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Supplementary Material

The following supplementary material contains detailed proofs of the

Theorems 1 to 5.

In three of the proofs we use the following lemma, which relates the plug-

in estimate with data containing additional measurement errors to plug-in

estimates with i.i.d. data without additional measurement errors.

Lemma 1. Let a > 0 be a (possibly random) finite constant and set

δn =
1

n

n∑
i=1

I{|Xi−X̄i,n|>a}.

Then it holds for α ∈ R and the plug-in estimates defined above that

q̂X,n,α−δn − a ≤ q̂X̄,n,α ≤ q̂X,n,α+δn + a

Proof. Consider

F̄n(x)− Fn(x+ a) =
1

n

n∑
i=1

(
I{X̄i,n≤x} − I{Xi≤x+a}

)
.
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The i-th summand becomes one, if

X̄i,n ≤ x and Xi > x+ a.

In this case
∣∣Xi − X̄i,n

∣∣ > a also holds true. So we can conclude

F̄n(x)− Fn(x+ a) ≤ 1

n

n∑
i=1

I{|Xi−X̄i,n|>a} = δn.

Analogously we can also show

F̄n(x)− Fn(x− a) ≥ − 1

n

n∑
i=1

I{|Xi−X̄i,n|>a} = −δn.

Hence we get

q̂X̄,n,α = min
{
z ∈ R : F̄n (z) ≥ α

}
= min

{
z ∈ R : F̄n (z)− Fn (z + a) + Fn (z + a) ≥ α

}
≥ min {z ∈ R : δn + Fn (z + a) ≥ α}

= min {z ∈ R : Fn (z) ≥ α− δn} − a

= q̂X,n,α−δn − a

and
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q̂X̄,n,α = min
{
z ∈ R : F̄n (z) ≥ α

}
= min

{
z ∈ R : F̄n (z)− Fn (z − a) + Fn (z − a) ≥ α

}
≤ min {z ∈ R : −δn + Fn (z − a) ≥ α}

= min {z ∈ R : Fn (z) ≥ α + δn}+ a

= q̂X,n,α+δn + a,

which yields the assertion. �

S1 Proof of Theorem 1

Let αn ∈ (0, 1) be such that

αn → α a.s.

We divide the proof into three steps:

In the first step of the proof we show that

dist (q̂X,n,αn , QX,α)→ 0 a.s. (S1.1)

Therefore set

N :=

{
αn → α (n→∞) and sup

t∈R
|Fn (t)− F (t)| → 0 (n→∞)

}
.

Notice that

P (N) = 1



4 MATTHIAS HANSMANN AND MICHAEL KOHLER

because of the Glivenko-Catelli theorem (cf., e.g., Theorem 12.4 in Devroye,

Györfi and Lugosi (1996)) and αn → α a.s. Let ε > 0 be arbitrary. We

know

F
(
q

[low]
X,α − ε

)
< α < F

(
q

[up]
X,α + ε

)
. (S1.2)

Setting

ρ1 = min
(
α− F

(
q

[low]
X,α − ε

)
, F
(
q

[up]
X,α + ε

)
− α

)
,

we can conclude

F
(
q

[low]
X,α − ε

)
+
ρ1

2
< α < F

(
q

[up]
X,α + ε

)
− ρ1

2
.

Assume N to hold in the following. Then we can (for all ω ∈ N) find n0,

such that for all n ≥ n0 we have

|αn − α| <
ρ1

4
and sup

t∈R
|Fn (t)− F (t)| < ρ1

4
,

which implies

Fn

(
q

[low]
X,α − ε

)
< αn < Fn

(
q

[up]
X,α + ε

)
and consequently

q
[low]
X,α − ε ≤ q̂X,n,αn ≤ q

[up]
X,α + ε.

Hence,

P

(
lim sup
n→∞

dist (q̂X,n,αn , QX,α) ≤ ε

)
≥ P (N) = 1.
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Since ε > 0 was arbitrary this implies the assertion.

Let ε > 0 again be arbitrary and set

δn =
1

n

n∑
i=1

I{|Xi−X̄i,n|>ε}.

In the second step of the proof we show

δn → 0 a.s. (S1.3)

Therefore we observe

1

n

n∑
i=1

I{|Xi−X̄i,n|>ε} ≤
1

ε

1

n

n∑
i=1

|Xi − X̄i,n|,

which yields the assertion by (2.1).

Furthermore, we know by Lemma 1

q̂X,n,α−δn − ε ≤ q̂X̄,n,α ≤ q̂X,n,α+δn + ε (S1.4)

In the third step of the proof we finally show the assertion. By the second

step, we know α − δn → α a.s. and α + δn → α a.s., so by choosing

αn = α − δn or αn = α + δn, resp., we conclude by (S1.4) and by the first

step for arbitrary ε > 0

dist
(
q̂X̄,n,α, QX,α

)
≤ dist (q̂X,n,α−δn , QX,α) + ε+ dist (q̂X,n,α+δn , QX,α) + ε −→ 2ε a.s.

(S1.5)

Since ε > 0 was arbitrary this implies the assertion. �
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S2 Proof of Theorem 2

In order to proof Theorem 2, we need the following lemma, which is a

straightforward extension of ideas in Theorem 4 in Feldman and Tucker

(1966) to random sequences.

Lemma 2. Let α ∈ (0, 1) be arbitrary and X,X1, X2, . . . be independent

and identically distributed real valued random variables with cdf. F .

(a) Let γn,l be a (possibly random) sequence, that satisfies

γn,l + (1 + ν)

√
2 log (log (n/2))

n
< α and γn,l → α a.s.

for some ν > 0. Then it holds

q̂X,n,γn,l → q
[low]
X,α a.s. (S2.6)

(b) Let γn,r be a (possibly random) sequence, that satisfies

γn,r − (1 + ν)

√
2 log (log (n/2))

n
> α and γn,l → α a.s.

for some ν > 0. Then it holds

q̂X,n,γn,r → q
[up]
X,α a.s. (S2.7)

Proof of Lemma 2. (a) It suffices to show
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(i) P
(
q̂X,n,γn,l ≤ q

[low]
X,α − ε i.o.

)
= 0 for any ε > 0, and

(ii) P
(
q̂X,n,γn,l > q

[low]
X,α i.o.

)
= 0,

where i.o. means infinitely often. First of all we show (i). Therefore let

ε > 0 be arbitrary. We know

F
(
q

[low]
X,α − ε

)
< α.

Setting

ρ2 = α− F
(
q

[low]
X,α − ε

)
,

we can conclude

F
(
q

[low]
X,α − ε

)
+
ρ2

2
< α.

Choose

N :=

{
γn,l → α (n→∞) and sup

t∈R
|Fn (t)− F (t)| → 0 (n→∞)

}
.

As in the proof of Theorem 1 we have P(N) = 1. We can (for every ω ∈ N)

find n0 such that for all n ≥ n0 it holds

|γn,l − α| ≤
ρ2

4
and sup

t∈R
|Fn (t)− F (t)| ≤ ρ2

4
.

This implies (for every ω ∈ N)

Fn

(
q

[low]
X,α − ε

)
< γn,l
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and hence

q̂X,n,γn,l > q
[low]
X,α − ε

for n large enough. So we actually have shown

1−P
(
q̂X,n,γn,l ≤ q

[low]
X,α − ε i.o.

)
≥ P (N) = 1,

which proves (i).

It remains to show (ii). Therefore set

Ui = 1− 2 · I{
Xi≤q

[low]
X,α

} for i = 1, ..., n

and

p1 = P
(
X ≤ q

[low]
X,α

)
≥ α.

We know

E {Ui} = 1− 2p1 ≤ 1− 2α and s = V {Ui} = 4p1 · (1− p1)

and
n∑
i=1

Ui = n− 2n · Fn
(
q

[low]
X,α

)
.

Thus,

{
q̂X,n,γn,l > q

[low]
X,α

}
=
{
Fn

(
q

[low]
X,α

)
< γn,l

}
=
{
−2n · Fn

(
q

[low]
X,α

)
> −2γn,l · n

}
⊆

{
n∑
i=1

Ui ≥ n− 2γn,l · n

)
. (S2.8)
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It is only necessary to consider the nontrivial case where s > 0. Set ψn =

(2ns · log (log (ns)))1/2, which we will need in the subsequent application

of Kolmogorov’s law of the iterated logarithm. Observe that ψn is well-

defined for n large enough. Since 0 ≤ x · (1− x) ≤ 1
4

for x ∈ [0, 1], we have

0 ≤ s ≤ 1 and thus (2n · log (log (n)))1/2 ≥ ψn. Because of

α− γn,l > (1 + ν) ·
√

2 log (log (n/2))

n
,

we can conclude

α− γn,l ≥
1 + ν

2
·
√

2 log (log (n))

n

for all n large enough. Combining this with

1− 2p1 ≤ 1− 2α,

we get by (S2.8)

P
(
q̂X,n,γn,l > q

[low]
X,α i.o.

)
≤ P

(
n∑
i=1

Ui ≥ n− 2γn,l · n i.o.

)

≤ P

(
n∑
i=1

Ui ≥ n · (1− 2α) + 2 · (α · n− γn,l · n) i.o.

)

≤ P

(
n∑
i=1

Ui ≥ n · (1− 2p1) + (1 + ν) · ψn i.o.

)
.

We know by Kolmogorov’s law of the iterated logarithm (cf., e.g., Theorem
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1 on page 140 in Tucker (1967))

P

lim sup
n→∞

n∑
i=1

Ui − n · (1− 2p1)

ψn
= 1

 = 1,

from which we can conclude

P

(
n∑
i=1

Ui ≥ n · (1− 2p1) + (1 + ν) · ψn i.o.

)
= 0.

This completes the proof of (a).

(b) It suffices to show

(i) P
(
q̂X,n,γn,r > q

[up]
X,α + ε i.o.

)
= 0 for any ε > 0, and

(ii) P
(
q̂X,n,γn,r < q

[up]
X,α i.o.

)
= 0.

The proof of (i) is analogously to (i) in part (a). It remains to show (ii).

Therefore set

Vi = 2 · I{
Xi<q

[up]
X,α

} − 1 for i = 1, ..., n

and

p2 = P
(
X < q

[up]
X,α

)
≤ α.

We have E {Vi} = 2p2−1 ≤ 2α−1 and s̃ = V {Vi} = 4p2 ·(1− p2). Observe

that if

q̂X,n,γn,r < q
[up]
X,α,
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then

1

n

n∑
i=1

I{
Xi<q

[up]
X,α

} ≥ 1

n

n∑
i=1

I{Xi≤q̂X,n,γn,r} = Fn
(
q̂X,n,γn,r

)
≥ γn,r.

Thereby, we can analogously to (ii) in part (a) conclude{
q̂X,n,γn,r < q

[up]
X,α

}
⊆

{
n∑
i=1

Vi ≥ 2γn,r · n− n

}
.

Again, we only need to consider the nontrivial case s̃ > 0 and set ψ̃n =

(2ns̃ · log (log (ns̃)))1/2. Since 0 ≤ x · (1− x) ≤ 1
4

for x ∈ [0, 1], we have

(2n · log (log (n)))1/2 ≥ ψ̃n. The assumption on γn,r implies

γn,r − α ≥
1 + ν

2
·
√

2 log (log (n))

n

for all n large enough. Thus, using 2α− 1 ≥ 2p2 − 1, we can conclude

P
(
q̂X,n,γn,r < q

[up]
X,α i.o.

)
≤ P

(
n∑
i=1

Vi ≥ n · (2p2 − 1) + (1 + ν) · ψ̃n i.o.

)
Again, by Kolmogorov’s law of the iterated logarithm, we get

P

(
n∑
i=1

Vi ≥ n · (2p2 − 1) + (1 + ν) · ψ̃n i.o.

)
= 0,

which completes the proof. �

Proof of Theorem 2. Set

δn =
1

n

n∑
i=1

I{|Xi−X̄i,n|>
√
ηn}

and observe that (2.2) implies

δn =
1

n

n∑
i=1

I{|Xi−X̄i,n|>
√
ηn} ≤

1
√
ηn

1

n

n∑
i=1

|Xi − X̄i,n| ≤
ηn√
ηn

=
√
ηn a.s.

(S2.9)
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Using Lemma 1 and (S2.9), we can conclude that for any (random) sequence

γn holds

q̂X,n,γn−√ηn −
√
ηn ≤ q̂X̄,n,γn ≤ q̂X,n,γn+

√
ηn +

√
ηn (S2.10)

for every n ∈ N. By setting γn = αn in (S2.10) we know

q̂X,n,αn−√ηn −
√
ηn ≤ q̂X̄,n,αn ≤ q̂X,n,αn+

√
ηn +

√
ηn (S2.11)

for all n ∈ N. Having regard to

αn + (1 + ν) ·
√

2 log (log (n/2))

n
+
√
ηn < α

for all 0 < ν < 1, as well as αn → α a.s., we also know that γn,l = αn+
√
ηn

and γn,l = αn −
√
ηn fullfill the assumptions of Lemma 2a). So we get

q̂X,n,αn−√ηn −
√
ηn → q

[low]
X,α a.s. and q̂X,n,αn+

√
ηn +

√
ηn → q

[low]
X,α a.s.,

which yields

q̂X̄,n,αn → q
[low]
X,α a.s.

Analogously we can show

q̂X̄,n,βn → q
[up]
X,α a.s.

by using Lemma 2b), which completes the proof. �
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S3 Proof of Theorem 3

Let α ∈ (0, 1) be arbitrary. Assume to the contrary that there exists a

sequence (q̂n,α)n∈N of quantile estimates statisfying

q̂n,α
(
X̄1, . . . , X̄n

)
→P q

[low]
X,α (S3.12)

whenever X̄1, X̄2, . . . are such that for some independent and identically as

X distributed X1, X2, . . . we have

1

n

n∑
i=1

|Xi − X̄i| → 0 a.s. (S3.13)

Let X,X1, X2, . . . be independent and indentically distributed with cdf.

F (x) =



0 if x < 0

x if 0 ≤ x < α

α if α ≤ x < 1 + α

x− 1 if 1 + α ≤ x < 2

1 if 2 ≤ x

and α-quantile q
[low]
X,α = α. For k ∈ N set

Fk (x) =



0 if x < 0

x if 0 ≤ x < α− α
k

α− α
k

if α− α
k
≤ x < 1 + α− α

k

x− 1 if 1 + α− α
k
≤ x < 2

1 if 2 ≤ x
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and

X
(k)
i =


Xi if Xi /∈

[
α− α

k
, α
]

Xi + 1 if Xi ∈
[
α− α

k
, α
] .

Then X
(k)
1 , X

(k)
2 , . . . are independent and identically distributed random

variables with cdf. Fk and α-quantile q
[low]
k,α = 1 + α. So if we set X̄i = X

(k)
i

for all i ≥ N with N ∈ N arbitrary, (S3.13) is fullfilled (with Xi replaced

by X
(k)
i ) and we know by (S3.12) that

q̂n,α
(
X̄1, . . . , X̄n

)
→P q

[low]
k,α (S3.14)

Next we define for suitably chosen deterministic n0 := 0 < n1 < n2 < . . .

(where ni ∈ N for all i ∈ N) our data with measurement error by

X̄i = X
(k)
i if nk−1 < i ≤ nk (k ∈ N) .

For all i ∈ N we have

P
(
|Xi − X̄i| = 0

)
≥ 1− α and P

(
|Xi − X̄i| = 1

)
≤ α

and hence

0 ≤ E
{
|Xi − X̄i|

}
≤ α and V

{
|Xi − X̄i|

}
≤ E

{
|Xi − X̄i|2

}
≤ α.

So
∞∑
i=1

V{|Xi − X̄i|}
i2

≤
∞∑
i=1

α

i2
<∞.
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By a criterion which is sometimes called the Kolmogorov criterion (cf., e.g.,

Theorem 14.5 in Burckel and Bauer (1996)), we get

1

n

n∑
i=1

(
|Xi − X̄i| − E{|Xi − X̄i|}

)
→ 0 a.s. (S3.15)

But since |Xi−X(k)
i | ≥ |Xi−X(l)

i | for all l ≥ k and i ∈ N, we can conclude

0 ≤ 1

n

n∑
i=1

E{|Xi − X̄i|} =
1

n

nk∑
i=1

E{|Xi − X̄i|}+
1

n

n∑
i=nk+1

E{|Xi − X̄i|}

≤ 1

n

nk∑
i=1

α +
1

n

n∑
i=nk+1

E{|Xi −X(k)
i |}

=
nk
n
· α +

1

n

n∑
i=nk+1

α

k

≤ nk
n
· α +

α

k
−→ α

k
(n→∞),

for every k ∈ N, which implies

1

n

n∑
i=1

E{|Xi − X̄i|} → 0

and finally by (S3.15)

1

n

n∑
i=1

∣∣Xi − X̄i

∣∣→ 0 a.s.

So it suffies to show, that for some ε > 0

lim sup
n→∞

P
(∣∣∣q̂n,α (X̄1, . . . , X̄n

)
− q[low]

X,α

∣∣∣ > ε
)
> 0. (S3.16)

To do this we will choose nk such that (S3.16) holds. Let 0 < ε < 1 be fixed

and choose n1 such that

P
(∣∣∣q̂n1,α

(
X̄

(1)
1 , . . . , X̄(1)

n1

)
− q[low]

1,α

∣∣∣ > ε
)
<

1

2
.
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This is possible because of (S3.14). Given n1, . . . , nk−1, we choose nk > nk−1

such that

P
(∣∣∣q̂nk,α (X̄1, . . . , X̄nk−1

, X̄
(k)
nk−1+1, . . . , X̄

(k)
nk

)
− q[low]

k,α

∣∣∣ > ε
)
<

1

2
,

which is again possible because of (S3.14). The choice of n1, n2, . . . implies

P
(∣∣∣q̂nk,α (X̄1, . . . , X̄nk

)
− q[low]

k,α

∣∣∣ > ε
)
<

1

2

and accordingly

P
(∣∣∣q̂nk,α (X̄1, . . . , X̄nk

)
− q[low]

k,α

∣∣∣ ≤ ε
)
≥ 1

2

for k ∈ N. Using the triangle inequality, we know

1 =
∣∣∣q[low]
k,α − q

[low]
X,α

∣∣∣ ≤ ∣∣∣q̂nk,α (X̄1, . . . , X̄nk

)
− q[low]

k,α

∣∣∣+∣∣∣q̂nk,α (X̄1, . . . , X̄nk

)
− q[low]

X,α

∣∣∣ .
Thereby, we can conclude for any k ∈ N

P
(∣∣∣q̂nk,α (X̄1, . . . , X̄nk

)
− q[low]

X,α

∣∣∣ > 1− ε
)

≥ P
(

1−
∣∣∣q̂nk,α (X̄1, . . . , X̄nk

)
− q[low]

k,α

∣∣∣ > 1− ε
)

= P
(∣∣∣q̂nk,α (X̄1, . . . , X̄nk

)
− q[low]

k,α

∣∣∣ < ε
)

≥ 1

2
,

(S3.17)

which completes the proof. �
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S4 Proof of Theorem 4

For the sake of simplicity we write qX,α for the lower α-quantile of X instead

of q
[low]
X,α .

We divide the proof into two steps:

In the first step of the proof we show that if αn is a (possibly random)

sequence with

αn → α a.s.

it holds

|q̂X,n,αn − qX,α| = OP

((
1√
n

+ |αn − α|
)1/γ

)
. (S4.18)

Therefore it suffices to show

lim sup
n→∞

P

(
|q̂X,n,αn − qX,α| ≤

2c1

c
1/γ
2

·
(

1√
n

+ |αn − α|
)1/γ

)
≥ 1−2 exp

(
−2c2

1

)
for every c1 ≥ 1, with the finite constant c2 > 0 of (2.5).

Now set

Bn :=

{
2c1

c2

|αn − α| ≤
ζγ

2

}
and

Cn :=

{
sup
t∈R
|F (t)− Fn (t)| ≤ c1√

n

}
.

We know

P (Bc
n)→ 0 (n→∞) and P (Cc

n) ≤ 2 exp
(
−2c2

1

)
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because of αn → α a.s. and the Dvoretzky-Kiefer-Wolfowitz inequality (cf.,

Dvoretzky, Kiefer and Wolfowitz (1956)) in combination with Corollary 1

in Massart (1990). Choose n0 ∈ N, such that 0 < 2
c2
· c1√

n
≤ ζγ

2
is fullfilled

for all n ≥ n0. Assume in the following, that the events Bn and Cn hold

and consider n ≥ n0. Set θn = 2c1 · |αn − α| + 2 · c1√
n
. The assumptions

imply

0 <

(
1

c2

· θn
)1/γ

=

(
2c1

c2

· |αn − α|+
2

c2

· c1√
n

)1/γ

≤
(
ζγ

2
+
ζγ

2

)1/γ

= ζ

so we can conclude by the assumption in (2.5) and F (qX,α) = α

θn = c2

∣∣∣∣∣qX,α − qX,α −
(

1

c2

θn

)1/γ
∣∣∣∣∣
γ

≤

∣∣∣∣∣α− F
(
qX,α +

(
1

c2

θn

)1/γ
)∣∣∣∣∣

(S4.19)

and

θn = c2

∣∣∣∣∣qX,α − qX,α +

(
1

c2

θn

)1/γ
∣∣∣∣∣
γ

≤

∣∣∣∣∣α− F
(
qX,α −

(
1

c2

θn

)1/γ
)∣∣∣∣∣ .
(S4.20)

Since θn > 0 for all n, (S4.19) and (S4.20) imply

F

(
qX,α −

(
1

c2

θn

)1/γ
)
< α− θn

2
< α < α+

θn
2
< F

(
qX,α +

(
1

c2

θn

)1/γ
)
.

(S4.21)

Since the event Cn holds, we know

Fn

(
qX,α −

(
1

c2

θn

)1/γ
)
− c1√

n
≤ F

(
qX,α −

(
1

c2

θn

)1/γ
)
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and

F

(
qX,α +

(
1

c2

θn

)1/γ
)
≤ Fn

(
qX,α +

(
1

c2

θn

)1/γ
)

+
c1√
n
.

Combining this with (S4.21) and the definition of θn leads to

Fn

(
qX,α −

(
1

c2

θn

)1/γ
)
< α−c1·|α− αn| ≤ α+c1·|α− αn| < Fn

(
qX,α +

(
1

c2

θn

)1/γ
)
.

Since c1 ≥ 1 we have

α− c1 · |α− αn| ≤ αn ≤ α + c1 · |α− αn| ,

which implies

Fn

(
qX,α −

(
1

c2

θn

)1/γ
)
< αn < Fn

(
qX,α +

(
1

c2

θn

)1/γ
)
.

So finally we have shown

P (Bn ∩ Cn) ≤ P

(
Fn

(
qX,α −

(
1

c2

θn

)1/γ
)
< αn < Fn

(
qX,α +

(
1

c2

θn

)1/γ
))

,
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which by the definition of q̂X,n,αn and for n ≥ n0 leads to

P

(
|q̂X,n,αn − qX,α| ≤

(
1

c2

θn

)1/γ
)

= P

(
qX,α −

(
1

c2

θn

)1/γ

≤ q̂X,n,αn ≤ qX,α +

(
1

c2

θn

)1/γ
)

≥ P

(
Fn

(
qX,α −

(
1

c2

θn

)1/γ
)
< αn < Fn

(
qX,α +

(
1

c2

θn

)1/γ
))

≥ P (Bn ∩ Cn)

= 1−P (Bc
n ∪ Cc

n)

≥ 1−P (Bc
n)−P (Cc

n)

≥ 1−P (Bc
n)− 2 exp

(
−2c2

1

)
→ 1− 2 exp

(
−2c2

1

)
(n→∞) .

This was the assertion.

Furthermore, we know (see proof of Theorem 2 in combination with

(2.4))

δn =
1

n

n∑
i=1

I{|Xi−X̂i,n|>
√
ηn} ≤

ηn√
ηn

=
√
ηn → 0 a.s. (S4.22)

Using (S4.22), application of Lemma 1 yields

q̂X,n,α−√ηn −
√
ηn ≤ q̂X̄,n,α ≤ q̂X,n,α+

√
ηn +

√
ηn (S4.23)

for all n ∈ N.

In the second step of the proof we finally show the assertion. By the first
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step we can conclude

∣∣q̂X,n,α−√ηn − qX,α∣∣ = OP

((
1√
n

+
√
ηn

)1/γ
)

and ∣∣q̂X,n,α+
√
ηn − qX,α

∣∣ = OP

((
1√
n

+
√
ηn

)1/γ
)
.

By (S4.23) we know∣∣q̂X̄,n,α − qX,α∣∣ ≤ ∣∣q̂X,n,α−√ηn −√ηn − qX,α∣∣+
∣∣q̂X,n,α+

√
ηn +

√
ηn − qX,α

∣∣
≤
∣∣q̂X,n,α−√ηn − qX,α∣∣+

∣∣q̂X,n,α+
√
ηn − qX,α

∣∣+ 2
√
ηn,

which completes the proof. �

S5 Proof of Theorem 5

Let α ∈ (0, 1) be arbitrary. For the sake of simplicity we write qX,α for the

lower α-quantile of X instead of q
[low]
X,α . Assume to the contrary that there ex-

ists an estimator (q̂n,α)n∈N such that for all random variables X̄1,n, X̄2,n, . . . ,

which are such that for some independent and identically as X distributed

X1, X2, . . . it holds

ηn =
1

n

n∑
i=1

|Xi − X̄i,n| → 0 a.s., (S5.24)

we have

lim
c→∞

lim sup
n→∞

P

(∣∣q̂n,α (X̄1,n, . . . , X̄n,n

)
− qX,α

∣∣ > c ·
(

1√
n

+ η̃n

))
= 0,

(S5.25)
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with a sequence η̃n that fullfills

η̃n√
ηn
→P 0. (S5.26)

Let X,X1, X2, . . . be independent and identically uniformly on (0, 1) dis-

tributed, i.e., with cdf.

F (x) =


0 if x < 0

x if 0 ≤ x < 1

1 if x ≥ 1

and lower α-quantile qX,α = α. Set β = min (α, 1− α) /2 and for k ∈ N let

Y (k) have the distribution function

Fk (x) =



0 if x < 0

x if 0 ≤ x < α− β
√

1
k

α− β
√

1
k

if α− β
√

1
k
≤ x < α

2 (x− α) + α− β
√

1
k

if α ≤ x < α + β
√

1
k

x if α + β
√

1
k
≤ x < 1

1 if 1 ≤ x.

In other words the distribution of the random variable Y (k) is obtained by

shifting all mass, that is contained in the interval
[
α− β

√
1
k
, α
]
, by β

√
1
k

to the right. This distribution has the lower α-quantile qY (k),α = α+ β
2

√
1
k
.
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Furthermore, we set

X
(k)
i,n =


Xi + β

√
1
k

if Xi ∈
[
α− β

√
1
k
, α
]

and Xi is one of the bβ
√

1
k
· nc

largest samples of (Xj)j=1,...,n in
[
α− β

√
1
k
, α
]

Xi, otherwise

and notice that this is almost surely well defined, since ties occur only

with probability zero because F is continuous. Now let Y
(k)

1 , Y
(k)

2 , . . . be

independet and identically as Y (k) distributed. Then we know by (S5.25)

that for every k ∈ N

lim sup
n→∞

P

(∣∣∣q̂n,α (Y (k)
1 , . . . , Y (k)

n

)
− qY (k),α

∣∣∣ ≥ β

4

√
1

k

)
= 0. (S5.27)

Denote by A
(k)
n the event, that there are not more than bβ

√
1
k
·nc of the sam-

ples (Xi)i=1,...,n in thegalleys interval
[
α− β

√
1
k
, α
]
. Then the de Moivre-

Laplace theorem (cf., e.g., Theorem 1 and Corollary 1 on pp. 47-48 in

Chow and Teicher (1978)), which is a special case of the central limit theo-

rem for binomially-distributed random variables, implies for a B
(
n, β

√
1
k

)
-
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distributed random variable Z, and p = β
√

1
k

P
(
A(k)
n

)
=

bpnc∑
l=0

(
n

l

)
·P (X ∈ [α− p, α])l ·P (X /∈ [α− p, α])n−l

=

bpnc∑
l=0

(
n

l

)
· pl · (1− p)n−l

= P (Z ≤ bpnc)

= P

(
Z − bpnc√
np (1− p)

≤ 0

)
→ 1

2
(n→∞)

and

P
((
A(k)
n

)c)→ 1

2
(n→∞)

for every k ∈ N. So we can conclude by (S5.27) that for every k ∈ N

lim sup
n→∞

P

(∣∣∣q̂n,α (X(k)
1,n, . . . , X

(k)
n,n

)
− qY (k),α

∣∣∣ ≥ β

4

√
1

k

)

≤ lim sup
n→∞

[
P

({∣∣∣q̂n,α (X(k)
1,n, . . . , X

(k)
n,n

)
− qY (k),α

∣∣∣ ≥ β

4

√
1

k

}
∩ A(k)

n

)
+ P

((
A(k)
n

)c)]

= 0 +
1

2
=

1

2
,

(S5.28)

because if we intersect with the event A
(k)
n the samples X

(k)
1,n, . . . , X

(k)
n,n are

in fact samples drawn from the distribution of the random variable Y (k).

So for every k ∈ N we get in particular for n large enough

P

(∣∣∣q̂n,α (X(k)
1,n, . . . , X

(k)
n,n

)
− qY (k),α

∣∣∣ ≥ β

4

√
1

k

)
≤ 3

4
. (S5.29)
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It suffices to show, that there exists a strictly increasing sequence (nk)k∈N

and data with measurement error X̄1,nk , . . . , X̄nk,nk , fullfilling (S5.24), and

η̃n satisfying (S5.26), such that for every c3 > 0

P

(∣∣q̂nk,α (X̄1,nk , . . . , X̄nk,nk

)
− qX,α

∣∣ > c3 ·
(

1
√
nk

+ η̃nk

))
≥ 1

8
(S5.30)

for k large enough.

We will now sequentially construct such a sequence nk and the data X̄1,nk , . . . , X̄nk,nk

and show that (S5.30) holds. Choose n1 ≥ 1 such that

P

(∣∣∣q̂n1,α

(
X

(1)
1,n1

, . . . , X(1)
n1,n1

)
− qY (1),α

∣∣∣ ≥ β

4

√
1

1

)
≤ 3

4

holds. This is possible because of (S5.29). Given nk−1, choose nk > nk−1

such that nk ≥ k2 and

P

(∣∣∣q̂nk,α (X(k)
1,nk

, . . . , X(k)
nk,nk

)
− qY (k),α

∣∣∣ ≥ β

4

√
1

k

)
≤ 3

4
.

hold. This is again possible because of (S5.29). Setting

X̄i,n = X
(1)
i,n for 0 < n ≤ n1 and i = 1, ..., n and

X̄i,n = X
(k)
i,n for nk−1 < n ≤ nk and i = 1, ..., n,

(S5.31)

we can conclude for nk−1 < n ≤ nk

ηn =
1

n

n∑
i=1

∣∣Xi − X̄i,n

∣∣ =
1

n

n∑
i=1

∣∣∣Xi −X(k)
i,n

∣∣∣ ≤ 1

n
·

⌊
β

√
1

k
· n

⌋
· β
√

1

k
≤ β2

k

and in particular

ηnk ≤
β2

k
for all k ∈ N
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and

ηn → 0 a.s.

In this way we have constructed a strictly increasing sequence (nk)k∈N

and data with measurement error X̄1,nk , ..., X̄nk,nk such that for all k ∈ N

P

(∣∣q̂nk,α (X̄1,nk , . . . , X̄nk,nk

)
− qY (k),α

∣∣ ≥ β

4

√
1

k

)
≤ 3

4
. (S5.32)

By the triangle inequality, we know

β

2

√
1

k
=
∣∣qY (k),α − qX,α

∣∣
≤
∣∣qY (k),α − q̂nk,α

(
X̄1,nk , . . . , X̄nk,nk

)∣∣+
∣∣q̂nk,α (X̄1,nk , . . . , X̄nk,nk

)
− qX,α

∣∣ .
(S5.33)

Thereby, we can conclude for all k ∈ N

P

(∣∣q̂nk,α (X̄1,nk , . . . , X̄nk,nk

)
− qX,α

∣∣ > c3 ·
(

1
√
nk

+ η̃nk

))
≥ P

(
β

2

√
1

k
−
∣∣qY (k),α − q̂nk,α

(
X̄1,nk , . . . , X̄nk,nk

)∣∣ > c3 ·
(

1
√
nk

+ η̃nk

))

= P

(
β

2

√
1

k
− c3 ·

(
1
√
nk

+ η̃nk

)
>
∣∣qY (k),α − q̂nk,α

(
X̄1,nk , . . . , X̄nk,nk

)∣∣) .
Since ηnk ≤

β2

k
, we know by (S5.26)

η̃nk
β
4

√
1
k

≤ 4η̃nk√
ηnk
→P 0 (k →∞) .

Furthermore, since nk ≥ k2 for all k ∈ N by construction, we have

1√
nk

β
4

√
1
k

≤
1√
k2

β
4

√
1
k

→ 0 (k →∞) ,
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which implies for every c3 > 0

c3

(
η̃nk + 1√

nk

)
β
4

√
1
k

→P 0 (k →∞) .

So setting

Bk =

{
c3 ·
(
η̃nk +

1
√
nk

)
≤ β

4

√
1

k

}

yields

P (Bk)→ 1 (k →∞)

and thus

P (Bk) ≥
7

8

for k large enough. Thereby, we finally get for every c3 > 0 and k large

enough

P

(∣∣q̂nk,α (X̄1,nk , . . . , X̄nk,nk

)
− qX,α

∣∣ > c3 ·
(
η̃nk +

1
√
nk

))
≥ P

(
β

2

√
1

k
− c3 ·

(
η̃nk +

1
√
nk

)
>
∣∣qY (k),α − q̂nk,α

(
X̄1,nk , . . . , X̄nk,nk

)∣∣)

≥ P

({
β

2

√
1

k
− c3 ·

(
η̃nk +

1
√
nk

)
>
∣∣qY (k),α − q̂nk,α

(
X̄1,nk , . . . , X̄nk,nk

)∣∣} ∩Bk

)

≥ P

({
β

4

√
1

k
>
∣∣qY (k),α − q̂nk,α

(
X̄1,nk , . . . , X̄nk,nk

)∣∣} ∩Bk

)

≥ P

(
β

4

√
1

k
>
∣∣qY (k),α − q̂nk,α

(
X̄1,nk , . . . , X̄nk,nk

)∣∣)−P (Bc
k)

≥ 1

4
− 1

8
=

1

8
,
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where we have used (S5.32) in the last inequality. This yields the assertion.

�
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