsymbol{\omega})\mathrm{d}\boldsymbol{\omega} = \mathbb{E}|\mathrm{d}M_i(\boldsymbol{\omega})|^2$ and

$$\mathbb{E}\left(\int g(\boldsymbol{\omega}) \mathrm{d}M_i(\boldsymbol{\omega}) \overline{\int h(\boldsymbol{\omega}) \mathrm{d}M_j(\boldsymbol{\omega})}\right) = \int g(\boldsymbol{\omega}) \overline{h(\boldsymbol{\omega})} f_{ij}(\boldsymbol{\omega}) \mathrm{d}\boldsymbol{\omega}$$

we have

$$\mathbb{E} \left| Z_{1}(\mathbf{s}) - \int K(\mathbf{u} - \mathbf{s}) Z_{2}(\mathbf{u}) \mathrm{d}\mathbf{u} \right|^{2} = \int \left(f_{11}(\boldsymbol{\omega}) - f_{12}(\boldsymbol{\omega}) F_{K}(\boldsymbol{\omega}) - f_{21}(\boldsymbol{\omega}) \overline{F_{K}(\boldsymbol{\omega})} + F_{K}(\boldsymbol{\omega}) \overline{F_{K}(\boldsymbol{\omega})} f_{22}(\boldsymbol{\omega}) \right) \mathrm{d}\boldsymbol{\omega}$$
$$= \int \mathbb{E} \left| \mathrm{d}M_{1}(\boldsymbol{\omega}) - F_{K}(\boldsymbol{\omega}) \mathrm{d}M_{2}(\boldsymbol{\omega}) \right|^{2}.$$

The integrand is minimized for each ω if

$$F_{K}(\boldsymbol{\omega}) = \frac{\mathbb{E}(\mathrm{d}M_{1}(\boldsymbol{\omega})\overline{\mathrm{d}M_{2}(\boldsymbol{\omega})})}{\mathbb{E}|\mathrm{d}M_{2}(\boldsymbol{\omega})|^{2}} = \frac{f_{12}(\boldsymbol{\omega})}{f_{22}(\boldsymbol{\omega})}$$

That the density of $\int K(\mathbf{u} - \mathbf{s}) Z_2(\mathbf{u}) d\mathbf{u}$ is $|f_{12}(\boldsymbol{\omega})|^2 / f_{22}(\boldsymbol{\omega})$ now follows by the convolution theorem for Fourier transforms.

Proof of Proposition 4. If $f_i(\boldsymbol{\omega})$ is the Fourier transform of $c_i, i = 1, 2$, the result immediately follows as the spectral density of $C_{ij}(\mathbf{h})$ is $f_i(\boldsymbol{\omega})f_j(\boldsymbol{\omega})$.

Proof of Proposition 5. This result follows directly from Lemma 1. \Box

Proof of Proposition 6. If W has spectral density $f_W(\boldsymbol{\omega})$ then the spectral density for Z_k is $\mathcal{F}(g_k)(\boldsymbol{\omega})^2 f_W(\boldsymbol{\omega})$ where \mathcal{F} denotes the Fourier transform, by Lemma 1. The result follows by definition of coherence.

Bibliography

Gihman, I. I. and Skorohod, A. V. (1974), The Theory of Stochastic Pro-

cesses, Vol. 1, Springer-Verlag, Berlin.