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Abstract: We study the problem of community recovery in stochastic block models

and degree corrected block models. We show that a simple sample splitting trick

can refine almost any approximately correct community recovery method to achieve

exactly correct community recovery when the expected node degrees are of order

logn or higher. Our results simplify and extend some of the previous work on

exact community recovery using sample splitting, and provide better theoretical

guarantees for degree corrected stochastic block models.
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1. Introduction

Stochastic block models (Holland, Laskey and Leinhardt (1983)) are a popu-

lar tool in modeling the co-occurrence of pairwise interactions between individuals

in a population of interest. In recent years, the stochastic block model and its

variants, such as the degree corrected block model (Karrer and Newman (2011)),

have been the focus of much research effort in statistics and machine learning,

with wide applications in social networks (Faust and Wasserman (1992)), biolog-

ical networks and information networks (see, e.g., Kemp et al. (2006); Bickel and

Chen (2009)).

Consider a network data set on n nodes recorded in the form of an n by n

adjacency matrix A, where an entry Aij = 1 if an interaction is observed between

nodes i and j, and Aij = 0 otherwise. The stochastic block model assumes

that the nodes are partitioned into K disjoint communities, and that given the

community partition, Aij is an independent Bernoulli random variable whose

parameter only depends on the community membership of i and j. Such a model

naturally captures the community structure commonly observed in network data.

It is also possible to incorporate node specific connectivity parameters, and the
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resulting degree corrected block model allows the network data to have arbitrary

degree distribution.

A key inference problem in the stochastic block model and its variants is to re-

cover the hidden communities from an observed adjacency matrix. Various meth-

ods have been developed in the last decade, including modularity based methods

(Newman and Girvan (2004)), likelihood methods (Daudin, Picard and Robin

(2008); Bickel and Chen (2009); Zhao, Levina and Zhu (2012); Celisse, Daudin

and Pierre (2012)), convex optimization (Chen, Sanghavi and Xu (2012); Le,

Levina and Vershynin (2014); Abbe, Bandeira and Hall (2014)), spectral meth-

ods (McSherry (2001); Coja-Oghlan (2010); Rohe, Chatterjee and Yu (2011); Jin

(2012); Chaudhuri, Chung and Tsiatas (2012); Fishkind et al. (2013); Massoulie

(2013); Lei and Rinaldo (2015); Vu (2014)), and others (Decelle et al. (2011);

Mossel, Neeman and Sly (2013b); Anandkumar et al. (2014)). These methods

are proved to be successful under different assumptions with different types of

performance guarantee. A related problem, in a setting where the membership is

assumed to be generated at random, is to estimate the membership probability

and the community-wise edge probability (see Bickel et al. (2013) for example).

In this paper we focus on the community recovery problem.

There are three levels of accuracy for community recovery methods usually

considered. The first is proportional recovery, which means that an algorithm

can correctly recover the community memberships for a subset of nodes whose

proportion is bounded away from one but better than random guessing. Such

a proportional recovery is usually of interest in very sparse networks, where the

node degrees are of constant order and do not grow as the number of nodes in-

creases. In this difficult regime, theory and efficient algorithms are available only

for simple special cases and have been studied in Coja-Oghlan (2010); Decelle et

al. (2011); Mossel, Neeman and Sly (2012, 2013a,b); Massoulie (2013); Krzakala

et al. (2013). The second level is approximate recovery, where the proportion of

correctly clustered nodes tends to one as the number of nodes grows. Approxi-

mate recovery can only be achieved when the expected node degrees diverge to

infinity as the number of nodes grows. In this regime, more general models and

more practical algorithms have been studied, such as Rohe, Chatterjee and Yu

(2011); Jin (2012); Lei and Rinaldo (2015); Amini et al. (2012).

We focus on the third level of recovery accuracy, exact recovery. With exact

recovery, an algorithm can correctly recover the community memberships for

all nodes with high probability. Understanding the problem of exact recovery

provides useful insight to both the model and the algorithms. There has been
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much research effort on exact community recovery for stochastic block models

in recent years. Existing methods and results vary in terms of model generality

and theoretical sharpness, as we now summarize.

Many authors in probability, machine learning, and theoretical computer

science focus on the special case of stochastic block model where there are two

equal-sized communities, with edge probability p within community and q be-

tween communities. Under this model, sharp threshold for exact recovery can be

established, using convex optimization (Abbe, Bandeira and Hall (2014); Hajek,

Wu and Xu (2014); Bandeira (2015)), and spectral methods (Mossel, Neeman

and Sly (2014)). The method studied in Mossel, Neeman and Sly (2014) uses

a sample splitting technique, called the “replica trick”, which is similar to the

sample splitting considered here. Roughly speaking, these results imply that ex-

act recovery is possible only when the average node degree is of order log n or

higher. Yun and Proutiere (2014) extended the spectral method to the case of

more than two communities, with edge probabilities p within community and q

between communities.

Exact recovery for general stochastic block models was first studied by Mc-

Sherry (2001), where a combinatorial projection spectral method was combined

with sample splitting. Recently Vu (2014) modified and improved this method

using singular value decomposition combined with multiple sample splittings.

Bickel and Chen (2009) proved exact recovery for a profile likelihood estimator,

for models with node degrees growing faster than log n. It is computationally

demanding to maximize the profile likelihood, and commonly used heuristic al-

gorithms are not guaranteed to converge to the global maximum. Abbe and

Sandon (2015) provided sharp thresholds for exact community recovery in gen-

eral stochastic block models, where the recovery is achieved using a spectral

method.

There are fewer exact recovery results for degree corrected block models.

Chaudhuri, Chung and Tsiatas (2012) extended the method of McSherry (2001)

to a special case of degree corrected block models under stronger assumptions

on the growth rate of node degrees. Zhao, Levina and Zhu (2012) extended the

method of Bickel and Chen (2009) to general degree corrected block models,

requiring the node degree to grow faster than log n.

A common idea used in many of the aforementioned works is sample splitting

(McSherry (2001); Chaudhuri, Chung and Tsiatas (2012); Vu (2014); Mossel,

Neeman and Sly (2014)). In this paper we further study the sample splitting

approach for exact community recovery in stochastic block models and degree
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corrected block models. We provide further insights to exact recovery methods

using sample splitting. Given a preliminary algorithm that achieves approximate

recovery, we prove that sample splitting can refine the result to exactly recover

the communities with high probability when the expected node degrees are at

least C log n for some constant C. Compared with previous methods using sample

splitting, our method is more general and can be combined with many natural

and simpler initial community recovery algorithms. In particular, we show that

exact recovery can be achieved by combining sample splitting with the simple

spectral clustering method, which applies k-means to the top eigenvectors of the

adjacency matrix. This insight extends beyond the stochastic block model. We

give the first exact recovery method for general degree corrected block models

with expected node degrees of order logn.

2. Background

In a stochastic block model, the nodes of a network are partitioned into K

disjoint communities. Let gi ∈ {1, . . . ,K} be the community label of node i. The

observed data is an n× n symmetric binary random matrix A with independent

upper-diagonal entries Aij (1 ≤ i < j ≤ n): P (Aij = 1) = 1−P (Aij = 0) = Bgigj ,

where B ∈ [0, 1]K×K is a symmetric matrix representing the community-wise

edge probabilities. For convenience we assume Aii = 0 for all i. Throughout this

paper we assume that K, the number of communities, is known.

The community recovery problem concerns estimating the membership vec-

tor g = (g1, . . . , gn), up to a label permutation. It is well-known that the difficulty

of community recovery depends on (i) the sample size n, (ii) the number of com-

munities K, (iii) the differences between the rows of B, and (iv) the magnitude

of the entries in B, which controls the overall density of edges in the observed

network. In most theoretical studies of community recovery, it is common to

consider the large sample behavior as n grows to infinity, while other model pa-

rameters, such as K and B, change as functions of n. For simplicity, we focus

on the network edge density and fix other parameters as constants. Our analysis

can be used to investigate dependence on other model parameters, as discussed

in Section 6. To this end, we assume that

B = αnB0 , (2.1)

where B0 is a K × K non-negative symmetric constant matrix with maximum

entry 1. In Abbe, Bandeira and Hall (2014) it is shown that, for a special class

of stochastic block models where K = 2 and B0(1, 1) = B0(2, 2) = 1, exact
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Algorithm 1: Cross Clustering (CrossClust)

Input: adjacency matrix A; subset of nodes V1; subset of nodes V2; membership
vector ĝ(1) on V1.
Require subroutine: distance based clustering algorithm D.

1. For each v ∈ V2, let ĥv = (ĥv,1, . . . , ĥv,K) with

ĥv,k =

∑
v′∈V1,ĝ(1)v′ =k

Av,v′

#{v′ : v′ ∈ V1, ĝ(1)v′ = k}
.

2. Output ĝ(2) = D({ĥv : v ∈ V2},K).

recovery is possible if and only if αn > C log n/n for a constant C depending on

the off-diagonal entry B0(1, 2). For general stochastic block models, McSherry

(2001) studied a spectral method with exact recovery when αn ≥ (log n)3.5/n.

Vu (2014) improved this result to αn ≥ C log n/n for a sufficiently large C.

Other methods, such as convex optimization (Chen, Sanghavi and Xu (2012))

and profile likelihood (Bickel and Chen (2009)), require stronger conditions on

αn.

We argue that a single sample splitting can lead to exact recovery when

combined with a wide range of community recovery methods with approximate

recovery. The key idea is that once we have a roughly correct community mem-

bership for a subset of the nodes, it can be used to produce exact recovery for

the remaining nodes. This is described in detail in Algorithm 1 (CrossClust).

The intuition behind Algorithm 1 is natural. Suppose we have approximately

correct memberships for nodes in V1. Then we can use this membership to

estimate the community-wise edge probability for each node in V2. For v ∈ V2
we must have ĥv,k ≈ Bgv,k, k = 1, . . . ,K. Therefore, if two nodes v and v′

are in the same community, their corresponding ĥ vectors are close to the same

row of B. This gives us a good embedding of these nodes in a K dimensional

Euclidean space with a nearly perfect clustering structure. If such an embedding

is good enough, for example, the distance between any two cluster centers is at

least four times larger than the distance between any point to its center; then,

as pointed out in Vu (2014), some classical distance-based clustering algorithms

such as minimum spanning tree can perfectly recover the communities.

Our main algorithm for stochastic block models based on sample splitting

is described in a more general form in Algorithm 2 (V-Clust), where we further

extend the sample splitting method to a full V -fold cross clustering method. In

V -fold cross clustering, the nodes are divided into V disjoint subsets (folds),

and for the jth fold, we apply the preliminary community recovery algorithm
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Algorithm 2: V-fold Community Recovery (V-Clust)

Input: adjacency matrix A; number of communities K; number of folds V
Require subroutine: CrossClust; Merge; initial community recovery algorithm S.

1. Randomly split the nodes into V equal sized subsets, V(1), · · · ,V(V ).

2. For j = 1, · · · , V :

(a) ĝ(−j) = S(A(−j),K), where A(−j) is the induced adjacency matrix over
V(−j) = ∪j′ 6=jV(j′).

(b) ĝ(j) = CrossClust(A,V(−j),V(j), ĝ(−j)).

3. Output ĝ = Merge(A, (V(j) : 1 ≤ j ≤ V ), (ĝ(j) : 1 ≤ j ≤ V )).

Algorithm 3: Merge V-fold Labels (Merge)

Input: adjacency matrix A; the nodes and estimated community membership labels
in V folds {V(j), ĝ(j)}j=1,...,V .

1. For each j = 1, · · · , V , calculate B̂(j) = (B̂
(j)
kl )Kk,l=1 by

B̂(j)(k, ·) =

∑
e∈V(j), ĝ

(j)
e =k

ĥe

#{e : e ∈ V(j), ĝ
(j)
e = k}

,

where ĥe = (ĥe,1, · · · , ĥe,K) is calculated by

ĥe,l =

∑
e′∈V(1), ĝ

(1)

e′ =l, e 6=e Ae,e′

#{e′ : e′ ∈ V(1), ĝ
(1)
e′ = l, e 6= e′}

.

2. For each j = 2, · · · , V :

σ̂j = arg min
σ

∑
1≤k≤K

∥∥∥B̂(j)(σ(k), ·)− B̂(1)(k, ·)
∥∥∥2 ,

where the minimum is taken over all permutations over {1, · · · ,K}.

3. Output ĝ = (ĝ(1), σ̂2(ĝ(2)), · · · , σ̂V (ĝ(V ))).

on the remaining V − 1 folds, and use Algorithm 1 (CrossClust) to obtain exact

community recovery on the jth fold. Finally, the exact community recovery on

all V folds are combined to obtain a single community recovery for the whole

set of nodes. The detailed algorithms are described in Algorithm 2 (V-Clust)

and Algorithm 3 (Merge) for stochastic block models. The special case of V = 2

corresponds to a half-half split. In practice, V -fold cross clustering with more

than two folds may lead to better performance due to a larger sample size used

in the preliminary step.

The initial community recovery algorithm S can be chosen by the user. As

shown in Section 3, it only needs to satisfy some mild accuracy requirements that

can be achieved by such popular and practical methods as spectral methods and
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likelihood-based methods.

The computational cost of our method depends on the initial clustering

method chosen by the user. Here we assume that simple spectral clustering

is used. For the special case of V = 2, the cost of our method is less than that of

McSherry (2001), because our method applies clustering to two n×K matrices,

while the method of McSherry (2001) needs to cluster the columns of an n × n
matrix. The cost of our method is also lower than that of Vu (2014), because

both methods use spectral clustering but the latter may require more than one

split.

Remark 1. We consider the particular form of Algorithm 3 (Merge) for its gen-

erality in our theoretical development. In practice, after Step 2(b) in Algorithm

2 (V-Clust), the estimated community in each fold is usually more accurate than

the initial estimate. One can actually use many other simpler heuristic methods

instead of Algorithm 3. If we know that the within-community edge probability

is higher than between-community edge probability, then we can merge the sub-

clusters in all folds by maximizing the total number of within-community edges

among all label permutations.

3. Main Results for Stochastic Block Models

Terminology and notation Here the term “with high probability” means “with

probability at least 1−O(n−1)”. The rate O(n−1) is chosen for convenience and

can be changed to O(n−r) for any fixed r > 0. For two community membership

vectors g and ĝ, we say ĝ makes m recovery errors as an estimate of g, where

m is the smallest integer such that there exists a label permutation on ĝ under

which ĝ and g disagree at exactly m entries. We write ĝ = g if ĝ makes zero

error. For a membership vector g on {1, . . . , n}, and a subset V ⊆ {1, . . . , n},
g(V) denotes the membership vector obtained by confining g on V. We use g(j)

in place of g(Vj) (j = 1, 2, in the notation of Algorithm 1) for simplicity. We use

‖ · ‖ to denote the `2 norm of vectors in Euclidean spaces. For any matrix A, we

refer to its (i, j)-th element as A(i, j), and its i-th row as A(i, ·). Sometimes Ai,j

is used in place of A(i, j) for brevity.

Our analysis does keep track of the network sparsity and the number of com-

munities. To facilitate the presentation, we assume that the smallest community

size is proportional to n/K. The proofs of all theoretical results in this paper

are provided in the Supplementary Material (Lei and Zhu, 2016).
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Definition 1 (Proper membership). Given a subset V ⊆ {1, . . . , n}, a member-

ship vector g on V, and a positive constant π0 ∈ (0, 1], we say g(V) is π0-proper

if min1≤k≤K |{i ∈ V : gi = k}| ≥ π0n/K.

We make the following assumptions.

(A1) The maximum entry of B0 is bounded by 1, and the minimum l2 difference

between two rows of B0 is at least γ = γ(K) > 0:

(A2) The true community membership g is π0-proper for some constant π0 ∈
(0, 1].

(A3) The initial community recovery algorithm S, with high probability, has re-

covery error at most n/f(nαn,K) when αn ≥ log n/n, where f may depend

on π0 and B0.

Assumption A1 puts a lower bound on pairwise difference between the rows

of B0, which is a minimum requirement for the communities to be distinguishable.

The largest possible value of γ(K) is
√
K. Assumption A2 puts a lower bound on

the minimum community size. These are mainly for simplicity, so that we can fo-

cus on the dependence on the network sparsity. Our argument does allow for some

mild generalizations so that the minimum community size can change with n in a

non-trivial manner, as discussed in Section 6. Assumption A3 puts a requirement

on the accuracy of the initial community recovery algorithm. Thus, with high

probability the initial algorithm S correctly recovers the membership of all but

a vanishing proportion of nodes, as the expected node degrees grow at Ω(log n)

rate or faster. The function f specifies how fast the proportion of mis-clustered

nodes decays as the average degree increases. This assumption can be satisfied by

some simple and practical methods. For example, the spectral clustering method,

which applies k-means to the rows of leading eigenvectors of the adjacency ma-

trix, satisfies Assumption A3 with f(nαn,K) = c(π0)λ
2
min(B0)nαn/K

2 for some

function c > 0 independent of n (Lei and Rinaldo, 2015).

In the following analysis, we consider Algorithms 1 and 2 with subroutine D
being minimum spanning tree clustering, which constructs a minimum spanning

tree on the input data and removes the K − 1 largest edges.

Theorem 1 (Exact recovery using sample splitting). Consider a membership

vector g and connectivity matrix B = αnB0 satisfying Assumptions A1, A2.

Let ĝ be the output of V-Clust (Algorithm 2) with input matrix A generated by

the corresponding stochastic block model and subroutine S satisfying Assump-

tion A3. There exists a constant C, depending only on π0 and V , such that if
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f(nαn/2,K)γ(K) ≥ CK5/2, αn ≥ CK3 log n/(γ2(K)n), and Cn ≥ K3, then

with high probability we have ĝ = g.

Theorem 1 also imposes some requirements on the rate αn. In the case of sim-

ple spectral clustering, the conditions are satisfied if αn ≥ CK3 max{K3/2, log n}
/n, provided the minimum singular value of B0,K is uniformly bounded away from

0 and γ(K) � 1. This is the case in the Planted Partition Model (Condon and

Karp (2001); McSherry (2001)), one of the most commonly assumed settings of

stochastic block models, where the diagonal entries of B0 are 1 and off-diagonal

entries of B0 are θ ∈ (0, 1).

Lemma 1 (Accuracy of CrossClust). Suppose A is an adjacency matrix generated

by a stochastic block model satisfying Assumptions A1 and A2, and let V1 be a

subset with π0-proper membership vector g(1) and |V1| ≥ n/2. Let ĝ(1) be an

estimated membership vector on V1 independent of the edges between V1 and V2,

with recovery error at most |V1|/f(|V1|αn,K). Then under the assumptions of

Theorem 1, with high probability the output of Algorithm 1 satisfies ĝ(2) = g(2).

In the context of V-fold cross clustering, V1 and V2 in Lemma 1 correspond to

V(−j) and V(j) in Algorithm 2, respectively. Lemma 1 ensures that the subroutine

CrossClust produces exact recovery on V2 with high probability. The probabilistic

claim in Lemma 1 is indeed conditional given ĝ(1). Here we do not emphasize

the conditional nature of this result as the randomness is from edges between V1
and V2, and hence is independent of ĝ(1) by assumption. The proof of Lemma 1,

as detailed in Section S1, is based on a careful decomposition of estimation error

|ĥv,k −B(gv, k)| followed by concentration inequalities.

4. Extension to Degree Corrected Block Models

The degree corrected block model (Karrer and Newman (2011)) extends the

stochastic block model by introducing additional node level degree heterogeneity.

In addition to the membership vector g and community-wise connectivity matrix

B, the degree corrected block model incorporates a parameter ψ ∈ (0, 1]n to

model the node level activeness. Then the edge Aij between nodes i and j is an

independent Bernoulli variable with parameter ψiψjBgigj . For identifiability, we

assume maxi:gi=k ψi = 1, for all 1 ≤ k ≤ K. The parameter ψi reflects the relative

activeness of node i in its community. The degree corrected block model is able to

model a much wider range of network data and is more realistic than the regular

stochastic block model. There are relatively fewer results on exact recovery for

degree corrected block models. Zhao, Levina and Zhu (2012) extended the result
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Algorithm 1’: Spherical Cross Clustering (CrossClustSphere)

Input: adjacency matrix A; subset of nodes V1; subset of nodes V2; membership
vector g(1) on V1.
Require subroutine: distance based clustering algorithm D.

1. For each v ∈ V2, let ĥv = (ĥv,1, . . . , ĥv,K) be the same as give in Step 1 of
Algorithm 1 (CrossClust).

2. Output ĝ(2) = D({ĥv/‖ĥv‖ : v ∈ V2},K).

of Bickel and Chen (2009), showing that the profile likelihood estimator can

recover exactly when αn = Ω(log n/n). Chaudhuri, Chung and Tsiatas (2012)

extended the method of McSherry (2001) to a special case of degree corrected

models with a stronger requirement on the decay rate of αn. In the following

we consider the more general setting where K may grow with n, and establish

error probability bounds for a variation of V -fold cross clustering under degree

corrected block models. When K is fixed, our result implies that the simple

sample splitting method can be successful under general degree corrected block

models when αn ≥ C log n/n for sufficiently large constant C.

Under the degree corrected block model, we need to modify the CrossClust

algorithm so that the effect of nuisance parameter ψ is cancelled out by a normal-

ization step. To this end, we introduce the spherical cross clustering algorithm

in Algorithm 1’.

The exact recovery property of the sample splitting approach can be estab-

lished for degree corrected block models under slightly stronger conditions, with

a modified community separation condition and an additional condition on the

nuisance parameter ψ. Recalling that B0(k, ·) denotes the k-th row of B0, we

assume the following.

(A1’) The minimum l2 difference between two normalized-rows of B0 is at least

γ̃ = γ̃(K) > 0, and the minimum l2 norm of rows of B0 is at least L =

L(K) > 0:

min
1≤k<k′≤K

∥∥∥∥ B0(k, ·)
‖B0(k, ·)‖

− B0(k
′, ·)

‖B0(k′, ·)‖

∥∥∥∥ := γ̃(K) > 0 ,

min
1≤k≤K

‖B0(k, ·)‖ := L(K) > 0 .

(A3’) The initial community recovery algorithm S, with high probability, has re-

covery error at most n/f(nαn,K) when αn ≥ log n/n, where f may depend

on π0 and B0.

(A4) min1≤i≤n ψi ≥ ψ0 for some constant ψ0 ∈ (0, 1].
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Algorithm 3’: Spherical Merge V-fold Labels (MergeSphere)

Input: adjacency matrix A; the nodes and estimated community membership labels
in V folds {V(j), ĝ(j)}j=1,...,V .

1. For each j = 1, · · · , V , calculate B̂
(j)
∗ as

B̂
(j)
∗ (k, ·)← B̂(j)(k, ·)

‖B̂(j)(k, ·)‖
,

where B̂(j) is calculated as in step 1 of Algorithm 3 (Merge).

2. For each j = 2, · · · , V :

σ̂j = arg min
σ

∑
1≤k≤K

∥∥∥B̂(j)
∗ (σ(k), ·)− B̂(1)

∗ (k, ·)
∥∥∥2 ,

where σ denotes a permutation over {1, · · · ,K}.

3. Output ĝ = (ĝ(1), σ̂2(ĝ(2)), · · · , σ̂V (ĝ(V ))).

Assumption A1’ modifies Assumption A1 to account for the normalization step

in CrossClustSphere, which is necessary for degree corrected block models because

two rows in B differing only by a constant scaling are indistinguishable due to

the node activeness parameter. Assumption A4 prevents any node from being

too inactive, otherwise there are too few edges for that node, making exact

recovery unlikely. Under these assumptions, the spherical spectral clustering

method described and analyzed in Lei and Rinaldo (2015) satisfies Assumption

A3’ with f(nαn,K) ∝ ψ0λmin(B0)
√
nαn/K, provided B0 has full rank and the

communities have balanced sizes.

The row scaling indistinguishability problem also requires a different merging

algorithm to combine the communities cross different folds. Here we introduce

the spherical merging algorithm MergeSphere (Algorithm 3’).

Theorem 2 (Exact recovery for degree corrected block models). Let A be an

adjacency matrix generated from a degree corrected block model with membership

vector g, connectivity matrix B = αnB0, and node activeness vector ψ satisfying

Assumptions A1′, A2, and A4. Let ĝ be the output of V-Clust (Algorithm 2)

using subroutine CrossClustSphere (Algorithm 1′) and MergeSphere (Algorithm

3′), with initial recovery algorithm S satisfying Assumption A3′. There exists a

constant C = C(π0, ψ0, V ) such that if f(αnn/2,K)γ̃(K)L(K) ≥ CK5/2, αn ≥
CK3 log n/(γ̃2(K)2L2(K)n), and Cn ≥ K3, then ĝ = g with high probability.

In the case of sphere spectral clustering, the conditions required in Theorem

2 are satisfied if αn ≥ CK2 max{K4, log n}/n in the common situation that
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λmin(B0) � 1, γ̃(K) � 1, and L(K) �
√
K.

The proof of Theorem 2 is similar to that of Theorem 1, and uses the fol-

lowing analogous result of Lemma 1. Proofs of these results are given in the

Supplementary Material (Lei and Zhu (2016)).

Lemma 2 (Accuracy of CrossClustSphere). Suppose A is an adjacency matrix

generated by a degree corrected block model satisfying Assumptions A1’ and A2,

and let V1 be a subset with π0-proper membership vector g(1). Let ĝ(1) be an

estimated membership vector on V1 independent of the edges between V1 and V2,

with recovery error at most |V1|/f(|V1|αn,K). There exists a constant C such

that if αn ≥ CK3 log n/(γ̃2(K)L2(K)n), then with high probability, ĝ(2), the

output of CrossClustSphere (Algorithm 1’), satisfies ĝ(2) = g(2).

Remark 2. As seen in our simulations, for regular stochastic block models Algo-

rithm 1 usually outperforms Algorithm 1’ when the signal is very weak, because

the latter tends to introduce extra error in the redundant normalization step.

Moreover, Theorem 2 generally requires a higher average degree than Theorem

1, where the main difference is in their dependence on K, the number of com-

munities.

Remark 3. As in the case for regular stochastic block models when more in-

formation is available about the model, there are other practical and simple al-

ternatives to Algorithm 3’. If within-community edge probability is higher than

between-community edge probability, the same heuristic merging method given

in Remark 1 applies to the degree-corrected model.

5. Numerical Examples

5.1. Simulation 1: a diagonal dominant SBM

We considered a stochastic block model (SBM) with K = 2, |I1| = |I2| =

500, and

B =

(
a b

b a

)
, for some a, b ∈ (0, 1) , a > b . (5.1)

Our focus was the community separation measured by a− b, and overall sparsity

measured by a. In particular we considered combinations of (a, b) over a 40 by 40

grid in (0, 1)2. To reduce redundancy, we only report combinations of (a, b) such

that b ∈ [a − 0.3, a) so that community recovery is less trivial. We considered

two implementations of our proposed Algorithm 2 (V-Clust).
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Method I uses simple spectral clustering to obtain initial community recov-

ery and CrossClust (Algorithm 1) for refinement. This method is designed

for SBM’s and not suitable for degree corrected block models (DCSBM).

Method II uses spherical spectral clustering (Lei and Rinaldo, 2015) to

obtain initial community recovery and CrossClustSphere (Algorithm 1’) for

refinement. This method works for both SBM’s and DCSBM’s.

Both implementations use the heuristic merge method described in Remark 1,

since we always have a > b.

Figure 1 summarizes the results for the SBM, where we plot average propor-

tion of correctly clustered nodes over 100 repetitions. The top row shows results

for Method I, and the bottom row is for Method II where we treat the SBM as a

DCBM. For each method we also compare 2-fold cross clustering (left column),

10-fold cross clustering (middle column), and self-cross clustering (right column).

Here self-cross clustering is like an n-fold cross clustering, except that the initial

clustering is obtained from the entire network. We see a clear phase transition

pattern in all plots, where the algorithm achieves exact recovery when a − b

is sufficiently large. We also observe that 10-fold and self-cross clustering have

slightly better performances. In this simple case, CrossClustSphere (Algorithm

1’) gives almost identical performance as CrossClust (Algorithm 1).

5.2. Simulation 2: a more general SBM

Our second experiment was also conducted under an SBM, but without the

diagonal dominant structure as in Simulation 1. We considered community-wise

edge probability matrices of the form

B =

(
a b

b b

)
(5.2)

with the same grid of (a, b) values as in Simulation 1. The merging was imple-

mented using Algorithm 3 for Method I and Algorithm 3’ for Method II, as here

the heuristic merging method described in Remark 1 is not applicable.

The results summarized in Figure 2 shows something different than in the

previous case. Here both methods are less accurate due to the reduced signal

strength. But spherical cross clustering is significantly less accurate than cross

clustering, because the normalization step becomes much more noisy when the

minimum singular value of B is very small. This confirms our claim that when

the true model is SBM, it is preferable to use methods designed for SBM’s, rather

than those for more general DCSBM’s.
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Figure 1. Average accuracy over 100 repetitions under regular stochastic block models
with K = 2, within-community edge probability a and between-community edge proba-
bility b. Each community has size 500. Top row: Cross clustering; bottom row: sphere
cross clustering. Left column: 2-fold; middle column: 10-fold; right column: self cross
clustering.

5.3. Simulation 3: degree corrected block models

We also examined the performance of both methods in a DCSBM model with

node heterogeneity. We assumed the same matrix B as in (5.1), and P (Aij =

1) = ψiψjBgigj , where the node activeness parameter ψi’s were independently

generated from a uniform distribution on (0.5, 1). We applied Method I and

Method II, each with 2-fold, 10-fold, and self cross clustering. As in Simulation 1,

heuristic merging was used here. Figure 3 shows that Method I fails in DCSBM,

while Method II achieves much better accuracy.

We also checked how the initial recovery accuracy on V1 affects the cross-

clustering accuracy on V2 in Algorithm 1 (CrossClust). Specifically, in Method

I with 2-fold cross clustering under regular SBM, we recorded the accuracy of

the initial community recovery using simple spectral clustering on the first half

and the accuracy of the cross-clustering on the independent second half. Figure

4 shows the results from 500 trials randomly selected from all repetitions. It is
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Figure 2. Average accuracy over 100 repetitions under regular stochastic block models
with K = 2, and community-wise edge probability given in (5.2). Each community has
size 500. Top row: Cross clustering; bottom row: sphere cross clustering. Left column:
2-fold; middle column: 10-fold; right column: self cross clustering.

obvious that the cross-clustering step boosts the accuracy in most cases when

the output ĝ(1) of the initial algorithm has high accuracy.

5.4. Simulation 4: networks with more than two communities

Here we investigate the performance of cross clustering for larger values of

K. For simplicity we focused on regular stochastic block models with similar

settings as in Section 5.1, except that K was larger than 2 and n was increased

to 5,000, because n needs to grow faster than K as indicated by the theory.

Figure 5 shows that the 2-fold cross clustering works reasonably well when

K = 5, 10, for stochastic block models with 5,000 nodes. The results for 10-fold

cross-clustering are similar and hence are omitted. It is worth noting that when

K gets larger, the merge algorithm is computationally demanding as it needs

to search over all K! label permutations. Here we use the fact that the edge

density is higher within-community than between-community, which leads to a

faster greedy merge method. Using the notation in Algorithm 3, let V(1), V(2)
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Figure 3. Average accuracy over 100 repetitions under degree corrected stochastic block
models with K = 2, within-community egde probability a and between-community edge
probability b, and node activeness ψi ∼ Uniform(0.5, 1). Each community has size 500.
Top row: Method I; bottom row: Method II. Left column: 2-fold; middle column: 10-
fold; right column: self cross clustering.

be two subsets of nodes with clusters ĝ(1), ĝ(2), respectively. For k = 1, . . . ,K,

take σ(k) = arg max1≤l≤K B̂(2)(k, l), where B̂(2) is defined in step 1 of Algorithm

3. Then we permute the labels in ĝ(2) by replacing k with σ(k), and directly

combine the permuted (V(2), σ(ĝ(2))) with (V(1), ĝ(1)).
In Figure 6 we report the results for even larger values of K. We see that

the performance decreases as K increases. For K = 100, the algorithm can pick

up part of the signal for well separated values of a and b.

5.5. Political blog data

As an example, we considered the political blog data (Adamic and Glance,

2005), where the edges represent hyperlinks among 1,222 weblogs on U.S. poli-

tics in 2004. Each weblog belongs to one of the two communities recognized as

“liberal” and “conservative”, with sizes 586 and 636, respectively. It is widely

believed that the degree corrected block model with K = 2 fits the data well

(Zhao, Levina and Zhu (2012); Jin (2012); Yan et al. (2014)). We started with
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Figure 4. Initial recovery accuracy on V1 and the cross-clustering accuracy on V2 in
500 trials. Left: comparison of initial accuracy and cross-clustering accuracy. Right:
the improvement, defined as the difference between the refined accuracy and the initial
accuracy, when initial accuracy is low (≤ 90%) and high (> 90%).

an initial community recovery given by the spherical k-median spectral cluster-

ing (Lei and Rinaldo (2015)), and applied the proposed method in Algorithm

1’ (CrossClustSphere) with 2-fold, 10-fold and self cross clustering, followed by

heuristic merging as described in Remark 3. For 2-fold and 10-fold cross clus-

tering implementation, we repeated the data splitting 100 times. The average

proportion of correctly clustered nodes was 90.68% for 2-fold cross clustering,

94.60% for 10-fold cross clustering, and 95.17% for self-cross clustering. Directly

applying spherical spectral clustering on the entire data set yielded an accuracy

of 94.76%. This reflects a trade-off between computational efficiency and esti-

mation accuracy in the cross-clustering method. If V is small, then the initial

clustering is less accurate due to the reduced sample size. If V is large, then the

initial accuracy improves, but the algorithm requires more computation resources

for the estimation.

6. Discussion

In this paper we demonstrate that sample splitting can be combined with al-

most any approximately correct community recovery algorithms to obtain better

clustering results for stochastic block models and degree corrected block mod-

els. Under general conditions, satisfied by spectral clustering in particular, we

show that such a method can achieve exact community recovery with optimal

dependence on the rate of network sparsity. Our results unify and simplify such

existing works as McSherry (2001) and Vu (2014), and lead to a more general

V-fold cross clustering algorithm.
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Figure 5. Average recovery accuracy over 100 repetitions for 2-fold cross clustering with
n = 5,000 nodes. Left: K = 5; right: K = 10.

We investigate exact community recovery with a special focus on the overall

network sparsity and number of communities. In the study of stochastic block

models, the effect of other model parameters, such as community size imbalance,

may also be of interest. The arguments used in here, for example Lemma 6, do

keep track of these parameters and hence can be used to study the more general

scenario where these parameters are also allowed to change with n, non-trivially.

In particular, when K = 2 with I1, I2 being the two communities, one can show

that the sample splitting approach succeeds with high probability when αn is

bounded away from zero and min(|I1|, |I2|) ≥ C
√
n for large enough C.

Open problems The only step in our proof that requires sample splitting is

the large deviation bound for the term T1 in the proofs of Lemmas 6 and 10,

where the summation of Av,v′ is over a random set {v′ ∈ V1 : ĝ
(1)
v′ 6= g

(1)
v′ }.

The sample splitting makes the summand Av,v′ independent of this index set,

allowing us to condition on the index set and apply Bernstein’s inequality. As

mentioned earlier in Section 2, a natural alternative is to obtain a preliminary

community estimate for the entire set of nodes, and then cross-cluster each node

using this preliminary community partition. In other words, we use V1 = V2 =

{1, 2, . . . , n} in Algorithm 1. Such a self-cross clustering approach gives very

competitive practical performance as demonstrated in our numerical examples.

A heuristic explanation of its success is its close similarity to the n-fold (leave-one-

out) cross-clustering, which is further refined and analyzed by Gao et al. (2015)



SAMPLE SPLITTING FOR COMMUNITY RECOVERY 1657

0−50%
50−70%
70−80%
80%−90%
90%−95%
95%−100%

SBM, K=20
2−fold cross clustering

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
1

0.
3

0.
5

0.
7

0.
9

a

b

0−50%
50−70%
70−80%
80%−90%
90%−95%
95%−100%

SBM, K=50
2−fold cross clustering

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
1

0.
3

0.
5

0.
7

0.
9

a

b

0−50%
50−70%
70−80%
80%−90%
90%−95%
95%−100%

SBM, K=100
2−fold cross clustering

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
1

0.
3

0.
5

0.
7

0.
9

a

b

Figure 6. Average recovery accuracy over 10 repetitions for 2-fold cross clustering with
n = 5,000 nodes. Left: K = 20; middle: K = 50; right: K = 100.

after completion of the first draft of the current paper. It would be interesting

to provide rigorous performance guarantees for the self-cross clustering method.

Supplementary Materials

The Supplementary Material (Lei and Zhu (2016)) contains proofs of our

theoretical results.
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