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Abstract: We study joint quantile regression at multiple quantile levels with high-

dimensional covariates. Variable selection performed at individual quantile levels

may lack stability across neighboring quantiles, making it difficult to understand

and to interpret the impact of a given covariate on conditional quantile functions.

We propose a Dantzig–type penalization method for sparse model selection at each

quantile level which, at the same time, aims to shrink differences of the selected

models across neighboring quantiles. We show model selection consistency, and

investigate the stability of the selected models across quantiles. We also provide

asymptotic normality of post–model–selection parameter estimation in the multiple

quantile framework. We use numerical examples and data analysis to demonstrate

that the proposed Dantzig–type quantile regression model selection method pro-

vides stable models for both homogeneous and heterogeneous cases.

Key words and phrases: Fused lasso, high dimensional data, model selection, quan-

tile regression, stability.

1. Introduction

Quantile regression has become a widely used method to evaluate the effect of

regressors on the conditional distribution of a response variable (Koenker (2005)).

Compared with linear regression analysis, quantile regression is less sensitive to

the misspecification of error distributions and provides more comprehensive in-

formation on the relationship between the response variable and covariates. Due

to the ubiquity of high-dimensional problems in a variety of modern applications

ranging from signal processing to genomics, it is critical to understand quantile

regression in high-dimensional settings. We focus on cases where p, the number

of covariates, is greater than n, the sample size.

There has been a line of recent work on variable selection for quantile regres-

sion models (Li and Zhu (2008); Zou and Yuan (2008a,b); Wu and Liu (2009)).

In the high dimensional setting, penalization methods with the `1 penalty (Bel-

loni and Chernozhukov (2011); Wang (2013)), the weighted `1 penalty (Zheng,

Gallagher and Kulasekera (2013); Fan, Fan and Barut (2014)), and the smoothly
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clipped absolute deviation (SCAD) penalty (Wang, Wu and Li (2012); Fan, Xue

and Zou (2014)) have been used to obtain consistent model selection. Belloni and

Chernozhukov (2011) establish consistency in parameter estimation with the `1
penalty. Wang, Wu and Li (2012) consider the SCAD penalty, and show that

the oracle estimate is one of the local minima of a non-convex optimization prob-

lem. Fan, Fan and Barut (2014) use the weighted `1 penalty based on the SCAD

penalty function, and establish model selection consistency and asymptotic nor-

mality.

Although these works establish nice theoretical properties, empirical evi-

dence suggests that the sets of variables selected at nearby quantiles often differ

excessively. Stability of selected variables across quantiles is desirable both for

interpretation of results and understanding the impact of a particular covariate

on the conditional quantile functions. For example, a covariate that is selected

at quantiles 0.5 and 0.6, but not at 0.55, would not be much appreciated unless

there is a strong reason. The motivation and the main contribution of our work is

to show that joint modeling across quantiles can lead to stable models. Zou and

Yuan (2008a,b), Bang and Jhun (2012), Jiang, Wang and Bondell (2013), Peng,

Xu and Kutner (2014), and Volgushev, Wagener and and Dette (2014) consider

joint quantile regression and provide consistent estimators. He (1997), Dette and

Volgushev (2008), Bondell, Reich and Wang (2010), and Jang and Wang (2015)

study non-crossing quantile regression at multiple quantiles. Zheng, Peng and

He (2015) focus on the selection of all variables that impact one of the quan-

tile functions. The present paper aims to identify what impacts each quantile

function by allowing subsets of covariates for each quantile to vary slowly across

quantiles.

In this paper, we consider joint quantile regression in the high dimensional

setting, where the number of potential covariates, as well as the number of quan-

tiles, is allowed to increase with n. The penalty that we use consists of two

components: the first shrinks the magnitudes of the coefficients toward zero; the

second controls the rate of changes in coefficients at adjacent quantiles. Both

contribute to sparse and stable model selection across quantiles. We propose to

minimize the combined penalty in a way similar to the Dantzig selector proposed

by Candes and Tao (2007). Throughout this paper, the size of set differences of

the selected models at adjacent quantiles and the size of the union of the selected

covariates across all quantiles of interest is utilized to quantify the stability of se-

lected models. Moreover, we study a post–selection quantile regression estimator

and establish its asymptotic distribution.
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The rest of the paper is organized as follows. In Section 2, we describe the

quantile regression model and our method. Its theoretical properties are pre-

sented in Section 3. An implementation of the proposed method is described

in Section 4. In Section 5, we show consistency in model selection. Section 6

discusses post–selection joint quantile regression and its theoretical properties.

We show simulation results in Section 7. A data example and some conclud-

ing remarks are given in Section 8 and Section 9, respectively. Proofs and the

additional simulation study are presented in the Supplementary material.

2. Model and Method

Let X = (x1, · · · , xn)T be an n×p fixed design matrix and Y = (y1, · · · , yn)T

∈ Rn be an n-dimensional response vector. Consider the following quantile re-

gression model at multiple quantiles 0 < τ1 < · · · < τKn
< 1, where Kn is allowed

to increase with n:

Y = Xβ(τk) + ε(k) (k = 1, . . . ,Kn). (2.1)

Here β(τk) ∈ Rp is a τk-th quantile coefficient vector in the sense that xi
Tβ(τk) is

the τk-th quantile of yi evaluated at xi, which is called the conditional quantile of

yi given xi. The ε(k) = (ε
(k)
1 , · · · , ε(k)n )T is an n-dimensional vector with mutually

independent elements and

P
[
ε
(k)
i ≤ 0 | xi

]
= τk (i = 1, . . . , n; k = 1, . . . ,Kn).

In the special case in which we have a linear model with i.i.d. errors, ε(k) would

depend on k only through a location shift. Our model assumes that the condi-

tional quantile of yi given xi is linear at each τk, but no distributional assumptions

are made on ε(k). Let T (k) be the support set of β(τk) and B(k) be the set of

indices where the quantile coefficients at the τk-th quantile are different from

those at the τk−1-th quantile;

T (k) = {j ∈ {1, . . . , p} : βj(τk) 6= 0} (k = 1, . . . ,Kn), (2.2)

B(k) = {j ∈ {1, . . . , p} : βj(τk) 6= βj(τk−1)} (k = 2, . . . ,Kn).

Let sk = |T (k)| denote the sparsity level of the model for the τk-th quantile.

We consider a high-dimensional sparse model with max(n,Kn) = o(p), where

p = o
(
exp(nb)

)
for some constant b > 0. Let s0 := maxk sk. Our goal is to

recover support sets T (k) (k = 1, . . . ,Kn), B(k) (k = 2, . . . ,Kn), and coefficient

vectors β(τk) (k = 1, . . . ,Kn).

Let w(k) (k = 1, . . . ,Kn) and v(k) (k = 2, . . . ,Kn) be p-dimensional vectors
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of non-negative weights. Let λ be a regularization parameter, and rk > 0 for

k = 1, . . . ,Kn be constraint parameters to be chosen. We consider the convex

optimization problem:

min
B=[β(1),··· ,β(Kn)]∈Rp×Kn

Kn∑
k=1

p∑
j=1

w
(k)
j |β

(k)
j |+ λ

Kn∑
k=2

p∑
j=1

v
(k)
j

|β(k)j − β
(k−1)
j |

|τk − τk−1|
, (2.3)

s.t. ∀k, β(k) ∈ R(k)(rk) =

{
β ∈ Rp :

1

n

n∑
i=1

ρτk(yi − xiTβ) ≤ rk

}
, (2.4)

where ρτ (t) = t(τ − 1{t ≤ 0}) is the τ -th quantile loss function (Koenker and

Basset (1978)).

Let B̂ = [β̂(1), · · · , β̂(K)] be any optimal solution to (2.3) and (2.4). The B̂
is used to estimate true parameter Bo = [β(τ1), . . . , β(τKn

)]. In (2.3), two types

of penalties are required to simultaneously provide sparse and stable models.

The first one, a sparsity penalty, aims to obtain a sparse model. The second

one, a weighted total variation penalty (WTV), controls the rate of changes in

quantile coefficient vectors; see related work by Rudin, Osher and Fatemi (1992)

and Tibshirani et al. (2005). The feasible set of the optimization problem (2.3)

is non-empty for any choice of positive rk’s because there always exists β ∈ Rp

satisfying Y = Xβ provided the column space of X spans Rn.

2.1. Notations

Throughout the paper, it is to be understood that the design matrix X is

normalized to have column `2 norm
√
n, and is non-stochastic. The quantities p,

s0, and Kn depend on the sample size n. Given a vector δ = (δ1, · · · , δp)T ∈ Rp

and a set of indices S ⊂ {1, . . . , p}, denote by δS ∈ Rp the vector with the

jth component δS,j = δjI(j ∈ S). Let ‖δ‖0, ‖δ‖∞, and ‖δ‖q for any positive

integer q be the number of non-zero components, the maximum absolute value,

and the `q norm of δ, respectively. Let Sc be the complement set of S. For

p-dimensional vectors β(1), · · · , β(K), let [β(1), · · · , β(K)] be the p × K matrix

whose kth column is β(k) for k = 1, . . . ,K. For numbers a and b, we also use the

notation a ∨ b = max{a, b}, a ∧ b = min{a, b} and x+ = xI(x > 0) for x ∈ R.

For sequences {an} and {ζn}, we write an = O(ζn) to mean that an ≤ Cζn for

a universal constant C > 0. Similarly, an = Ω(ζn) when an ≥ C ′ζn for some

universal constant C ′ > 0. We summarize notations used in the theorems in

Table 1.
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Table 1. Notations used in the paper.

Parameters Definitions

λ = A regularization parameter in (2.3)
dmin = mink≥2 |τk − τk−1|
W0 = maxk ‖w(k)

(T (k))c‖∞
∨

maxk≥2 ‖v(k)(B(k))c‖∞
W1 = maxk ‖w(k)

T (k)‖∞
∨

maxk≥2 ‖v(k)B(k)‖∞
W2 = mink minj∈{T (k)}c w

(k)
j

∧
mink≥2 minj∈{B(k)}c v

(k)
j

c0 = (dminW1 + 2λ(W0 ∨W1))/(dminW2 − 2λ(W0 ∨W1))
ψλ= (dmin + 2λ)/(dmin − 2λ)
Mn = maxi ‖xi,∪kT (k)‖∞
d0 = |T (1)|+

∑K
k=2 |B(k) \ T (k)|

M(S) = Median of a sequence of real number S

3. Theoretical Properties

We first define a cone constraint: for any set J ⊂ {1, · · · , p} and any positive

number c,

C(J, c) = {x ∈ Rp | x 6= 0, ‖xJc‖1 ≤ c‖xJ‖1} .

Consider a restricted eigenvalue (RE) condition (Bickel, Ritov and Tsybakov

(2009); van de Geer and Bühlmann (2009)): for any integer 0 < s < p and any

positive number c > 0, RE(s, c) means

k2(s, c) := min
J⊆{1,...,p},
|J |≤s

min
δ∈C(J,c)

δTXTXδ

n‖δJ‖22
> 0, (3.1)

as imposed on the p × p sample covariance matrix XTX/n. The RE condition

is needed to guarantee consistency of the Lasso and Dantzig selectors (Bickel,

Ritov and Tsybakov (2009)). This condition also implies that the gram matrix

XTX/n behaves like a positive definite matrix over the cone C(J, c) for any J

such that |J | ≤ s. See Raskutti, Wainwright and Yu (2010) and Rudelson and

Zhou (2013) for examples of random design for which the restricted eigenvalue

(RE) condition holds in the high-dimensional setting.

Similarly, we introduce a restricted nonlinear impact (RNI) condition, as in

Belloni and Chernozhukov (2011): For any integer 0 < s < p and any positive

number c > 0, RNI(s, c) means

q(s, c) := min
J⊆{1,...,p},
|J |≤s

min
δ∈C(J,c)

‖Xδ‖32
n1/2‖Xδ‖33

> 0. (3.2)
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This controls the norm ‖Xδ‖3 by ‖Xδ‖2 over the cone C(J, c) for any J such

that |J | ≤ s. RNI(s, c) can be equivalently written as, for δ ∈ C(J, c),(
1

n

n∑
i=1

|xTi δ|2
)3

≥ q2(s, c)

(
1

n

n∑
i=1

|xTi δ|3
)2

,

which implies that the third sample moment is controlled by the second sample

moment. This condition is necessary to control the quantile regression objective

function by quadratic terms (Belloni and Chernozhukov (2011)).

Condition 1. [On the conditional density] For each i = 1, . . . , n, let fi(·) de-

note the probability density function of yi given xi. The function fi(·) has a con-

tinuous derivative f ′i(·). For each i, fi(·) ≤ f , |f ′i(·)| ≤ f and mink fi
(
xi
Tβ(τk)

)
≥

f for some positive numbers f and f .

Condition 2. [On the weights] Let W0 and W1 be the maximum weight im-

posed on the zero components and non-zero components, respectively, and W2

be the minimum weight imposed on zero components. The weights satisfy

W2

W0 ∨W1
≥ 2.5λ

mink |τk − τk−1|
.

Condition 3. [On the growth rate of the sparsity] The maximal sparsity s0
satisfies the growth condition, s0 log p = o(n).

Condition 1 is the same as Condition D.1 in Belloni and Chernozhukov

(2011). For the location model and the location-scale model, Belloni and Cher-

nozhukov (2011, Lemmas 1 and 2) derive sufficient conditions that guarantee

that Condition 1 holds. Condition 2 implies that W2 must not be too small. In

Sections 4 and 5, we demonstrate that W0,W1, and W2 can be constructed from

some initial estimates such that W0 and W1 are upper bounded and W2 is lower

bounded by some constants.

Remark 1. The regular adaptive lasso weights are used in Jiang, Wang and

Bondell (2013) where, for q > 0, w
(k)
j = 1/|β̃(k)j |q and v

(k)
j = 1/|β̃(k)j − β̃(k−1)j |q

with initial estimates β̃(k) (k = 1, · · · ,Kn). Condition 2 may not be satisfied

given these weights because W0 ∨W1 can be arbitrarily large. This motivates us

to use a different type of weights.

3.2. Main results

Throughout this section, for any η ≥ 0, let
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Eη =

{
0 ≤ rk −

1

n

n∑
i=1

ρτk
(
yi − xiTβ(τk)

)
≤ η (k = 1, . . . ,Kn)

}
. (3.3)

Theorem 1. Suppose that Conditions 1-2, RE(2s0, c0), and RNI(2s0, c0) hold.

Let B̂ = [β̂(1), · · · , β̂(Kn)] be the solution to (2.3) and (2.4). Let ηn = o(1) be

any sequence of positive numbers with 0 ≤ ηn < 9f3q2(2s0, c0)/(32f
2
). Then, we

have with probability at least 1− 1/n− P(Ecηn),

max
k
‖β̂(k) − β(τk)‖2 ≤ ξ1

√
s0 log p

n
+ ηn, (3.4)

Kn∑
k=1

‖β̂(k){T (k)}c‖1
∨
λ

Kn∑
k=2

∥∥∥∥∥{β̂(k) − β̂(k−1)}{B(k)}c

|τk − τk−1|

∥∥∥∥∥
1

≤ ξ3Kn
√
s0

(√
s0 log p

n
+
√
ηn

)
, (3.5)

where for some absolute constant C1 > 0,

ξ1 =
2(1 + c0)

2

k(2s0, c0)
√
f

{
1 +

2C1

k(s0, c0)

}
and ξ3 = ξ1

W1

W2
. (3.6)

The results in Theorem 1 hold even if the weights w
(k)
j and v

(k)
j in (2.3)

are data-dependent, provided that they satisfy Condition 2. The upper bound

in (3.4) implies that the estimates β̂(k) for k = 1, · · ·Kn are uniformly consistent

when ηn = o(1) and n = Ω(s0 log p). The upper bound in (3.4) has two com-

ponents, where the first component
√
s0 log p/n is within a factor of

√
log p of

the oracle rate, and the second component
√
ηn characterizes the bias induced

by the use of the feasible region R(k)(rk) in (3.3). To obtain the consistency rate√
s0 log p/n for β̂(k) in (3.4), which is an expected bound for high dimensional

models (Belloni and Chernozhukov (2011); Fan, Fan and Barut (2014); Zheng,

Peng and He (2015)), ηn = O(s0 log p/n) is required. By using a consistent initial

estimate, we can choose such ηn with rk, such that the event Eηn holds with a

high probability; see (4.6) for details.

As can be seen in (3.4), as ηn increases, the bound on the estimation er-

ror is looser while the probability P(Ecηn) becomes smaller. The optimal rk is

1/n
∑n

i=1 ρτk
(
yi − xiTβ(τk)

)
, which provides the best possible rate given (2.3)

and (2.4). Using rk near this optimal value in (2.4) is a key part of implemen-

tations. We use a proper initial estimate of β(k) to estimate the optimal value

rk.

Inequality (3.5) shows that the `1 norm of the quantile coefficients estimates

for inactive predictors (with true zero coefficients) converge to zero provided
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that W1/W2 = o(1), K2
ns0ηn = o(1), and n = Ω(K2

ns
2
0 log p). Moreover, the

`1 norm is decreasing as W1/W2 becomes smaller, which implies that choosing

smaller weights W1 and larger weights W2 would improve the rate of convergence;

This is consistent with the idea used in adaptive Lasso (Zou (2006)). Later in

Theorem 3, we will discuss exact model selection by using (3.5) with an additional

beta–min condition.

Remark 2. Our formulation (2.3) and (2.4) enable us to utilize rk as a tuning

parameter, and the scale of rk is more interpretable than a tuning parameter in

the Lagrangian formulation. Under the fixed p setting, Jiang, Wang and Bondell

(2013) set the weights of the quantile loss functions for all quantile levels to be

equal in the dual problem, which includes fewer regularization parameters. It is

not clear whether model selection consistency holds for such estimators in the

high dimensional setting.

4. Implementation

We provide a specific realization for the Dantzig–type joint quantile regres-

sion introduced in Section 3. This procedure involves the derivative of the SCAD

penalty function (Fan and Li (2001)):

Pζ(x) = I(x ≤ ζ) +
(3.7ζ − x)+

2.7ζ
I(x > ζ)

with a regularization parameter ζ ≥ 0.

Step 1. Obtain initial estimates. (Belloni and Chernozhukov (2011)) Let λ̃ =

1.1 Π(0.9) be a regularization parameter, where Π(0.9) is defined in Remark 3,

β̃(k) = arg min
β∈Rp

1

n

n∑
i=1

ρτk
(
yi − xiTβ

)
+ λ̃‖β‖1 (k = 1, . . . ,Kn). (4.1)

Step 2. Solve the Dantzig-type optimization.

• Step 2a For the parameters in (2.3), let s̃ = maxk ‖β̃(k)‖0,

ζn = 0.1

√
s̃

log p

n
, (4.2)

w
(k)
j = Pζn(|β̃(k)j |) (k = 1, . . . ,Kn), (4.3)

v
(k)
j = Pζn

(
|β̃(k)j − β̃

(k−1)
j |

)
(k = 2, . . . ,Kn), (4.4)

λ = 0.4 min
k≥2
|τk − τk−1|. (4.5)

• Step 2b Let h > 0 denote a scaling parameter to be chosen and Λ
(h)
k ≥
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0 (k = 1, . . . ,Kn) be regularization parameters taken to be Λ
(h)
k = M(Rk)h,

where M is defined in Table 1 and Rk =
{
|yi − xiT β̃(k)| : i = 1, . . . , n

}
. For

the parameter rk in (2.4), use

r
(h)
k =

1

n

n∑
i=1

ρτk

(
yi − xiT β̃(k)

)
+ Λ

(h)
k

s̃ log p

n
(k = 1, . . . ,Kn). (4.6)

Step 3. Choose h. Randomly split the data into five roughly equal parts X(1),

· · · , X(5) ∈ R[n/5]×p and y(1), · · · , y(5) ∈ R[n/5]×1, respectively. For t = 1, · · · , 5,

let X(t) = [x
(t)
1 , · · · , x(t)[n/5]]

T . Let β̂
(k)
t (h) (k = 1, · · · ,Kn) be the solution to the

(2.3) and (2.4) following Step 1 and Step 2 for the data X and Y excluding the

tth fold. Let the CV score function

score(h) :=

5∑
t=1

Kn∑
k=1

[n/5]∑
i=1

ρτk

(
y
(t)
i − (x

(t)
i )T β̂

(k)
t (h)

)
.

Choose h0 from the set S := {0.01, 0.02, · · · , 4}, so ho := arg minh∈S score(h).

The Dantzig-type estimate β̂(k) is the solution to (2.3) and (2.4) using the

aforementioned specifications with h = ho, Λk := Λ
(ho)
k , and rk := r

(h0)
k .

In Step 2 (b), Λ
(h)
k plays the role of scaling to achieve scale equivariance

of the method. Those choices of the regularization parameters do not give the

best results for any given models, but they lead to good empirical results in a

variety of settings and can help us understand how the proposed Dantzig–type

penalization performs with reasonable choices of these tuning parameters.

Remark 3. Following Belloni and Chernozhukov (2011), take

Π := max
1≤k≤Kn

max
1≤j≤p

1

n

∣∣∣∣∣
n∑
i=1

xij (τk − I(ui ≤ τk))√
τk(1− τk)

∣∣∣∣∣ ,
where u1, · · · , un are independent and identically distributed from the uniform

distribution on (0, 1) and independent of xi’s; xij is the jth component of the

design xi for i = 1, . . . , n and j = 1, . . . , p. Let Π(0.9) be the 0.9th quantile

of Π; it can be computed using simulated Π. We use λ̃ = 1.1 Π(0.9), where

the constant factor 1.1 differs from the recommendation made in Belloni and

Chernozhukov (2011), giving us initial estimates with low false negative rates.

5. Theoretical Properties (continued)

Let B̂ = [β̂(1), · · · , β̂(Kn)] be any optimum of (2.3) and (2.4), where w
(k)
j s,

v
(k)
j s, and rks are defined in (4.3), (4.4), and (4.6), respectively. Define an event

for the initial estimates β̃(k)s for k = 1, . . . ,Kn as follows: for some positive
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constants C2, C3, and C4,

E1 =

{
λ̃≤C2

√
log p

n
, max

k
‖β̃(k) − β(τk)‖2≤C3

√
s0 log p

n
, max

k
‖β̃(k)‖0≤C4s0

}
,

(5.1)

Denote by γn := P(Ec1) the probability that the event E1 does not occur.

Belloni and Chernozhukov (2011) prove that their estimators and the corre-

sponding regularization parameters, as stated in (4.1), satisfy condition E1 with

probability close to 1. We need further conditions.

Condition 4. [On the regularization parameters]

min
k

Λk ≥ 6
√
C4 + 1C3 and ζn ≥ 2C3

√
s0 log p

n
.

Condition 5. [On the non-zero coefficients] For some positive constants C5

and C6,

min
k

min
j∈T (k)

|βj(τk)| > C5

√
s0 log p

n
, (5.2)

min
k≥2

min
j∈B(k)

|βj(τk)− βj(τk−1)|
|τk − τk−1|

> C6Kn

√
s0 log p

n
, (5.3)

with n = Ω(K2
ns0 log p).

Theorem 2. Suppose Conditions 1, 3, 4, RE(2s0, ψλ), and RNI(2s0, ψλ) hold.

Then, with probability at least 1− 2/n− γn, B̂ satisfies

max
k
‖β̂(k) − β(τk)‖2 ≤ ξ2

√
s0 log p

n
,

where for some absolute constant C > 0, ξ2 = C/k(2s0, ψλ)
√

(1 + maxk Λk)/f.

Theorem 3. If the conditions of Theorem 2 and Condition 5 hold, then

P
({
T̂ (k) = T (k) and B̂(k) = B(k) for all k

})
≥ 1− 2

n
− γn.

Theorem 2 follows from (3.4) in Theorem 1 and demonstrates that our multi-

step Dantzig–type joint quantile estimator B̂ is consistent when n = Ω(s0 log p)

under appropriate conditions. Theorem 2 requires the lower bound of Λk for

the feasible regions (2.4) to include the true parameter Bo with high probability.

In our simulations, the estimator still worked quite well even with Λk set to

zero. Theorem 3 implies that B̂ recovers the true model structure with high

probability, which also satisfies the exact model selection property used in Zhao

and Yu (2006), Wainwright (2009), and Fan, Fan and Barut (2014).
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Remark 4. The beta-min condition (5.2) imposes a lower bound of the non-zero

coefficients. While Condition (5.2) has been studied in high-dimensional analysis

to establish the exact model selection property (Meinshausen and Bühlmann

(2006)), the beta-min condition (5.3) has not been considered elsewhere.

The beta–min condition (5.3) can be illustrated as follows. Consider equally-

spaced quantile levels τk (k = 1, . . . ,Kn) with τk − τk−1 � 1/Kn. Consider the

location–scale model yi = xi
Tβ + xi

T rεi, where the design xi and the vector

r ∈ Rp have non-negative components with xTi r > 0 for all i. Then, (5.3) holds as

long as the components of r satisfy rj1{rj 6= 0} � Kn

√
s0 log p/n (j = 1, . . . , p),

where rj is the jth component of r.

6. Post–Selection Joint Quantile Regression

We consider a post–selection joint quantile regression that minimizes the sum

of quantile loss functions over all quantiles of interest based on the model struc-

ture T̂ (k) (k = 1, . . . ,Kn) and B̂(k) (k = 2, . . . ,Kn) of the multi-step Dantzig–

type joint quantile estimator, as described in Section 4. The post–selection joint

quantile estimator (POST JQR) denoted by B̂po is a minimizer of

min
B=[β(1),··· ,β(Kn)]∈G

∑
k

∑
i

ρτk

(
yi − xiTβ(k)

)
, where (6.1)

G =
{
B = [β(1), . . . , β(Kn)] ∈ Rp×Kn : β(k){T̂ (k)}c = 0, β(k){B̂(k)}c = β(k−1){B̂(k)}c

}
is a set of matrices whose induced model structure is the same as the structure

of B̂. Throughout, we assume that T̂ (k) = T (k) (k = 1, . . . ,Kn) and B̂(k) =

B(k) (k = 2, . . . ,Kn), which holds with probability tending to 1. As can be

seen in the proof of Theorem 4 in the Supplementary material, there is a one-to-

one mapping T between G and Rd0 , where d0 is the effective dimension of the

parameter for the selected model, as defined in Table 1. Thus the set G ⊂ Rp×Kn

in (6.1) can be embedded in Rd0 . We use T (B̂po) to estimate T (Bo), which is a

d0–dimensional vector that consists of the active components of Bo.
To establish the theoretical properties of T (B̂po), we redefine POST JQR.

As given in the proof of Theorem 4 in the Supplementary material, there exist

new design variables z
(k)
i (i = 1, . . . , n; k = 1, . . . ,Kn) such that

T (B̂po) = arg min
β∈Rd0

∑
k

∑
i

ρτk

(
yi − (z

(k)
i )Tβ

)
. (6.2)

To establish the asymptotic convergence rate and asymptotic normality of

T (B̂po), we use a sparse eigenvalue condition: for 0 < s < p,
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Sparse(s) : φ(s) = max
‖δ‖0≤s

‖Xδ‖22
n‖δ‖22

<∞. (6.3)

Sparse(s) means that the maximal s-sparse eigenvalue of the gram matrixXTX/n

is bounded by some constant (Rudelson and Zhou (2013); Belloni, Chernozhukov

and Kato (2015); Zheng, Peng and He (2015)). We need further conditions.

Condition 6(a). [On the sample size]

n = Ω
(
d0s

3
0(log n)6 ∨M4

nd0(log n)2
)
.

Condition 6(b). n = Ω
(
d50s

3
0(log n)6 ∨M2

nd
3
0s0
)
.

These conditions involve d0, s0, Mn, and n. If the entries in xi are uniformly

bounded, and d0 and s0 increase slowly with n, then Conditions 6(a) and 6(b)

are quite mild. The POST JQR exhibits an asymptotic oracle consistency rate

as follows.

Theorem 4. If the conditions of Theorem 3, Condition 6(a), and Sparse(s0)

hold, then

‖T (B̂po)− T (Bo)‖2 = Op

(√
d0
n

)
. (6.4)

Theorem 5. If the conditions of Theorem 4 and Condition 6(b) hold, then, for

any sequence of vectors αn ∈ Rd0 with ‖αn‖2 = 1,

αTn
√
n(An

−1BnAn
−1)−1/2

(
T (B̂po)− T (Bo)

)
→d N(0, 1),

where

An =

Kn∑
k=1

n∑
i=1

1

n
fi
(
xi
Tβ(τk)

)
z
(k)
i

(
z
(k)
i

)T
,

Bn =

n∑
i=1

∑
k,k′=1,...,Kn

1

n
z
(k)
i

(
z
(k′)
i

)T
(τk ∧ τk′ − τkτk′) .

The exact model selection, as defined in Theorem 3, is typically fragile with-

out a beta-min condition, and is not uniformly valid (Leeb and Pötscher (2005)).

Leeb and Pötscher (2003) and Belloni, Chernozhukov and Kato (2015) consider

the post-model-selection estimator conditional on selecting an incorrect model,

and establish a uniform asymptotic distribution of the estimator. Establishing an

asymptotic distribution without a beta-min condition in our setting is of interest

in follow-up work.
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7. Numerical Studies

7.1. Experiments and setup

Solving (2.3) is equivalent to a linear programming problem with the assis-

tance of slack variables, and can be done by existing optimization packages in a

way that is similar to the problem of Jiang, Wang and Bondell (2013). For the

other estimators, we use β̃(k) as an initial estimate at the τk-th quantile. More

specifically, ALasso at τk is

arg min
β∈Rp

1

n

n∑
i=1

ρτk(yi − xiTβ) + λad,k

p∑
j=1

|βj |
|β̃(k)j |

,

where λad,k is the regularization parameter chosen by five-fold cross validation

to minimize the τk-th quantile loss function, and FAL (Jiang, Wang and Bondell

(2013)) uses five-fold cross validation to choose the tuning parameter, as well.

Our proposed estimator Dantzig is described in Section 4.

To assess the performances of the methods, the following performance mea-

sures were calculated based on 100 Monte Carlo replications:

1. “FPk”, the number of false positives in the selected model at τk;

2. “FNk”, the number of false negatives in the selected model at τk;

3. “SDk”, the size of set differences of the selected models for adjacent quantile

levels, τk and τk−1, i.e., |T̂ (k)4T̂ (k−1)| for k = 2, . . . ,Kn;

4. “FPU”, the number of false positives in the union of the selected models across

all quantile levels, i.e., | ∪k T̂ (k)\ ∪k T (k)|;
5. “FNU”, the number of false negatives in the union of the selected models

across all quantile levels, i.e., | ∪k T (k)\ ∪k T̂ (k)|.

7.2. Simulation results

We considered a location model, a location-scale model, and a random coef-

ficient model.

Example 1. Consider the linear regression model with (n, p,Kn, s0) = (100, 500,

5, 6) and (τ1, τ2, τ3, τ4, τ5) = (0.30, 0.40, 0.50, 0.60, 0.70):

yi = xi
Tβ + εi, β = (1.0, 0.8, 0.0, 0.9, 0.5, 0.0, 0.3, 0.7, 0.0, · · · , 0.0)T ,

where the εi’s are independent and identically distributed standard normals and

independent of xi’s. The regressors are xi = (1, zi)
T , where zij ∼ N(0,Σ) is

generated with Σ(i,j) = 0.5|i−j|.

Example 2. Consider the location-scale model with (n, p,Kn, s0) = (100, 500, 5,
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7) and (τ1, τ2, τ3, τ4, τ5) = (0.30, 0.40, 0.50, 0.60, 0.70):

yi = x1 + 0.8x2 + 0.9x4 + 0.5x5 + 0.3x7 + 0.75x8 + (0.5x2 + x3 + 0.5x8)εi,

where the εi’s are independent and identically distributed standard normals and

independent of xi’s. The regressors were generated in two steps, following Wang,

Wu and Li (2012): generate x̃ij ∼ N(0,Σx) from the AR(1) model, with corre-

lation 0.5, and take xij = Φ(x̃ij) (j = 2, 3, 8) and xij = x̃ij (j 6= 2, 3, 8), where Φ

is the cumulative distribution function of the standard normal.

Example 3. Consider the random coefficient model with (n, p,Kn, s0) = (100,

500, 5, 6) and (τ1, τ2, τ3, τ4, τ5) = (0.70, 0.75, 0.80, 0.85, 0.90):

yi = xi
Tβ(ui), β(ui) = (β1(ui), · · · , βp(ui))T ,

where u1, · · · , un are independent and identically distributed from the uniform

distribution on (0, 1) and independent of xi, and β1(u) = 1.7 + Φ−1(u), β2(u) =

0.35, β3(u) = 3(u − 0.8)+, β5(u) = 0.5 + 0.5 × 2u, β6(u) = 0.5 + u, β10(u) =

0.4 +
√
u, and βj(u) = 0 (j 6= 1, 2, 3, 5, 6, 10). The regressors were generated as

in Example 2.

Figure 1 gives the performance measures of Section 7.1 for Examples 1–3.

Across all figures, the largest standard errors for the false positives, the false

negatives, and the size of set differences are less than 0.9, 0.1, and 0.5, respec-

tively. As seen in Figure 1, Dantzig includes a smaller number of false positives

with more false negatives compared to the other methods. This increase in false

negatives is relatively small considering the decrease in false positives.

Dantzig has a smaller size of set difference for two neighboring quantiles, and

fewer false positives than other methods for the union of the selected variables

across the five quantile levels. This suggests that Dantzig shares many common

variables across different quantiles, and provides more stable models. Overall, at

each quantile, Dantzig provides a sparser model than other competitors in each

of the examples, and outperforms the other methods in terms of the stability of

the selected models across quantiles.

8. An Application

We applied the proposed Dantzig–type joint quantile regression method to

a genetic data set used in Scheetz et al. (2006). This data set consists of the

expression values of 31, 042 probe sets for 120 rats. As in Huang, Ma and Zhang

(2008), Kim, Choi and Oh (2008), and Wang, Wu and Li (2012), we are interested

in finding genes that are related to gene TRIM32, which is known to cause
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Figure 1. Results for Example 1 (top), 2 (middle) and 3 (below): Each plot shows the
false positives (left), the false negatives (middle), and the stability measures (right).
Four competing procedures are evaluated: Lasso, ALasso, FAL, and Dantzig.

Bardet-Biedl syndrome.

The model selection approach was applied to 300 probe sets that pass an ini-

tial screening (see Huang, Ma and Zhang (2008) for details of the screening steps).

We applied Dantzig, Lasso, ALasso, FAL, and SCAD (Wang, Wu and Li (2012))

on these 300 probe sets (p = 300) with 120 rats (n = 120). SCAD is a single quan-

tile regression method that uses the SCAD penalty function to penalize quantile

coefficients. We considered two sets of five quantile levels (τ1, τ2, τ3, τ4, τ5) as

(0.48, 0.49, 0.50, 0.51, 0.52) and (0.81, 0.82, 0.83, 0.84, 0.85), representing interests

in the middle and the upper tail of the distribution of the target gene expres-

sions, respectively. To select the tuning parameter for each method, we employed

five-fold cross validation (see Sections 4 and 7.1 for details).

We report the number of non-zero coefficients (“SIZ”) selected by each
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Table 2. Performance results of the whole dataset.

Method SIZ DIF TOT Method SIZ DIF TOT

Lasso (0.48) 37 Lasso (0.81) 37
Lasso (0.49) 38 9 Lasso (0.82) 41 8
Lasso (0.50) 35 15 Lasso (0.83) 39 8
Lasso (0.51) 36 5 Lasso(0.84) 36 7
Lasso (0.52) 37 3 45 Lasso (0.85) 38 4 49
SCAD (0.48) 24 SCAD (0.81) 20
SCAD (0.49) 24 0 SCAD (0.82) 25 9
SCAD (0.50) 20 6 SCAD (0.83) 16 9
SCAD (0.51) 14 7 SCAD (0.84) 29 13
SCAD (0.52) 18 5 25 SCAD (0.85) 27 4 35
ALasso (0.48) 27 ALasso (0.81) 25
ALasso (0.49) 17 14 ALasso (0.82) 24 3
ALasso (0.50) 20 7 ALasso (0.83) 22 4
ALasso (0.51) 14 6 ALasso (0.84) 21 3
ALasso (0.52) 15 1 29 ALasso (0.85) 28 7 34
FAL (0.48) 21 FAL (0.81) 25
FAL (0.49) 21 0 FAL (0.82) 25 1
FAL (0.50) 22 2 FAL (0.83) 26 2
FAL (0.51) 21 3 FAL (0.84) 25 2
FAL (0.52) 21 2 25 FAL (0.85) 25 2 26
Dantzig (0.48) 21 Dantzig (0.81) 21
Dantzig (0.49) 19 2 Dantzig (0.82) 20 1
Dantzig (0.50) 20 1 Dantzig (0.83) 21 1
Dantzig (0.51) 21 3 Dantzig (0.84) 22 2
Dantzig (0.52) 20 1 22 Dantzig (0.85) 21 1 24

method at each quantile level. The size of set differences of the selected mod-

els at adjacent quantile levels (“DIF”) and the size of the union of the selected

covariates over five quantile levels (“TOT”) were considered to determine the

stability of the selected models. As can be seen in Table 2, Dantzig consistently

provides a sparser model than the other methods, and affords the most stable

model.

We randomly divided the data set into a training set and a test set with the

training set including 80 rats and the test set including 40 rats. We estimated

the models with each method using the training set, and recorded “SIZ”, “DIF”,

and “TOT”. The prediction error (“PRE”) was calculated over the test set as

the quantile loss for each quantile level τk. We repeated this random experiment

100 times and report the average value of “SIZ”, “DIF”, “TOT”, and “PRE”

over the 100 repetitions for each method in Table 3. As seen in Table 3, all of
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Table 3. Performance results of 100 random partitions of the data.

Method SIZ DIF PRE TOT Method SIZ DIF PRE TOT

Lasso (0.48) 30.94 1.79 Lasso (0.81) 32.94 1.33
Lasso (0.49) 31.10 3.35 1.79 Lasso (0.82) 33.04 4.22 1.30
Lasso (0.50) 31.76 4.38 1.78 Lasso (0.83) 33.00 6.36 1.26
Lasso (0.51) 31.92 4.66 1.78 Lasso (0.84) 32.88 4.20 1.23
Lasso (0.52) 32.60 4.78 1.78 37.73 Lasso (0.85) 32.78 4.34 1.21 40.28
SCAD (0.48) 22.04 1.79 SCAD (0.81) 20.90 1.32
SCAD (0.49) 22.82 5.10 1.78 SCAD (0.82) 20.32 6.46 1.27
SCAD (0.50) 21.86 5.44 1.78 SCAD (0.83) 21.02 6.62 1.27
SCAD (0.51) 21.38 4.52 1.78 SCAD (0.84) 22.10 6.12 1.23
SCAD (0.52) 21.66 5.40 1.79 28.74 SCAD (0.85) 20.50 5.16 1.20 28.86
ALasso (0.48) 19.96 1.82 ALasso (0.81) 19.98 1.34
ALasso (0.49) 19.70 2.98 1.79 ALasso (0.82) 19.22 4.04 1.31
ALasso (0.50) 19.32 3.46 1.80 ALasso (0.83) 20.04 5.34 1.26
ALasso (0.51) 19.08 3.40 1.80 ALasso (0.84) 19.92 3.36 1.25
ALasso (0.52) 19.64 3.76 1.80 24.56 ALasso (0.85) 19.44 3.60 1.21 25.78
FAL (0.48) 19.75 1.85 FAL (0.81) 20.95 1.37
FAL (0.49) 20.70 1.28 1.82 FAL (0.82) 21.71 2.34 1.32
FAL (0.50) 20.72 1.94 1.88 FAL (0.83) 20.33 3.90 1.27
FAL (0.51) 20.18 2.40 1.82 FAL (0.84) 20.18 2.76 1.25
FAL (0.52) 19.94 2.59 1.83 23.63 FAL (0.85) 21.74 2.20 1.22 24.55
Dantzig (0.48) 20.20 1.84 Dantzig (0.81) 21.94 1.33
Dantzig (0.49) 20.06 0.98 1.84 Dantzig (0.82) 21.72 1.02 1.31
Dantzig (0.50) 19.98 1.82 1.82 Dantzig (0.83) 21.98 2.70 1.27
Dantzig (0.51) 20.70 2.01 1.81 Dantzig (0.84) 21.60 1.78 1.25
Dantzig (0.52) 21.02 2.52 1.80 22.90 Dantzig (0.85) 21.42 1.18 1.22 23.86

the five methods are similar in terms of prediction error. Regarding the sparsity

of the selected models, all of the methods except Lasso are similar. In terms of

the stability of the models, Dantzig outperforms other competitors. In Table 3,

the largest standard errors for the columns corresponding to SIZ, DIF, PRE, and

TOT are less than 0.7, 0.3, 0.05, and 1.2, respectively.

9. Conclusion

Model selection stability across quantile levels adds credibility and inter-

pretability of the selected models in applications. Selecting models that vary

significantly from one quantile to the next when the quantile levels used are very

close to each other is undesirable. The proposed Dantzig–type approach is a

more stable selection without a noticeable sacrifice in prediction error. A simula-

tion study and data analysis demonstrate that the proposed method consistently
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provides sparse and stable models, while reducing the noisy component in model

selection at single quantile levels for both homogeneous and heterogeneous cases.

Supplementary Materials

Proofs and additional simulation results can be found in the Supplementary

material.
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