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This supplementary material contains proofs for the results of the manuscript.

S1 Supplemental Material: Proofs

The following Lemma is useful in proving some results of the manuscript.

Lemma 1. Suppose Z1(s) is a stationary processes on Rd with covari-

ance function C1(h) having spectral density f1(ω) and Z2(s) =
∫
K(s −

u)Z1(u)du where K is continuous, symmetric and square integrable with

Fourier transform fK(ω). Then Z2(s) has covariance function C2(h) =∫ ∫
K(u + v− h)K(v)C1(u)dudv with associated spectral density f2(ω) =

f1(ω)fK(ω)2. Additionally, the cross-covariance function between Z1 and

Z2 is C12(h) =
∫
K(u−h)C1(u)du with spectral density f12(ω) = f1(ω)fK(ω).

The proof of this Lemma involves straightforward calculations involving

convolutions and is not included here.
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We recall the spectral representation for a stationary vector-valued pro-

cess Z(s) ∈ Rp, s ∈ Rd with matrix-valued covariance function C(h) having

spectral measures Fij, i, j = 1, . . . , p defined on the Borel σ-algebra B on Rd.

There is a set of complex random measures M = (M1, . . . ,Mp) on B such

that if B,B1, B2 ∈ B are disjoint, EMi(B) = 0,E(Mi(B)Mj(B)) = Fij(B)

and E(Mi(B1)Mj(B2)) = 0 for i, j = 1, . . . , p. Then Z(s) has the spectral

representation

Z(s) =

∫
exp(iωTs)dM(ω),

see (Gihman and Skorohod, 1974) for details. If all Fij admit associated

spectral densities fij, then in shorthand we write E(dMi(ω)dMj(ω)) =

fij(ω)dω.

Proof of Theorem 2. The spectral representation implies

Zi(s) =

∫
exp(iωTs)dMi(ω),

for complex-valued random measures Mi, i = 1, 2. Then if K has Fourier

transform FK ,

∫
K(u− s)Z2(u)du =

∫ ∫
K(u− s) exp(iωTu)dM2(ω)du

=

∫
exp(iωTs)FK(ω)dM2(ω)
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by a change of variables. Then, using that fii(ω)dω = E|dMi(ω)|2 and

E
(∫

g(ω)dMi(ω)

∫
h(ω)dMj(ω)

)
=

∫
g(ω)h(ω)fij(ω)dω

we have

E
∣∣∣∣Z1(s)−

∫
K(u− s)Z2(u)du

∣∣∣∣2 =

∫ (
f11(ω)− f12(ω)FK(ω)− f21(ω)FK(ω)+

FK(ω)FK(ω)f22(ω)

)
dω

=

∫
E |dM1(ω)− FK(ω)dM2(ω)|2 .

The integrand is minimized for each ω if

FK(ω) =
E(dM1(ω)dM2(ω))

E|dM2(ω)|2
=
f12(ω)

f22(ω)
.

That the density of
∫
K(u− s)Z2(u)du is |f12(ω)|2/f22(ω) now follows by

the convolution theorem for Fourier transforms.

Proof of Proposition 4. If fi(ω) is the Fourier transform of ci, i = 1, 2, the

result immediately follows as the spectral density of Cij(h) is fi(ω)fj(ω).

Proof of Proposition 5. This result follows directly from Lemma 1.

Proof of Proposition 6. If W has spectral density fW (ω) then the spectral

density for Zk is F(gk)(ω)2fW (ω) where F denotes the Fourier transform,

by Lemma 1. The result follows by definition of coherence.
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