ESTIMATION OF QUANTILES FROM DATA WITH ADDITIONAL MEASUREMENT ERRORS

Technische Universität Darmstadt

Supplementary Material

The following supplementary material contains detailed proofs of the Theorems 1 to 5 .

In three of the proofs we use the following lemma, which relates the plugin estimate with data containing additional measurement errors to plug-in estimates with i.i.d. data without additional measurement errors.

Lemma 1. Let $a>0$ be a (possibly random) finite constant and set

$$
\delta_{n}=\frac{1}{n} \sum_{i=1}^{n} I_{\left\{\left|X_{i}-\bar{X}_{i, n}\right|>a\right\}} .
$$

Then it holds for $\alpha \in \mathbb{R}$ and the plug-in estimates defined above that

$$
\hat{q}_{X, n, \alpha-\delta_{n}}-a \leq \hat{q}_{\bar{X}, n, \alpha} \leq \hat{q}_{X, n, \alpha+\delta_{n}}+a
$$

Proof. Consider

$$
\bar{F}_{n}(x)-F_{n}(x+a)=\frac{1}{n} \sum_{i=1}^{n}\left(I_{\left\{\bar{X}_{i, n} \leq x\right\}}-I_{\left\{X_{i} \leq x+a\right\}}\right) .
$$

The i-th summand becomes one, if

$$
\bar{X}_{i, n} \leq x \quad \text { and } X_{i}>x+a
$$

In this case $\left|X_{i}-\bar{X}_{i, n}\right|>a$ also holds true. So we can conclude

$$
\bar{F}_{n}(x)-F_{n}(x+a) \leq \frac{1}{n} \sum_{i=1}^{n} I_{\left\{\left|X_{i}-\bar{X}_{i, n}\right|>a\right\}}=\delta_{n} .
$$

Analogously we can also show

$$
\bar{F}_{n}(x)-F_{n}(x-a) \geq-\frac{1}{n} \sum_{i=1}^{n} I_{\left\{\left|X_{i}-\bar{X}_{i, n}\right|>a\right\}}=-\delta_{n} .
$$

Hence we get

$$
\begin{aligned}
\hat{q}_{\bar{X}, n, \alpha} & =\min \left\{z \in \mathbb{R}: \bar{F}_{n}(z) \geq \alpha\right\} \\
& =\min \left\{z \in \mathbb{R}: \bar{F}_{n}(z)-F_{n}(z+a)+F_{n}(z+a) \geq \alpha\right\} \\
& \geq \min \left\{z \in \mathbb{R}: \delta_{n}+F_{n}(z+a) \geq \alpha\right\} \\
& =\min \left\{z \in \mathbb{R}: F_{n}(z) \geq \alpha-\delta_{n}\right\}-a \\
& =\hat{q}_{X, n, \alpha-\delta_{n}}-a
\end{aligned}
$$

and

$$
\begin{aligned}
\hat{q}_{\bar{X}, n, \alpha} & =\min \left\{z \in \mathbb{R}: \bar{F}_{n}(z) \geq \alpha\right\} \\
& =\min \left\{z \in \mathbb{R}: \bar{F}_{n}(z)-F_{n}(z-a)+F_{n}(z-a) \geq \alpha\right\} \\
& \leq \min \left\{z \in \mathbb{R}:-\delta_{n}+F_{n}(z-a) \geq \alpha\right\} \\
& =\min \left\{z \in \mathbb{R}: F_{n}(z) \geq \alpha+\delta_{n}\right\}+a \\
& =\hat{q}_{X, n, \alpha+\delta_{n}}+a
\end{aligned}
$$

which yields the assertion.

S1 Proof of Theorem 1

Let $\alpha_{n} \in(0,1)$ be such that

$$
\alpha_{n} \rightarrow \alpha \quad \text { a.s. }
$$

We divide the proof into three steps:
In the first step of the proof we show that

$$
\begin{equation*}
\operatorname{dist}\left(\hat{q}_{X, n, \alpha_{n}}, Q_{X, \alpha}\right) \rightarrow 0 \quad \text { a.s. } \tag{S1.1}
\end{equation*}
$$

Therefore set

$$
N:=\left\{\alpha_{n} \rightarrow \alpha(n \rightarrow \infty) \quad \text { and } \quad \sup _{t \in \mathbb{R}}\left|F_{n}(t)-F(t)\right| \rightarrow 0(n \rightarrow \infty)\right\}
$$

Notice that

$$
\mathbf{P}(N)=1
$$

because of the Glivenko-Catelli theorem (cf., e.g., Theorem 12.4 in Devroye, Györfi and Lugosi (1996)) and $\alpha_{n} \rightarrow \alpha$ a.s. Let $\epsilon>0$ be arbitrary. We know

$$
\begin{equation*}
F\left(q_{X, \alpha}^{[l o w]}-\epsilon\right)<\alpha<F\left(q_{X, \alpha}^{[u p]}+\epsilon\right) . \tag{S1.2}
\end{equation*}
$$

Setting

$$
\rho_{1}=\min \left(\alpha-F\left(q_{X, \alpha}^{[l o w]}-\epsilon\right), F\left(q_{X, \alpha}^{[u p]}+\epsilon\right)-\alpha\right),
$$

we can conclude

$$
F\left(q_{X, \alpha}^{[l o w]}-\epsilon\right)+\frac{\rho_{1}}{2}<\alpha<F\left(q_{X, \alpha}^{[u p]}+\epsilon\right)-\frac{\rho_{1}}{2} .
$$

Assume N to hold in the following. Then we can (for all $\omega \in N$) find n_{0}, such that for all $n \geq n_{0}$ we have

$$
\left|\alpha_{n}-\alpha\right|<\frac{\rho_{1}}{4} \quad \text { and } \quad \sup _{t \in \mathbb{R}}\left|F_{n}(t)-F(t)\right|<\frac{\rho_{1}}{4}
$$

which implies

$$
F_{n}\left(q_{X, \alpha}^{[l o w]}-\epsilon\right)<\alpha_{n}<F_{n}\left(q_{X, \alpha}^{[u p]}+\epsilon\right)
$$

and consequently

$$
q_{X, \alpha}^{[l o w]}-\epsilon \leq \hat{q}_{X, n, \alpha_{n}} \leq q_{X, \alpha}^{[u p]}+\epsilon .
$$

Hence,

$$
\mathbf{P}\left(\limsup _{n \rightarrow \infty} \operatorname{dist}\left(\hat{q}_{X, n, \alpha_{n}}, Q_{X, \alpha}\right) \leq \epsilon\right) \geq \mathbf{P}(N)=1
$$

Since $\epsilon>0$ was arbitrary this implies the assertion.
Let $\epsilon>0$ again be arbitrary and set

$$
\delta_{n}=\frac{1}{n} \sum_{i=1}^{n} I_{\left\{\left|X_{i}-\bar{X}_{i, n}\right|>\epsilon\right\}} .
$$

In the second step of the proof we show

$$
\begin{equation*}
\delta_{n} \rightarrow 0 \quad \text { a.s. } \tag{S1.3}
\end{equation*}
$$

Therefore we observe

$$
\frac{1}{n} \sum_{i=1}^{n} I_{\left\{\left|X_{i}-\bar{X}_{i, n}\right|>\epsilon\right\}} \leq \frac{1}{\epsilon} \frac{1}{n} \sum_{i=1}^{n}\left|X_{i}-\bar{X}_{i, n}\right|
$$

which yields the assertion by (2.1).
Furthermore, we know by Lemma 1

$$
\begin{equation*}
\hat{q}_{X, n, \alpha-\delta_{n}}-\epsilon \leq \hat{q}_{\bar{X}, n, \alpha} \leq \hat{q}_{X, n, \alpha+\delta_{n}}+\epsilon \tag{S1.4}
\end{equation*}
$$

In the third step of the proof we finally show the assertion. By the second step, we know $\alpha-\delta_{n} \rightarrow \alpha$ a.s. and $\alpha+\delta_{n} \rightarrow \alpha$ a.s., so by choosing $\alpha_{n}=\alpha-\delta_{n}$ or $\alpha_{n}=\alpha+\delta_{n}$, resp., we conclude by (S1.4) and by the first step for arbitrary $\epsilon>0$

$$
\begin{align*}
& \operatorname{dist}\left(\hat{q}_{\bar{X}, n, \alpha}, Q_{X, \alpha}\right) \\
& \leq \operatorname{dist}\left(\hat{q}_{X, n, \alpha-\delta_{n}}, Q_{X, \alpha}\right)+\epsilon+\operatorname{dist}\left(\hat{q}_{X, n, \alpha+\delta_{n}}, Q_{X, \alpha}\right)+\epsilon \longrightarrow 2 \epsilon \quad \text { a.s. } \tag{S1.5}
\end{align*}
$$

Since $\epsilon>0$ was arbitrary this implies the assertion.

S2 Proof of Theorem 2

In order to proof Theorem 2, we need the following lemma, which is a straightforward extension of ideas in Theorem 4 in Feldman and Tucker (1966) to random sequences.

Lemma 2. Let $\alpha \in(0,1)$ be arbitrary and X, X_{1}, X_{2}, \ldots be independent and identically distributed real valued random variables with cdf. F.
(a) Let $\gamma_{n, l}$ be a (possibly random) sequence, that satisfies

$$
\gamma_{n, l}+(1+\nu) \sqrt{\frac{2 \log (\log (n / 2))}{n}}<\alpha \quad \text { and } \quad \gamma_{n, l} \rightarrow \alpha \quad \text { a.s. }
$$

for some $\nu>0$. Then it holds

$$
\begin{equation*}
\hat{q}_{X, n, \gamma_{n, l}} \rightarrow q_{X, \alpha}^{[l o w]} \quad \text { a.s. } \tag{S2.6}
\end{equation*}
$$

(b) Let $\gamma_{n, r}$ be a (possibly random) sequence, that satisfies

$$
\gamma_{n, r}-(1+\nu) \sqrt{\frac{2 \log (\log (n / 2))}{n}}>\alpha \quad \text { and } \quad \gamma_{n, l} \rightarrow \alpha \quad \text { a.s. }
$$

for some $\nu>0$. Then it holds

$$
\begin{equation*}
\hat{q}_{X, n, \gamma_{n, r}} \rightarrow q_{X, \alpha}^{[u p]} \quad \text { a.s. } \tag{S2.7}
\end{equation*}
$$

Proof of Lemma 2, (a) It suffices to show
(i) $\mathbf{P}\left(\hat{q}_{X, n, \gamma_{n, l}} \leq q_{X, \alpha}^{[l o w]}-\epsilon \quad\right.$ i.o. $)=0$ for any $\epsilon>0$, and
(ii) $\mathbf{P}\left(\hat{q}_{X, n, \gamma_{n, l}}>q_{X, \alpha}^{[l o w]} \quad\right.$ i.o. $)=0$,
where i.o. means infinitely often. First of all we show (i). Therefore let $\epsilon>0$ be arbitrary. We know

$$
F\left(q_{X, \alpha}^{[l o w]}-\epsilon\right)<\alpha .
$$

Setting

$$
\rho_{2}=\alpha-F\left(q_{X, \alpha}^{[l o w]}-\epsilon\right),
$$

we can conclude

$$
F\left(q_{X, \alpha}^{[l o w]}-\epsilon\right)+\frac{\rho_{2}}{2}<\alpha .
$$

Choose

$$
N:=\left\{\gamma_{n, l} \rightarrow \alpha(n \rightarrow \infty) \quad \text { and } \quad \sup _{t \in \mathbb{R}}\left|F_{n}(t)-F(t)\right| \rightarrow 0(n \rightarrow \infty)\right\}
$$

As in the proof of Theorem 1 we have $\mathbf{P}(N)=1$. We can (for every $\omega \in N$) find n_{0} such that for all $n \geq n_{0}$ it holds

$$
\left|\gamma_{n, l}-\alpha\right| \leq \frac{\rho_{2}}{4} \quad \text { and } \quad \sup _{t \in \mathbb{R}}\left|F_{n}(t)-F(t)\right| \leq \frac{\rho_{2}}{4}
$$

This implies (for every $\omega \in N$)

$$
F_{n}\left(q_{X, \alpha}^{[\mathrm{low}]}-\epsilon\right)<\gamma_{n, l}
$$

and hence

$$
\hat{q}_{X, n, \gamma_{n, l}}>q_{X, \alpha}^{[l o w]}-\epsilon
$$

for n large enough. So we actually have shown

$$
1-\mathbf{P}\left(\hat{q}_{X, n, \gamma_{n, l}} \leq q_{X, \alpha}^{[l o w]}-\epsilon \quad \text { i.o. }\right) \geq \mathbf{P}(N)=1
$$

which proves (i).
It remains to show (ii). Therefore set

$$
U_{i}=1-2 \cdot I_{\left\{X_{i} \leq q_{X, \alpha}^{[l o w]}\right\}} \quad \text { for } i=1, \ldots, n
$$

and

$$
p_{1}=\mathbf{P}\left(X \leq q_{X, \alpha}^{[\mathrm{low}]}\right) \geq \alpha
$$

We know

$$
\mathbf{E}\left\{U_{i}\right\}=1-2 p_{1} \leq 1-2 \alpha \quad \text { and } \quad s=\mathbf{V}\left\{U_{i}\right\}=4 p_{1} \cdot\left(1-p_{1}\right)
$$

and

$$
\sum_{i=1}^{n} U_{i}=n-2 n \cdot F_{n}\left(q_{X, \alpha}^{[l o w]}\right)
$$

Thus,

$$
\begin{align*}
\left\{\hat{q}_{X, n, \gamma_{n, l}}>q_{X, \alpha}^{[l o w]}\right\} & =\left\{F_{n}\left(q_{X, \alpha}^{[l o w]}\right)<\gamma_{n, l}\right\} \\
& =\left\{-2 n \cdot F_{n}\left(q_{X, \alpha}^{[l o w]}\right)>-2 \gamma_{n, l} \cdot n\right\} \\
& \subseteq\left\{\sum_{i=1}^{n} U_{i} \geq n-2 \gamma_{n, l} \cdot n\right) . \tag{S2.8}
\end{align*}
$$

It is only necessary to consider the nontrivial case where $s>0$. Set $\psi_{n}=$ $(2 n s \cdot \log (\log (n s)))^{1 / 2}$, which we will need in the subsequent application of Kolmogorov's law of the iterated logarithm. Observe that ψ_{n} is welldefined for n large enough. Since $0 \leq x \cdot(1-x) \leq \frac{1}{4}$ for $x \in[0,1]$, we have $0 \leq s \leq 1$ and thus $(2 n \cdot \log (\log (n)))^{1 / 2} \geq \psi_{n}$. Because of

$$
\alpha-\gamma_{n, l}>(1+\nu) \cdot \sqrt{\frac{2 \log (\log (n / 2))}{n}}
$$

we can conclude

$$
\alpha-\gamma_{n, l} \geq \frac{1+\nu}{2} \cdot \sqrt{\frac{2 \log (\log (n))}{n}}
$$

for all n large enough. Combining this with

$$
1-2 p_{1} \leq 1-2 \alpha
$$

we get by S 2.8)

$$
\begin{aligned}
& \mathbf{P}\left(\hat{q}_{X, n, \gamma_{n, l}}>q_{X, \alpha}^{[l o w]} \text { i.o. }\right) \\
& \leq \mathbf{P}\left(\sum_{i=1}^{n} U_{i} \geq n-2 \gamma_{n, l} \cdot n \text { i.o. }\right) \\
& \leq \mathbf{P}\left(\sum_{i=1}^{n} U_{i} \geq n \cdot(1-2 \alpha)+2 \cdot\left(\alpha \cdot n-\gamma_{n, l} \cdot n\right) \text { i.o. }\right) \\
& \leq \mathbf{P}\left(\sum_{i=1}^{n} U_{i} \geq n \cdot\left(1-2 p_{1}\right)+(1+\nu) \cdot \psi_{n} \text { i.o. }\right)
\end{aligned}
$$

We know by Kolmogorov's law of the iterated logarithm (cf., e.g., Theorem

1 on page 140 in Tucker (1967))

$$
\mathbf{P}\left(\limsup _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} U_{i}-n \cdot\left(1-2 p_{1}\right)}{\psi_{n}}=1\right)=1
$$

from which we can conclude

$$
\mathbf{P}\left(\sum_{i=1}^{n} U_{i} \geq n \cdot\left(1-2 p_{1}\right)+(1+\nu) \cdot \psi_{n} \text { i.o. }\right)=0 .
$$

This completes the proof of (a).
(b) It suffices to show
(i) $\mathbf{P}\left(\hat{q}_{X, n, \gamma_{n, r}}>q_{X, \alpha}^{[u p]}+\epsilon \quad\right.$ i.o. $)=0$ for any $\epsilon>0$, and
(ii) $\mathbf{P}\left(\hat{q}_{X, n, \gamma_{n, r}}<q_{X, \alpha}^{[u p]} \quad\right.$ i.o. $)=0$.

The proof of (i) is analogously to (i) in part (a). It remains to show (ii).
Therefore set

$$
V_{i}=2 \cdot I_{\left\{X_{i}<q_{X, \alpha}^{[u p]}\right\}}^{[u p]}-1 \quad \text { for } i=1, \ldots, n
$$

and

$$
p_{2}=\mathbf{P}\left(X<q_{X, \alpha}^{[u p]}\right) \leq \alpha .
$$

We have $\mathbf{E}\left\{V_{i}\right\}=2 p_{2}-1 \leq 2 \alpha-1$ and $\tilde{s}=\mathbf{V}\left\{V_{i}\right\}=4 p_{2} \cdot\left(1-p_{2}\right)$. Observe that if

$$
\hat{q}_{X, n, \gamma_{n, r}}<q_{X, \alpha}^{[u p]},
$$

then

$$
\frac{1}{n} \sum_{i=1}^{n} I_{\left\{X_{i}<q_{X, \alpha}^{[u p]}\right\}} \geq \frac{1}{n} \sum_{i=1}^{n} I_{\left\{X_{i} \leq \hat{q}_{X, n, \gamma_{n, r}}\right\}}=F_{n}\left(\hat{q}_{X, n, \gamma_{n, r}}\right) \geq \gamma_{n, r} .
$$

Thereby, we can analogously to (ii) in part (a) conclude

$$
\left\{\hat{q}_{X, n, \gamma_{n, r}}<q_{X, \alpha}^{[u p]}\right\} \subseteq\left\{\sum_{i=1}^{n} V_{i} \geq 2 \gamma_{n, r} \cdot n-n\right\}
$$

Again, we only need to consider the nontrivial case $\tilde{s}>0$ and set $\tilde{\psi}_{n}=$ $(2 n \tilde{s} \cdot \log (\log (n \tilde{s})))^{1 / 2}$. Since $0 \leq x \cdot(1-x) \leq \frac{1}{4}$ for $x \in[0,1]$, we have $(2 n \cdot \log (\log (n)))^{1 / 2} \geq \tilde{\psi}_{n}$. The assumption on $\gamma_{n, r}$ implies

$$
\gamma_{n, r}-\alpha \geq \frac{1+\nu}{2} \cdot \sqrt{\frac{2 \log (\log (n))}{n}}
$$

for all n large enough. Thus, using $2 \alpha-1 \geq 2 p_{2}-1$, we can conclude

$$
\mathbf{P}\left(\hat{q}_{X, n, \gamma_{n, r}}<q_{X, \alpha}^{[u p]} \text { i.o. }\right) \leq \mathbf{P}\left(\sum_{i=1}^{n} V_{i} \geq n \cdot\left(2 p_{2}-1\right)+(1+\nu) \cdot \tilde{\psi}_{n} \text { i.o. }\right)
$$

Again, by Kolmogorov's law of the iterated logarithm, we get

$$
\mathbf{P}\left(\sum_{i=1}^{n} V_{i} \geq n \cdot\left(2 p_{2}-1\right)+(1+\nu) \cdot \tilde{\psi}_{n} \text { i.o. }\right)=0
$$

which completes the proof.
Proof of Theorem 2. Set

$$
\delta_{n}=\frac{1}{n} \sum_{i=1}^{n} I_{\left\{\left|X_{i}-\bar{X}_{i, n}\right|>\sqrt{\eta_{n}}\right\}}
$$

and observe that (2.2) implies

$$
\begin{equation*}
\delta_{n}=\frac{1}{n} \sum_{i=1}^{n} I_{\left\{\left|X_{i}-\bar{X}_{i, n}\right|>\sqrt{\eta_{n}}\right\}} \leq \frac{1}{\sqrt{\eta_{n}}} \frac{1}{n} \sum_{i=1}^{n}\left|X_{i}-\bar{X}_{i, n}\right| \leq \frac{\eta_{n}}{\sqrt{\eta_{n}}}=\sqrt{\eta_{n}} \quad \text { a.s. } \tag{S2.9}
\end{equation*}
$$

Using Lemma 1 and (S2.9), we can conclude that for any (random) sequence γ_{n} holds

$$
\begin{equation*}
\hat{q}_{X, n, \gamma_{n}-\sqrt{\eta_{n}}}-\sqrt{\eta_{n}} \leq \hat{q}_{\bar{X}, n, \gamma_{n}} \leq \hat{q}_{X, n, \gamma_{n}+\sqrt{\eta_{n}}}+\sqrt{\eta_{n}} \tag{S2.10}
\end{equation*}
$$

for every $n \in \mathbb{N}$. By setting $\gamma_{n}=\alpha_{n}$ in (S2.10) we know

$$
\begin{equation*}
\hat{q}_{X, n, \alpha_{n}-\sqrt{\eta_{n}}}-\sqrt{\eta_{n}} \leq \hat{q}_{\bar{X}, n, \alpha_{n}} \leq \hat{q}_{X, n, \alpha_{n}+\sqrt{\eta_{n}}}+\sqrt{\eta_{n}} \tag{S2.11}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Having regard to

$$
\alpha_{n}+(1+\nu) \cdot \sqrt{\frac{2 \log (\log (n / 2))}{n}}+\sqrt{\eta_{n}}<\alpha
$$

for all $0<\nu<1$, as well as $\alpha_{n} \rightarrow \alpha$ a.s., we also know that $\gamma_{n, l}=\alpha_{n}+\sqrt{\eta_{n}}$ and $\gamma_{n, l}=\alpha_{n}-\sqrt{\eta_{n}}$ fullfill the assumptions of Lemma 2 a). So we get

$$
\hat{q}_{X, n, \alpha_{n}-\sqrt{\eta_{n}}}-\sqrt{\eta_{n}} \rightarrow q_{X, \alpha}^{[l o w]} \quad \text { a.s. } \quad \text { and } \quad \hat{q}_{X, n, \alpha_{n}+\sqrt{\eta_{n}}}+\sqrt{\eta_{n}} \rightarrow q_{X, \alpha}^{[l o w]} \quad \text { a.s. },
$$

which yields

$$
\hat{q}_{\bar{X}, n, \alpha_{n}} \rightarrow q_{X, \alpha}^{[l o w]} \quad \text { a.s. }
$$

Analogously we can show

$$
\hat{q}_{\bar{X}, n, \beta_{n}} \rightarrow q_{X, \alpha}^{[u p]} \quad \text { a.s. }
$$

by using Lemma 2 b), which completes the proof.

S3 Proof of Theorem 3

Let $\alpha \in(0,1)$ be arbitrary. Assume to the contrary that there exists a sequence $\left(\hat{q}_{n, \alpha}\right)_{n \in \mathbb{N}}$ of quantile estimates statisfying

$$
\begin{equation*}
\hat{q}_{n, \alpha}\left(\bar{X}_{1}, \ldots, \bar{X}_{n}\right) \rightarrow^{\mathbf{P}} q_{X, \alpha}^{[l o w]} \tag{S3.12}
\end{equation*}
$$

whenever $\bar{X}_{1}, \bar{X}_{2}, \ldots$ are such that for some independent and identically as X distributed X_{1}, X_{2}, \ldots we have

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n}\left|X_{i}-\bar{X}_{i}\right| \rightarrow 0 \quad a . s . \tag{S3.13}
\end{equation*}
$$

Let X, X_{1}, X_{2}, \ldots be independent and indentically distributed with cdf.

$$
F(x)= \begin{cases}0 & \text { if } \quad x<0 \\ x & \text { if } \quad 0 \leq x<\alpha \\ \alpha & \text { if } \quad \alpha \leq x<1+\alpha \\ x-1 & \text { if } 1+\alpha \leq x<2 \\ 1 & \text { if } 2 \leq x\end{cases}
$$

and α-quantile $q_{X, \alpha}^{[\text {low }]}=\alpha$. For $k \in \mathbb{N}$ set

$$
F_{k}(x)=\left\{\begin{array}{lll}
0 & \text { if } & x<0 \\
x & \text { if } & 0 \leq x<\alpha-\frac{\alpha}{k} \\
\alpha-\frac{\alpha}{k} & \text { if } & \alpha-\frac{\alpha}{k} \leq x<1+\alpha-\frac{\alpha}{k} \\
x-1 & \text { if } & 1+\alpha-\frac{\alpha}{k} \leq x<2 \\
1 & \text { if } 2 \leq x
\end{array}\right.
$$

and

$$
X_{i}^{(k)}=\left\{\begin{array}{ll}
X_{i} & \text { if } \quad X_{i} \notin\left[\alpha-\frac{\alpha}{k}, \alpha\right] \\
X_{i}+1 & \text { if } \quad X_{i} \in\left[\alpha-\frac{\alpha}{k}, \alpha\right]
\end{array} .\right.
$$

Then $X_{1}^{(k)}, X_{2}^{(k)}, \ldots$ are independent and identically distributed random variables with cdf. F_{k} and α-quantile $q_{k, \alpha}^{[l o w]}=1+\alpha$. So if we set $\bar{X}_{i}=X_{i}^{(k)}$ for all $i \geq N$ with $N \in \mathbb{N}$ arbitrary, (S3.13) is fullfilled (with X_{i} replaced by $X_{i}^{(k)}$) and we know by S3.12 that

$$
\begin{equation*}
\hat{q}_{n, \alpha}\left(\bar{X}_{1}, \ldots, \bar{X}_{n}\right) \rightarrow^{\mathbf{P}} q_{k, \alpha}^{[l o w]} \tag{S3.14}
\end{equation*}
$$

Next we define for suitably chosen deterministic $n_{0}:=0<n_{1}<n_{2}<\ldots$ (where $n_{i} \in \mathbb{N}$ for all $i \in N$) our data with measurement error by

$$
\bar{X}_{i}=X_{i}^{(k)} \quad \text { if } n_{k-1}<i \leq n_{k} \quad(k \in \mathbb{N}) .
$$

For all $i \in \mathbb{N}$ we have

$$
\mathbf{P}\left(\left|X_{i}-\bar{X}_{i}\right|=0\right) \geq 1-\alpha \quad \text { and } \quad \mathbf{P}\left(\left|X_{i}-\bar{X}_{i}\right|=1\right) \leq \alpha
$$

and hence

$$
0 \leq \mathbf{E}\left\{\left|X_{i}-\bar{X}_{i}\right|\right\} \leq \alpha \quad \text { and } \quad \mathbf{V}\left\{\left|X_{i}-\bar{X}_{i}\right|\right\} \leq \mathbf{E}\left\{\left|X_{i}-\bar{X}_{i}\right|^{2}\right\} \leq \alpha
$$

So

$$
\sum_{i=1}^{\infty} \frac{\mathbf{V}\left\{\left|X_{i}-\bar{X}_{i}\right|\right\}}{i^{2}} \leq \sum_{i=1}^{\infty} \frac{\alpha}{i^{2}}<\infty
$$

By a criterion which is sometimes called the Kolmogorov criterion (cf., e.g.,
Theorem 14.5 in Burckel and Bauer (1996)), we get

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n}\left(\left|X_{i}-\bar{X}_{i}\right|-\mathbf{E}\left\{\left|X_{i}-\bar{X}_{i}\right|\right\}\right) \rightarrow 0 \quad \text { a.s. } \tag{S3.15}
\end{equation*}
$$

But since $\left|X_{i}-X_{i}^{(k)}\right| \geq\left|X_{i}-X_{i}^{(l)}\right|$ for all $l \geq k$ and $i \in \mathbb{N}$, we can conclude

$$
\begin{aligned}
0 \leq \frac{1}{n} \sum_{i=1}^{n} \mathbf{E}\left\{\left|X_{i}-\bar{X}_{i}\right|\right\} & =\frac{1}{n} \sum_{i=1}^{n_{k}} \mathbf{E}\left\{\left|X_{i}-\bar{X}_{i}\right|\right\}+\frac{1}{n} \sum_{i=n_{k}+1}^{n} \mathbf{E}\left\{\left|X_{i}-\bar{X}_{i}\right|\right\} \\
& \leq \frac{1}{n} \sum_{i=1}^{n_{k}} \alpha+\frac{1}{n} \sum_{i=n_{k}+1}^{n} \mathbf{E}\left\{\left|X_{i}-X_{i}^{(k)}\right|\right\} \\
& =\frac{n_{k}}{n} \cdot \alpha+\frac{1}{n} \sum_{i=n_{k}+1}^{n} \frac{\alpha}{k} \\
& \leq \frac{n_{k}}{n} \cdot \alpha+\frac{\alpha}{k} \longrightarrow \frac{\alpha}{k} \quad(n \rightarrow \infty),
\end{aligned}
$$

for every $k \in \mathbb{N}$, which implies

$$
\frac{1}{n} \sum_{i=1}^{n} \mathbf{E}\left\{\left|X_{i}-\bar{X}_{i}\right|\right\} \rightarrow 0
$$

and finally by (S3.15)

$$
\frac{1}{n} \sum_{i=1}^{n}\left|X_{i}-\bar{X}_{i}\right| \rightarrow 0 \quad \text { a.s. }
$$

So it suffies to show, that for some $\epsilon>0$

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \mathbf{P}\left(\left|\hat{q}_{n, \alpha}\left(\bar{X}_{1}, \ldots, \bar{X}_{n}\right)-q_{X, \alpha}^{[l o w]}\right|>\epsilon\right)>0 \tag{S3.16}
\end{equation*}
$$

To do this we will choose n_{k} such that (S3.16) holds. Let $0<\epsilon<1$ be fixed and choose n_{1} such that

$$
\mathbf{P}\left(\left|\hat{q}_{n_{1}, \alpha}\left(\bar{X}_{1}^{(1)}, \ldots, \bar{X}_{n_{1}}^{(1)}\right)-q_{1, \alpha}^{[l o w]}\right|>\epsilon\right)<\frac{1}{2} .
$$

This is possible because of (S3.14). Given n_{1}, \ldots, n_{k-1}, we choose $n_{k}>n_{k-1}$ such that

$$
\mathbf{P}\left(\left|\hat{q}_{n_{k}, \alpha}\left(\bar{X}_{1}, \ldots, \bar{X}_{n_{k-1}}, \bar{X}_{n_{k-1}+1}^{(k)}, \ldots, \bar{X}_{n_{k}}^{(k)}\right)-q_{k, \alpha}^{[l o w]}\right|>\epsilon\right)<\frac{1}{2}
$$

which is again possible because of S3.14. The choice of n_{1}, n_{2}, \ldots implies

$$
\mathbf{P}\left(\left|\hat{q}_{n_{k}, \alpha}\left(\bar{X}_{1}, \ldots, \bar{X}_{n_{k}}\right)-q_{k, \alpha}^{[l o w]}\right|>\epsilon\right)<\frac{1}{2}
$$

and accordingly

$$
\mathbf{P}\left(\left|\hat{q}_{n_{k}, \alpha}\left(\bar{X}_{1}, \ldots, \bar{X}_{n_{k}}\right)-q_{k, \alpha}^{[l o w]}\right| \leq \epsilon\right) \geq \frac{1}{2}
$$

for $k \in \mathbb{N}$. Using the triangle inequality, we know

$$
1=\left|q_{k, \alpha}^{[l o w]}-q_{X, \alpha}^{[l o w]}\right| \leq\left|\hat{q}_{n_{k}, \alpha}\left(\bar{X}_{1}, \ldots, \bar{X}_{n_{k}}\right)-q_{k, \alpha}^{[l o w]}\right|+\left|\hat{q}_{n_{k}, \alpha}\left(\bar{X}_{1}, \ldots, \bar{X}_{n_{k}}\right)-q_{X, \alpha}^{[l o w]}\right| .
$$

Thereby, we can conclude for any $k \in \mathbb{N}$

$$
\begin{align*}
& \mathbf{P}\left(\left|\hat{q}_{n_{k}, \alpha}\left(\bar{X}_{1}, \ldots, \bar{X}_{n_{k}}\right)-q_{X, \alpha}^{[l o w]}\right|>1-\epsilon\right) \\
& \geq \mathbf{P}\left(1-\left|\hat{q}_{n_{k}, \alpha}\left(\bar{X}_{1}, \ldots, \bar{X}_{n_{k}}\right)-q_{k, \alpha}^{[l o w]}\right|>1-\epsilon\right) \tag{S3.17}\\
& =\mathbf{P}\left(\left|\hat{q}_{n_{k}, \alpha}\left(\bar{X}_{1}, \ldots, \bar{X}_{n_{k}}\right)-q_{k, \alpha}^{[l o w]}\right|<\epsilon\right) \\
& \geq \frac{1}{2},
\end{align*}
$$

which completes the proof.

S4 Proof of Theorem 4

For the sake of simplicity we write $q_{X, \alpha}$ for the lower α-quantile of X instead of $q_{X, \alpha}^{[l o w]}$.

We divide the proof into two steps:
In the first step of the proof we show that if α_{n} is a (possibly random) sequence with

$$
\alpha_{n} \rightarrow \alpha \quad \text { a.s. }
$$

it holds

$$
\begin{equation*}
\left|\hat{q}_{X, n, \alpha_{n}}-q_{X, \alpha}\right|=O_{\mathbf{P}}\left(\left(\frac{1}{\sqrt{n}}+\left|\alpha_{n}-\alpha\right|\right)^{1 / \gamma}\right) \tag{S4.18}
\end{equation*}
$$

Therefore it suffices to show
$\limsup _{n \rightarrow \infty} \mathbf{P}\left(\left|\hat{q}_{X, n, \alpha_{n}}-q_{X, \alpha}\right| \leq \frac{2 c_{1}}{c_{2}^{1 / \gamma}} \cdot\left(\frac{1}{\sqrt{n}}+\left|\alpha_{n}-\alpha\right|\right)^{1 / \gamma}\right) \geq 1-2 \exp \left(-2 c_{1}^{2}\right)$
for every $c_{1} \geq 1$, with the finite constant $c_{2}>0$ of (2.5).
Now set

$$
B_{n}:=\left\{\frac{2 c_{1}}{c_{2}}\left|\alpha_{n}-\alpha\right| \leq \frac{\zeta^{\gamma}}{2}\right\}
$$

and

$$
C_{n}:=\left\{\sup _{t \in \mathbb{R}}\left|F(t)-F_{n}(t)\right| \leq \frac{c_{1}}{\sqrt{n}}\right\} .
$$

We know

$$
\mathbf{P}\left(B_{n}^{c}\right) \rightarrow 0 \quad(n \rightarrow \infty) \quad \text { and } \quad \mathbf{P}\left(C_{n}^{c}\right) \leq 2 \exp \left(-2 c_{1}^{2}\right)
$$

because of $\alpha_{n} \rightarrow \alpha$ a.s. and the Dvoretzky-Kiefer-Wolfowitz inequality (cf., Dvoretzky, Kiefer and Wolfowitz (1956)) in combination with Corollary 1 in Massart (1990). Choose $n_{0} \in \mathbb{N}$, such that $0<\frac{2}{c_{2}} \cdot \frac{c_{1}}{\sqrt{n}} \leq \frac{\zeta^{\gamma}}{2}$ is fullfilled for all $n \geq n_{0}$. Assume in the following, that the events B_{n} and C_{n} hold and consider $n \geq n_{0}$. Set $\theta_{n}=2 c_{1} \cdot\left|\alpha_{n}-\alpha\right|+2 \cdot \frac{c_{1}}{\sqrt{n}}$. The assumptions imply

$$
0<\left(\frac{1}{c_{2}} \cdot \theta_{n}\right)^{1 / \gamma}=\left(\frac{2 c_{1}}{c_{2}} \cdot\left|\alpha_{n}-\alpha\right|+\frac{2}{c_{2}} \cdot \frac{c_{1}}{\sqrt{n}}\right)^{1 / \gamma} \leq\left(\frac{\zeta^{\gamma}}{2}+\frac{\zeta^{\gamma}}{2}\right)^{1 / \gamma}=\zeta
$$

so we can conclude by the assumption in (2.5) and $F\left(q_{X, \alpha}\right)=\alpha$

$$
\begin{equation*}
\theta_{n}=c_{2}\left|q_{X, \alpha}-q_{X, \alpha}-\left(\frac{1}{c_{2}} \theta_{n}\right)^{1 / \gamma}\right|^{\gamma} \leq\left|\alpha-F\left(q_{X, \alpha}+\left(\frac{1}{c_{2}} \theta_{n}\right)^{1 / \gamma}\right)\right| \tag{S4.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{n}=c_{2}\left|q_{X, \alpha}-q_{X, \alpha}+\left(\frac{1}{c_{2}} \theta_{n}\right)^{1 / \gamma}\right|^{\gamma} \leq\left|\alpha-F\left(q_{X, \alpha}-\left(\frac{1}{c_{2}} \theta_{n}\right)^{1 / \gamma}\right)\right| . \tag{S4.20}
\end{equation*}
$$

Since $\theta_{n}>0$ for all n, S4.19) and S4.20) imply

$$
\begin{equation*}
F\left(q_{X, \alpha}-\left(\frac{1}{c_{2}} \theta_{n}\right)^{1 / \gamma}\right)<\alpha-\frac{\theta_{n}}{2}<\alpha<\alpha+\frac{\theta_{n}}{2}<F\left(q_{X, \alpha}+\left(\frac{1}{c_{2}} \theta_{n}\right)^{1 / \gamma}\right) . \tag{S4.21}
\end{equation*}
$$

Since the event C_{n} holds, we know

$$
F_{n}\left(q_{X, \alpha}-\left(\frac{1}{c_{2}} \theta_{n}\right)^{1 / \gamma}\right)-\frac{c_{1}}{\sqrt{n}} \leq F\left(q_{X, \alpha}-\left(\frac{1}{c_{2}} \theta_{n}\right)^{1 / \gamma}\right)
$$

and

$$
F\left(q_{X, \alpha}+\left(\frac{1}{c_{2}} \theta_{n}\right)^{1 / \gamma}\right) \leq F_{n}\left(q_{X, \alpha}+\left(\frac{1}{c_{2}} \theta_{n}\right)^{1 / \gamma}\right)+\frac{c_{1}}{\sqrt{n}} .
$$

Combining this with S4.21) and the definition of θ_{n} leads to

$$
F_{n}\left(q_{X, \alpha}-\left(\frac{1}{c_{2}} \theta_{n}\right)^{1 / \gamma}\right)<\alpha-c_{1} \cdot\left|\alpha-\alpha_{n}\right| \leq \alpha+c_{1} \cdot\left|\alpha-\alpha_{n}\right|<F_{n}\left(q_{X, \alpha}+\left(\frac{1}{c_{2}} \theta_{n}\right)^{1 / \gamma}\right) .
$$

Since $c_{1} \geq 1$ we have

$$
\alpha-c_{1} \cdot\left|\alpha-\alpha_{n}\right| \leq \alpha_{n} \leq \alpha+c_{1} \cdot\left|\alpha-\alpha_{n}\right|,
$$

which implies

$$
F_{n}\left(q_{X, \alpha}-\left(\frac{1}{c_{2}} \theta_{n}\right)^{1 / \gamma}\right)<\alpha_{n}<F_{n}\left(q_{X, \alpha}+\left(\frac{1}{c_{2}} \theta_{n}\right)^{1 / \gamma}\right) .
$$

So finally we have shown
$\mathbf{P}\left(B_{n} \cap C_{n}\right) \leq \mathbf{P}\left(F_{n}\left(q_{X, \alpha}-\left(\frac{1}{c_{2}} \theta_{n}\right)^{1 / \gamma}\right)<\alpha_{n}<F_{n}\left(q_{X, \alpha}+\left(\frac{1}{c_{2}} \theta_{n}\right)^{1 / \gamma}\right)\right)$,
which by the definition of $\hat{q}_{X, n, \alpha_{n}}$ and for $n \geq n_{0}$ leads to

$$
\begin{aligned}
& \mathbf{P}\left(\left|\hat{q}_{X, n, \alpha_{n}}-q_{X, \alpha}\right| \leq\left(\frac{1}{c_{2}} \theta_{n}\right)^{1 / \gamma}\right) \\
& =\mathbf{P}\left(q_{X, \alpha}-\left(\frac{1}{c_{2}} \theta_{n}\right)^{1 / \gamma} \leq \hat{q}_{X, n, \alpha_{n}} \leq q_{X, \alpha}+\left(\frac{1}{c_{2}} \theta_{n}\right)^{1 / \gamma}\right) \\
& \geq \mathbf{P}\left(F_{n}\left(q_{X, \alpha}-\left(\frac{1}{c_{2}} \theta_{n}\right)^{1 / \gamma}\right)<\alpha_{n}<F_{n}\left(q_{X, \alpha}+\left(\frac{1}{c_{2}} \theta_{n}\right)^{1 / \gamma}\right)\right) \\
& \geq \mathbf{P}\left(B_{n} \cap C_{n}\right) \\
& =1-\mathbf{P}\left(B_{n}^{c} \cup C_{n}^{c}\right) \\
& \geq 1-\mathbf{P}\left(B_{n}^{c}\right)-\mathbf{P}\left(C_{n}^{c}\right) \\
& \geq 1-\mathbf{P}\left(B_{n}^{c}\right)-2 \exp \left(-2 c_{1}^{2}\right) \rightarrow 1-2 \exp \left(-2 c_{1}^{2}\right) \quad(n \rightarrow \infty)
\end{aligned}
$$

This was the assertion.
Furthermore, we know (see proof of Theorem 2 in combination with (2.4))

$$
\begin{equation*}
\delta_{n}=\frac{1}{n} \sum_{i=1}^{n} I_{\left\{\left|X_{i}-\hat{X}_{i, n}\right|>\sqrt{\eta_{n}}\right\}} \leq \frac{\eta_{n}}{\sqrt{\eta_{n}}}=\sqrt{\eta_{n}} \rightarrow 0 \quad \text { a.s. } \tag{S4.22}
\end{equation*}
$$

Using (S4.22), application of Lemma 1 yields

$$
\begin{equation*}
\hat{q}_{X, n, \alpha-\sqrt{\eta_{n}}}-\sqrt{\eta_{n}} \leq \hat{q}_{\bar{X}, n, \alpha} \leq \hat{q}_{X, n, \alpha+\sqrt{\eta_{n}}}+\sqrt{\eta_{n}} \tag{S4.23}
\end{equation*}
$$

for all $n \in \mathbb{N}$.

In the second step of the proof we finally show the assertion. By the first
step we can conclude

$$
\left|\hat{q}_{X, n, \alpha-\sqrt{\eta_{n}}}-q_{X, \alpha}\right|=O_{\mathbf{P}}\left(\left(\frac{1}{\sqrt{n}}+\sqrt{\eta_{n}}\right)^{1 / \gamma}\right)
$$

and

$$
\left|\hat{q}_{X, n, \alpha+\sqrt{\eta_{n}}}-q_{X, \alpha}\right|=O_{\mathbf{P}}\left(\left(\frac{1}{\sqrt{n}}+\sqrt{\eta_{n}}\right)^{1 / \gamma}\right) .
$$

By (S4.23) we know

$$
\begin{aligned}
\left|\hat{q}_{\bar{X}, n, \alpha}-q_{X, \alpha}\right| & \leq\left|\hat{q}_{X, n, \alpha-\sqrt{\eta_{n}}}-\sqrt{\eta_{n}}-q_{X, \alpha}\right|+\left|\hat{q}_{X, n, \alpha+\sqrt{\eta_{n}}}+\sqrt{\eta_{n}}-q_{X, \alpha}\right| \\
& \leq\left|\hat{q}_{X, n, \alpha-\sqrt{\eta_{n}}}-q_{X, \alpha}\right|+\left|\hat{q}_{X, n, \alpha+\sqrt{\eta_{n}}}-q_{X, \alpha}\right|+2 \sqrt{\eta_{n}}
\end{aligned}
$$

which completes the proof.

S5 Proof of Theorem 5

Let $\alpha \in(0,1)$ be arbitrary. For the sake of simplicity we write $q_{X, \alpha}$ for the lower α-quantile of X instead of $q_{X, \alpha}^{[l o w]}$. Assume to the contrary that there exists an estimator $\left(\hat{q}_{n, \alpha}\right)_{n \in N}$ such that for all random variables $\bar{X}_{1, n}, \bar{X}_{2, n}, \ldots$, which are such that for some independent and identically as X distributed X_{1}, X_{2}, \ldots it holds

$$
\begin{equation*}
\eta_{n}=\frac{1}{n} \sum_{i=1}^{n}\left|X_{i}-\bar{X}_{i, n}\right| \rightarrow 0 \quad \text { a.s. } \tag{S5.24}
\end{equation*}
$$

we have

$$
\begin{equation*}
\lim _{c \rightarrow \infty} \limsup _{n \rightarrow \infty} \mathbf{P}\left(\left|\hat{q}_{n, \alpha}\left(\bar{X}_{1, n}, \ldots, \bar{X}_{n, n}\right)-q_{X, \alpha}\right|>c \cdot\left(\frac{1}{\sqrt{n}}+\tilde{\eta}_{n}\right)\right)=0 \tag{S5.25}
\end{equation*}
$$

with a sequence $\tilde{\eta}_{n}$ that fullfills

$$
\begin{equation*}
\frac{\tilde{\eta}_{n}}{\sqrt{\eta_{n}}} \rightarrow^{\mathbf{P}} 0 . \tag{S5.26}
\end{equation*}
$$

Let X, X_{1}, X_{2}, \ldots be independent and identically uniformly on $(0,1)$ distributed, i.e., with cdf.

$$
F(x)=\left\{\begin{array}{lll}
0 & \text { if } & x<0 \\
x & \text { if } & 0 \leq x<1 \\
1 & \text { if } & x \geq 1
\end{array}\right.
$$

and lower α-quantile $q_{X, \alpha}=\alpha$. Set $\beta=\min (\alpha, 1-\alpha) / 2$ and for $k \in \mathbb{N}$ let $Y^{(k)}$ have the distribution function

$$
F_{k}(x)= \begin{cases}0 & \text { if } x<0 \\ x & \text { if } 0 \leq x<\alpha-\beta \sqrt{\frac{1}{k}} \\ \alpha-\beta \sqrt{\frac{1}{k}} & \text { if } \alpha-\beta \sqrt{\frac{1}{k}} \leq x<\alpha \\ 2(x-\alpha)+\alpha-\beta \sqrt{\frac{1}{k}} & \text { if } \alpha \leq x<\alpha+\beta \sqrt{\frac{1}{k}} \\ x & \text { if } \alpha+\beta \sqrt{\frac{1}{k}} \leq x<1 \\ 1 & \text { if } 1 \leq x .\end{cases}
$$

In other words the distribution of the random variable $Y^{(k)}$ is obtained by shifting all mass, that is contained in the interval $\left[\alpha-\beta \sqrt{\frac{1}{k}}, \alpha\right]$, by $\beta \sqrt{\frac{1}{k}}$ to the right. This distribution has the lower α-quantile $q_{Y^{(k)}, \alpha}=\alpha+\frac{\beta}{2} \sqrt{\frac{1}{k}}$.

Furthermore, we set
$X_{i, n}^{(k)}= \begin{cases}X_{i}+\beta \sqrt{\frac{1}{k}} \quad \text { if } \quad X_{i} \in\left[\alpha-\beta \sqrt{\frac{1}{k}}, \alpha\right] \text { and } X_{i} \text { is one of the }\left\lfloor\beta \sqrt{\frac{1}{k}} \cdot n\right\rfloor \\ & \text { largest samples of }\left(X_{j}\right)_{j=1, \ldots, n} \text { in }\left[\alpha-\beta \sqrt{\frac{1}{k}}, \alpha\right] \\ X_{i}, \quad & \text { otherwise }\end{cases}$
and notice that this is almost surely well defined, since ties occur only with probability zero because F is continuous. Now let $Y_{1}^{(k)}, Y_{2}^{(k)}, \ldots$ be independet and identically as $Y^{(k)}$ distributed. Then we know by (S5.25) that for every $k \in \mathbb{N}$

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \mathbf{P}\left(\left|\hat{q}_{n, \alpha}\left(Y_{1}^{(k)}, \ldots, Y_{n}^{(k)}\right)-q_{Y^{(k)}, \alpha}\right| \geq \frac{\beta}{4} \sqrt{\frac{1}{k}}\right)=0 \tag{S5.27}
\end{equation*}
$$

Denote by $A_{n}^{(k)}$ the event, that there are not more than $\left\lfloor\beta \sqrt{\frac{1}{k}} \cdot n\right\rfloor$ of the samples $\left(X_{i}\right)_{i=1, \ldots, n}$ in thegalleys interval $\left[\alpha-\beta \sqrt{\frac{1}{k}}, \alpha\right]$. Then the de MoivreLaplace theorem (cf., e.g., Theorem 1 and Corollary 1 on pp. 47-48 in Chow and Teicher (1978)), which is a special case of the central limit theorem for binomially-distributed random variables, implies for a $B\left(n, \beta \sqrt{\frac{1}{k}}\right)$ -
distributed random variable Z, and $p=\beta \sqrt{\frac{1}{k}}$

$$
\begin{aligned}
\mathbf{P}\left(A_{n}^{(k)}\right) & =\sum_{l=0}^{\lfloor p n\rfloor}\binom{n}{l} \cdot \mathbf{P}(X \in[\alpha-p, \alpha])^{l} \cdot \mathbf{P}(X \notin[\alpha-p, \alpha])^{n-l} \\
& =\sum_{l=0}^{\lfloor p n\rfloor}\binom{n}{l} \cdot p^{l} \cdot(1-p)^{n-l} \\
& =\mathbf{P}(Z \leq\lfloor p n\rfloor) \\
& =\mathbf{P}\left(\frac{Z-\lfloor p n\rfloor}{\sqrt{n p(1-p)}} \leq 0\right) \rightarrow \frac{1}{2} \quad(n \rightarrow \infty)
\end{aligned}
$$

and

$$
\mathbf{P}\left(\left(A_{n}^{(k)}\right)^{c}\right) \rightarrow \frac{1}{2} \quad(n \rightarrow \infty)
$$

for every $k \in \mathbb{N}$. So we can conclude by (S5.27) that for every $k \in \mathbb{N}$

$$
\begin{align*}
& \limsup _{n \rightarrow \infty} \mathbf{P}\left(\left|\hat{q}_{n, \alpha}\left(X_{1, n}^{(k)}, \ldots, X_{n, n}^{(k)}\right)-q_{Y^{(k)}, \alpha}\right| \geq \frac{\beta}{4} \sqrt{\frac{1}{k}}\right) \\
& \leq \limsup _{n \rightarrow \infty}\left[\mathbf{P}\left(\left\{\left|\hat{q}_{n, \alpha}\left(X_{1, n}^{(k)}, \ldots, X_{n, n}^{(k)}\right)-q_{Y^{(k)}, \alpha}\right| \geq \frac{\beta}{4} \sqrt{\frac{1}{k}}\right\} \cap A_{n}^{(k)}\right)+\mathbf{P}\left(\left(A_{n}^{(k)}\right)^{c}\right)\right] \\
& =0+\frac{1}{2}=\frac{1}{2} \tag{S5.28}
\end{align*}
$$

because if we intersect with the event $A_{n}^{(k)}$ the samples $X_{1, n}^{(k)}, \ldots, X_{n, n}^{(k)}$ are in fact samples drawn from the distribution of the random variable $Y^{(k)}$. So for every $k \in \mathbb{N}$ we get in particular for n large enough

$$
\begin{equation*}
\mathbf{P}\left(\left|\hat{q}_{n, \alpha}\left(X_{1, n}^{(k)}, \ldots, X_{n, n}^{(k)}\right)-q_{Y^{(k)}, \alpha}\right| \geq \frac{\beta}{4} \sqrt{\frac{1}{k}}\right) \leq \frac{3}{4} . \tag{S5.29}
\end{equation*}
$$

It suffices to show, that there exists a strictly increasing sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ and data with measurement error $\bar{X}_{1, n_{k}}, \ldots, \bar{X}_{n_{k}, n_{k}}$, fullfilling (S5.24), and $\tilde{\eta}_{n}$ satisfying S5.26), such that for every $c_{3}>0$

$$
\begin{equation*}
\mathbf{P}\left(\left|\hat{q}_{n_{k}, \alpha}\left(\bar{X}_{1, n_{k}}, \ldots, \bar{X}_{n_{k}, n_{k}}\right)-q_{X, \alpha}\right|>c_{3} \cdot\left(\frac{1}{\sqrt{n_{k}}}+\tilde{\eta}_{n_{k}}\right)\right) \geq \frac{1}{8} \tag{S5.30}
\end{equation*}
$$

for k large enough.
We will now sequentially construct such a sequence n_{k} and the data $\bar{X}_{1, n_{k}}, \ldots, \bar{X}_{n_{k}, n_{k}}$ and show that S 5.30 holds. Choose $n_{1} \geq 1$ such that

$$
\mathbf{P}\left(\left|\hat{q}_{n_{1}, \alpha}\left(X_{1, n_{1}}^{(1)}, \ldots, X_{n_{1}, n_{1}}^{(1)}\right)-q_{Y^{(1)}, \alpha}\right| \geq \frac{\beta}{4} \sqrt{\frac{1}{1}}\right) \leq \frac{3}{4}
$$

holds. This is possible because of (S5.29). Given n_{k-1}, choose $n_{k}>n_{k-1}$
such that $n_{k} \geq k^{2}$ and

$$
\mathbf{P}\left(\left|\hat{q}_{n_{k}, \alpha}\left(X_{1, n_{k}}^{(k)}, \ldots, X_{n_{k}, n_{k}}^{(k)}\right)-q_{Y^{(k)}, \alpha}\right| \geq \frac{\beta}{4} \sqrt{\frac{1}{k}}\right) \leq \frac{3}{4}
$$

hold. This is again possible because of (S5.29). Setting

$$
\begin{array}{lll}
\bar{X}_{i, n}=X_{i, n}^{(1)} \quad \text { for } \quad 0<n \leq n_{1} & \text { and } i=1, \ldots, n \quad \text { and } \tag{S5.31}\\
\bar{X}_{i, n}=X_{i, n}^{(k)} & \text { for } \quad n_{k-1}<n \leq n_{k} & \text { and } i=1, \ldots, n,
\end{array}
$$

we can conclude for $n_{k-1}<n \leq n_{k}$

$$
\eta_{n}=\frac{1}{n} \sum_{i=1}^{n}\left|X_{i}-\bar{X}_{i, n}\right|=\frac{1}{n} \sum_{i=1}^{n}\left|X_{i}-X_{i, n}^{(k)}\right| \leq \frac{1}{n} \cdot\left\lfloor\beta \sqrt{\frac{1}{k}} \cdot n\right\rfloor \cdot \beta \sqrt{\frac{1}{k}} \leq \frac{\beta^{2}}{k}
$$

and in particular

$$
\eta_{n_{k}} \leq \frac{\beta^{2}}{k} \quad \text { for all } k \in \mathbb{N}
$$

and

$$
\eta_{n} \rightarrow 0 \quad \text { a.s. }
$$

In this way we have constructed a strictly increasing sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ and data with measurement error $\bar{X}_{1, n_{k}}, \ldots, \bar{X}_{n_{k}, n_{k}}$ such that for all $k \in \mathbb{N}$

$$
\begin{equation*}
\mathbf{P}\left(\left|\hat{q}_{n_{k}, \alpha}\left(\bar{X}_{1, n_{k}}, \ldots, \bar{X}_{n_{k}, n_{k}}\right)-q_{Y^{(k)}, \alpha}\right| \geq \frac{\beta}{4} \sqrt{\frac{1}{k}}\right) \leq \frac{3}{4} . \tag{S5.32}
\end{equation*}
$$

By the triangle inequality, we know

$$
\begin{align*}
\frac{\beta}{2} \sqrt{\frac{1}{k}} & =\left|q_{Y^{(k)}, \alpha}-q_{X, \alpha}\right| \\
& \leq\left|q_{Y^{(k)}, \alpha}-\hat{q}_{n_{k}, \alpha}\left(\bar{X}_{1, n_{k}}, \ldots, \bar{X}_{n_{k}, n_{k}}\right)\right|+\left|\hat{q}_{n_{k}, \alpha}\left(\bar{X}_{1, n_{k}}, \ldots, \bar{X}_{n_{k}, n_{k}}\right)-q_{X, \alpha}\right| . \tag{S5.33}
\end{align*}
$$

Thereby, we can conclude for all $k \in \mathbb{N}$

$$
\begin{aligned}
& \mathbf{P}\left(\left|\hat{q}_{n_{k}, \alpha}\left(\bar{X}_{1, n_{k}}, \ldots, \bar{X}_{n_{k}, n_{k}}\right)-q_{X, \alpha}\right|>c_{3} \cdot\left(\frac{1}{\sqrt{n_{k}}}+\tilde{\eta}_{n_{k}}\right)\right) \\
& \geq \mathbf{P}\left(\frac{\beta}{2} \sqrt{\frac{1}{k}}-\left|q_{Y^{(k)}, \alpha}-\hat{q}_{n_{k}, \alpha}\left(\bar{X}_{1, n_{k}}, \ldots, \bar{X}_{n_{k}, n_{k}}\right)\right|>c_{3} \cdot\left(\frac{1}{\sqrt{n_{k}}}+\tilde{\eta}_{n_{k}}\right)\right) \\
& =\mathbf{P}\left(\frac{\beta}{2} \sqrt{\frac{1}{k}}-c_{3} \cdot\left(\frac{1}{\sqrt{n_{k}}}+\tilde{\eta}_{n_{k}}\right)>\left|q_{Y^{(k), \alpha}}-\hat{q}_{n_{k}, \alpha}\left(\bar{X}_{1, n_{k}}, \ldots, \bar{X}_{n_{k}, n_{k}}\right)\right|\right) .
\end{aligned}
$$

Since $\eta_{n_{k}} \leq \frac{\beta^{2}}{k}$, we know by $\$ 5.26$

$$
\frac{\tilde{\eta}_{n_{k}}}{\frac{\beta}{4} \sqrt{\frac{1}{k}}} \leq \frac{4 \tilde{\eta}_{n_{k}}}{\sqrt{\eta_{n_{k}}}} \rightarrow^{\mathbf{P}} 0 \quad(k \rightarrow \infty)
$$

Furthermore, since $n_{k} \geq k^{2}$ for all $k \in \mathbb{N}$ by construction, we have

$$
\frac{\frac{1}{\sqrt{n_{k}}}}{\frac{\beta}{4} \sqrt{\frac{1}{k}}} \leq \frac{\frac{1}{\sqrt{k^{2}}}}{\frac{\beta}{4} \sqrt{\frac{1}{k}}} \rightarrow 0 \quad(k \rightarrow \infty)
$$

which implies for every $c_{3}>0$

$$
\frac{c_{3}\left(\tilde{\eta}_{n_{k}}+\frac{1}{\sqrt{n_{k}}}\right)}{\frac{\beta}{4} \sqrt{\frac{1}{k}}} \rightarrow{ }^{\mathbf{P}} 0 \quad(k \rightarrow \infty)
$$

So setting

$$
B_{k}=\left\{c_{3} \cdot\left(\tilde{\eta}_{n_{k}}+\frac{1}{\sqrt{n_{k}}}\right) \leq \frac{\beta}{4} \sqrt{\frac{1}{k}}\right\}
$$

yields

$$
\mathbf{P}\left(B_{k}\right) \rightarrow 1 \quad(k \rightarrow \infty)
$$

and thus

$$
\mathbf{P}\left(B_{k}\right) \geq \frac{7}{8}
$$

for k large enough. Thereby, we finally get for every $c_{3}>0$ and k large enough

$$
\begin{aligned}
& \mathbf{P}\left(\left|\hat{q}_{n_{k}, \alpha}\left(\bar{X}_{1, n_{k}}, \ldots, \bar{X}_{n_{k}, n_{k}}\right)-q_{X, \alpha}\right|>c_{3} \cdot\left(\tilde{\eta}_{n_{k}}+\frac{1}{\sqrt{n_{k}}}\right)\right) \\
& \geq \mathbf{P}\left(\frac{\beta}{2} \sqrt{\frac{1}{k}}-c_{3} \cdot\left(\tilde{\eta}_{n_{k}}+\frac{1}{\sqrt{n_{k}}}\right)>\left|q_{Y^{(k), \alpha}}-\hat{q}_{n_{k}, \alpha}\left(\bar{X}_{1, n_{k}}, \ldots, \bar{X}_{n_{k}, n_{k}}\right)\right|\right) \\
& \geq \mathbf{P}\left(\left\{\frac{\beta}{2} \sqrt{\frac{1}{k}}-c_{3} \cdot\left(\tilde{\eta}_{n_{k}}+\frac{1}{\sqrt{n_{k}}}\right)>\left|q_{Y^{(k), \alpha}}-\hat{q}_{n_{k}, \alpha}\left(\bar{X}_{1, n_{k}}, \ldots, \bar{X}_{n_{k}, n_{k}}\right)\right|\right\} \cap B_{k}\right) \\
& \geq \mathbf{P}\left(\left\{\frac{\beta}{4} \sqrt{\frac{1}{k}}>\left|q_{Y^{(k), \alpha}}-\hat{q}_{n_{k}, \alpha}\left(\bar{X}_{1, n_{k}}, \ldots, \bar{X}_{n_{k}, n_{k}}\right)\right|\right\} \cap B_{k}\right) \\
& \geq \mathbf{P}\left(\frac{\beta}{4} \sqrt{\frac{1}{k}}>\left|q_{Y^{(k), \alpha}}-\hat{q}_{n_{k}, \alpha}\left(\bar{X}_{1, n_{k}}, \ldots, \bar{X}_{n_{k}, n_{k}}\right)\right|\right)-\mathbf{P}\left(B_{k}^{c}\right) \\
& \geq \frac{1}{4}-\frac{1}{8}=\frac{1}{8}
\end{aligned}
$$

where we have used (S5.32) in the last inequality. This yields the assertion.

References

Burckel, R. and Bauer, H. (1996). Probability Theory. De Gruyter, Berlin.

Chow, Y. S. and Teicher, H. (1978). Probability Theory: Independence, interchangeability, martingales. Springer, New York.

Devroye, L., Györfi, L. and Lugosi, G. (1996). A Probabilistic Theory of Pattern Recognition. Springer, New York.

Dvoretzky, A., Kiefer, J. and Wolfowitz, J. (1956). Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. Ann. Math. Statist., 27, 642-669.

Feldman, D. and Tucker, H. G. (1966). Estimation of non-unique quantiles. Ann. Math. Statist., 37, 451-457.

Massart, P. (1990). The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab., 18, 1269-1283.

Tucker, H. G. (1967). A Graduate Course in Probability. Academic Press, New York.

