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Abstract: Approximate Bayesian Computation (ABC) methods are used to ap-

proximate posterior distributions in models with unknown or computationally in-

tractable likelihoods. Both the accuracy and computational efficiency of ABC de-

pend on the choice of summary statistic, but outside of special cases where the opti-

mal summary statistics are known, it is unclear which guiding principles can be used

to construct effective summary statistics. In this paper we explore the possibility of

automating the process of constructing summary statistics by training deep neural

networks to predict the parameters from artificially generated data: the resulting

summary statistics are approximately posterior means of the parameters. With

minimal model-specific tuning, our method constructs summary statistics for the

Ising model and the moving-average model, which match or exceed theoretically-

motivated summary statistics in terms of the accuracies of the resulting posteriors.

Key words and phrases: Approximate Bayesian computation, deep learning, sum-

mary statistic.

1. Introduction

1.1. Approximate Bayesian computation

Bayesian inference is traditionally centered around the ability to compute or

sample from the posterior distribution of the parameters, having conditioned on

the observed data. Suppose data X is generated from a modelM with parameter

θ, the prior of which is denoted by π(θ). If the closed form of the likelihood

function l(θ) = p(X|θ) is available, the posterior distribution of θ given observed

data xobs can be computed via Bayes’ rule

π(θ|xobs) =
π(θ)p(xobs|θ)

p(xobs)
.

Alternatively, if the likelihood function can only be computed conditionally or up

to a normalizing constant, one can still draw samples from the posterior by using
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stochastic simulation techniques such as Markov Chain Monte Carlo (MCMC)

and rejection sampling (Asmussen and Glynn (2007)).

In many applications, the likelihood function l(θ) = p(X|θ) cannot be ex-

plicitly obtained, or is intractable to compute; this precludes the possibility of

direct computation or MCMC sampling. In these cases, approximate inference

can still be performed as long as 1) it is possible to draw θ from the prior π(θ),

and 2) it is possible to simulate X from the model M given θ, using the meth-

ods of Approximate Bayesian Computation (ABC) (See e.g. Beaumont, Zhang

and Balding (2002); Toni et al. (2009); Lopes and Beaumont (2010); Beaumont

(2010); Csilléry et al. (2010); Marin et al. (2012); Sunn̊aker et al. (2013)).

While many variations of the core approach exist, the fundamental idea un-

derlying ABC is quite simple: that one can use rejection sampling to obtain draws

from the posterior distribution π(θ|xobs) without computing any likelihoods. We

draw parameter-data pairs (θ′, X ′) from the prior π(θ) and the model M, and

accept only the θ′ such that X ′ = xobs, which occurs with conditional probability

P (X = xobs|θ′) for any θ′. Algorithm 1 describes the ABC method for discrete

data (Tavaré et al. (1997)), which yields an i.i.d. sample {θ(i)}1≤i≤n of the exact

posterior distribution π(θ|X = xobs).

Algorithm 1 ABC rejection sampling 1

for i = 1, . . . , n do
repeat

Propose θ′ ∼ π(θ)
Draw X ′ ∼M given θ′

until X ′ = xobs (acceptance criterion)
Accept θ′ and let θ(i) = θ′

end for

The success of Algorithm 1 depends on acceptance rate of proposed parame-

ter θ′. For continuous xobs and X ′, the event X ′ = xobs happens with probability

0, and hence Algorithm 1 is unable to produce any draws. As a remedy, one can

relax the acceptance criterion X ′ = xobs to be ‖X ′ − xobs‖ < ε, where ‖ · ‖ is a

norm and ε is the tolerance threshold. The choice of ε is crucial for balancing

efficiency and approximation error, since with smaller ε the approximation error

decreases while the acceptance probability also decreases.

1.2. Summary statistic

When data vectors xobs, X are high-dimensional, the inefficiency of rejection

sampling in high dimensions results in either extreme inaccuracy, or accuracy
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at the expense of an extremely time-consuming procedure. To circumvent the

problem, one can introduce low-dimensional summary statistic S and further

relax the acceptance criterion to be ‖S(X ′)−S(xobs)‖ < ε. The use of summary

statistics results in Algorithm 2, which was first proposed as the extension of

Algorithm 1 in population genetics application (Fu and Li (1997); Weiss and von

Haeseler (1998); Pritchard et al. (1999)).

Algorithm 2 ABC rejection sampling 2

for i = 1, . . . , n do
repeat

Propose θ′ ∼ π
Draw X ′ ∼M with θ′

until ‖S(X ′)− S(xobs)‖ < ε (relaxed acceptance criterion)
Accept θ′ and let θ(i) = θ′

end for

Instead of the exact posterior distribution, the resulting sample {θ(i)}1≤i≤n
obtained by Algorithm 2 follows an approximate posterior distribution

π(θ|‖S(X ′)− S(xobs)‖ < ε) ≈ π(θ|S(X) = S(xobs)) (1.1)

≈ π(θ|X = xobs). (1.2)

The choice of the summary statistic is crucial for the approximation quality of

ABC posterior distribution. An effective summary statistic should offer a good

trade-off between two approximation errors (Blum et al. (2013)). The approxi-

mation error (1.1) is introduced when one replaces “equal” with “similar” in the

first relaxation of the acceptance criterion. Under appropriate regularity condi-

tions, it vanishes as ε→ 0. The approximation error (1.2) is introduced when one

compares summary statistics S(X) and S(xobs) rather than the original data X

and xobs. In essence, this is just the information loss of mapping high-dimensional

X to low-dimensional S(X). A summary statistic S of higher dimension is in

general more informative, hence reduces the approximation error (1.2). At the

same time, increasing the dimension of the summary statistic slows down the

rate that the approximation error (1.1) vanishes in the limit of ε → 0. Ideally,

we seek a statistic which is simultaneously low-dimensional and informative.

A sufficient statistic is an attractive option, since sufficiency, by definition,

implies that the approximation error (1.2) is zero (Kolmogorov (1942); Lehmann

and Casella (1998)). However, the sufficient statistic has generally the same

dimensionality as the sample size, except in special cases such as exponential

families. And even when a low-dimensional sufficient statistic exists, it may be
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intractable to compute.

The main task of this article is to construct low-dimensional and informative

summary statistics for ABC methods. Since our goal is to compare methods of

constructing summary statistics (rather than present a complete methodology for

ABC), the relatively simple Algorithm 2 suffices. In future work, we plan to use

our approach for constructing summary statistics alongside more sophisticated

variants of ABC methods, such as those which combine ABC with Markov chain

Monte Carlo or sequential techniques (Marjoram et al. (2003); Sisson, Fan and

Tanaka (2007)). Hereafter all ABC procedures mentioned use Algorithm 2.

1.3. Related work and our DNN approach

Existing methods for constructing summary statistics can be roughly clas-

sified into two classes, both of which require a set of candidate summary statis-

tics Sc = {Sc,k}1≤k≤K as input. The first class consists of approaches for best

subset selection. Subsets of Sc are evaluated according to various information-

based criteria, e.g. measure of sufficiency (Joyce and Marjoram (2008)), entropy

(Nunes and Balding (2010)), Akaike and Bayesian information criteria (Blum et

al. (2013)), and the “best” subset is chosen to be the summary statistic. The

second class is linear regression approach, which constructs summary statistics

by linear regression of response θ on candidate summary statistics Sc (Wegmann,

Leuenberger and Excoffier (2009); Fearnhead and Prangle (2012)). Regulariza-

tion techniques have also been considered to reduce overfitting in the regression

models (Blum et al. (2013)). Many of these methods rely on expert knowledge

to provide candidate summary statistics.

In this paper, we propose to automatically learn summary statistics for

high-dimensional X by using deep neural networks (DNN). Here DNN is ex-

pected to effectively learn a good approximation to the posterior mean Eπ[θ|X]

when constructing a minimum squared error estimator θ̂(X) on a large data set

{(θ(i), X(i))}1≤i≤N ∼ π ×M. The minimization problem is given by

min
β

1

N

N∑
i=1

∥∥∥fβ(X(i))− θ(i)
∥∥∥2
2
,

where fβ denotes a DNN with parameter β. The resulting estimator θ̂(X) =

fβ̂(X) approximates Eπ[θ|X] and further serves as the summary statistic for

ABC.

Our motivation for using (an approximation to) Eπ[θ|X] as a summary statis-

tic for ABC is inspired by the semi-automatic method in (Fearnhead and Prangle
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(2012)). Their idea is that Eπ[θ|X] as summary statistic leads to an ABC pos-

terior, which has the same mean as the exact posterior in the limit of ε → 0.

Therefore they proposed to linearly regress θ on candidate summary statistics

Sc = {Sc,k}1≤k≤K

min
β

1

N

N∑
i=1

∥∥∥∥∥β0 +

K∑
k=1

βkSc,k(X
(i))− θ(i)

∥∥∥∥∥
2

2

,

and to use the resulting minimum squared error estimator θ̂(X) as the summary

statistic for ABC. In their semi-automatic method, Sc could be expert-designed

statistics or polynomial bases (e.g. power terms of each component Xj).

Our DNN approach aims to achieve a more accurate approximation θ̂(X) ≈
Eπ[θ|X] and a higher degree of automation in constructing summary statistics

than the semi-automatic method. First, DNN with multiple hidden layers of-

fers stronger representational power, compared to the semi-automatic method

using linear regression. A DNN is expected to better approximate Eπ[θ|X] if the

posterior mean is a highly non-linear function of X. Second, DNNs simply use

the original data vector X as the input, and automatically learn the appropri-

ate nonlinear transformations as summaries from the raw data, in contrast to

the semi-automatic method and many other existing methods requiring a set of

expert-designed candidate summary statistics or a basis expansion. Therefore

our approach achieves a higher degree of automation in constructing summary

statistics.

Blum and François (2010) have considered fitting a feed-forward neural net-

work (FFNN) with single hidden layer by regressing θ(i) on X(i). Their method

significantly differs from ours, as theirs was originally motivated by reducing the

error between the ABC posterior and the true posterior, rather than construct-

ing summary statistics. Specifically, their method assumes that the appropriate

summary statistic S has already been given, and adjusts each draw (θ,X) from

the ABC procedure using summary statistic S in the way

θ∗ = m(S(xobs)) + [θ −m(S(X))]× σ(S(xobs))

σ(S(X))
.

Both m(·) and σ(·) are non-linear functions represented by FFNNs. Another key

difference is the network size: the FFNNs in Blum and François (2010) contained

four hidden neurons in order to reduce dimensionality of summary statistics,

while our DNN approach contains hundreds of hidden neurons in order to gain

representational power.
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1.4. Organization

The rest of the article is organized as follows. In Section 2, we show how

to approximate the posterior mean Eπ[θ|X] by training DNNs. In Sections 3

and 4, we report simulation studies on the Ising model and the moving average

model of order 2, respectively. We describe in the supplementary materials the

implementation details of DNNs and how consistency can be obtained by using

the posterior mean of a basis of functions of the parameters.

2. Methods

Throughout the paper, we denote by X ∈ Rp the data, and by θ ∈ Rq

the parameter. We assume it is possible to obtain a large number of indepen-

dent draws X from the model M given θ despite the unavailability of p(X|θ).
Denote by xobs the observed data, π the prior of θ, S the summary statistic,

‖ · ‖ the norm to measure S(X) − S(xobs), and ε the tolerance threshold. Let

πεABC(θ) = π(θ|‖S(X) − S(xobs)‖ < ε) denote the approximate posterior distri-

bution obtained by Algorithm 2.

The main task is to construct a low-dimensional and informative summary

statistic S for high-dimensional X, which will enable accurate approximation of

πεABC . We are interested mainly in the regime where ABC is most effective:

settings in which the dimension of X is moderately high (e.g. p = 100) and the

dimension of θ is low (e.g. q = 1, 2, 3). Given a prior π for θ, our approach is as

follows.

(1) Generate a data set
{

(θ(i), X(i))
}
1≤i≤N by repeatedly drawing θ(i) from π

and drawing X(i) from M with θ(i).

(2) Train a DNN with {X(i)}1≤i≤N as input and {θ(i)}1≤i≤N as target.

(3) Run ABC Algorithm 2 with prior π and the DNN estimator θ̂(X) as summary

statistic.

Our motivation for training such a DNN is that the resulting statistic (estimator)

should approximate the posterior mean S(X) = θ̂(X) ≈ Eπ[θ|X].

2.1. Posterior mean as summary statistic

The main advantage of using the posterior mean Eπ[θ|X] as a summary

statistic is that the ABC posterior πεABC(θ) = π(θ|‖S(X) − S(xobs)‖ < ε) will

then have the same mean as the exact posterior in the limit of ε→ 0. That is to

say, Eπ[θ|X] does not lose any first-order information when summarizing X.
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This theoretical result has been discussed in Theorem 3 in Fearnhead and

Prangle (2012), but their proof is not rigorous. We provide in Theorem 1 a more

rigorous and general proof.

Theorem 1. If Eπ [|θ|] < ∞, then S(x) = Eπ[θ|X = x] is well defined. The

ABC procedure with observed data xobs, summary statistics S, norm ‖ · ‖, and

tolerance threshold ε produces a posterior distribution

πεABC(θ) = π(θ|‖S(X)− S(xobs)‖ < ε),

with

‖EπεABC [θ]− S(xobs)‖ < ε,

lim
ε→0

EπεABC [θ] = Eπ[θ|X = xobs].

Proof. First, we show S(X) = Eπ[θ|X] is a version of conditional expectation

of θ given S(X). Denote by σ(X), σ(S(X)) the σ-algebras of X and S(X),

respectively. S(X) is clearly measurable with respect to σ(X), thus σ(S(X)) ⊆
σ(X). Then

S(X) = Eπ[S(X)|S(X)] [S(X) is known in σ(S(X))]

= Eπ[Eπ[θ|X]|S(X)] [Definition of S]

= Eπ[θ|S(X)] [Tower property, σ(S(X)) ⊆ σ(X)].

As A = {‖S(X)− S(xobs)‖ < ε} ∈ σ(S(X)), we have by the definition of condi-

tional expectation

Eπ[θIA] = Eπ[S(X)IA].

It follows that

EπεABC [θ] = Eπ [θ|A] = Eπ [S(X)|A] ,

implying by Jensen’s inequality that

‖EπεABC [θ]− S(xobs)‖ = ‖Eπ [S(X)|A]− S(xobs)‖
≤ Eπ [‖S(X)− S(xobs)‖|A]

< ε.

Letting ε→ 0 yields EπεABC [θ]→ S(xobs) = Eπ [θ|X = xobs].

ABC procedures often give the sample mean of the ABC posterior as the

point estimate for θ. Theorem 1 shows ABC procedure using Eπ[θ|X] as the

summary statistic maximizes the point-estimation accuracy in the sense that

the exact mean of ABC posterior EπεABC [θ] is an ε-approximation to the Bayes

estimator Eπ[θ|X = xobs] under squared error loss.
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Users of Bayesian inference generally desire more than just point estimates:

ideally, one approximates the posterior π(θ|xobs) globally. We observe that such

a global approximation result is possible when extending Theorem 1: if one

considers a basis of functions on the parameters, b(θ) = (b1(θ), . . . , bK(θ)), and

uses the K-dimensional statistic Eπ[b(θ)|X] as the summary statistic(s), the ABC

posterior weakly converges to the exact posterior as ε → 0 and K → ∞ at the

appropriate rate. We state this result in the supplementary material.

There is a nice connection between the posterior mean and the sufficient

statistics, especially minimal sufficient statistics in the exponential family. If

there exists a sufficient statistic S∗ for θ, then from the concept of the suffi-

ciency in the Bayesian context (Kolmogorov (1942)) it follows that for almost

every x, π(θ|X = x) = π(θ|S∗(X) = S∗(x)), and further S(x) = Eπ[θ|X = x] =

Eπ[θ|S∗(X) = S∗(x)] is a function of S∗(x). In the special case of an exponen-

tial family with minimal sufficient statistic S∗ and parameter θ, the posterior

mean S(X) = Eπ[θ|X] is a one-to-one function of S∗(X), and thus is a minimal

sufficient statistic.

2.2. Structure of deep neural network

At a high level, a deep neural network merely represents a non-linear function

for transforming input vector X into output θ̂(X). The structure of a neural

network can be described as a series of L nonlinear transformations applied to

X. Each of these L transformations is described as a layer : where the original

input is X, the output of the first transformation is the 1st layer, the output of

the second transformation is the 2nd layer, and so on, with the output as the

(L+1)th layer. The layers 1 to L are called hidden layers because they represent

intermediate computations, and we let H(l) denote the l-th hidden layer. Then

the explicit form of the network is

H(1) = tanh(W (0)H(0) + b(0)),

H(2) = tanh(W (1)H(1) + b(1)),

· · ·
H(L) = tanh(W (L−1)H(L−1) + b(L−1)),

θ̂ = W (L)H(L) + b(L),

where H(0) = X is the input, θ̂ is the output, W (l) and b(l) are the parameters

controlling how the inputs of layer l are transformed into the outputs of layer l.

Let n(l) denote the size of the l-th layer: then W (l) is an n(l+1) × n(l) matrix,
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Figure 1. An example of DNN with three hidden layers.
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Figure 2. Neuron j in the hidden layer l + 1.

called the weight matrix, and b(l) is an n(l+1)-dimensional vector, called the bias

vector. The n(l) components of each layer H(l) are also described evocatively as

“neurons” or “hidden units”. Figure 1 illustrates an example of 3-layer DNN with

input X ∈ R4 and 5/5/3 neurons in the 1st/2nd/3rd hidden layer, respective.

The role of layer l+1 is to apply a nonlinear transformation to the outputs of

layer l, H(l), and then output the transformed outputs as H(l+1). First, a linear

transformation is applied to the previous layer H(l), yielding W (l)H(l) +b(l). The

nonlinearity (in this case tanh) is applied to each element ofW (l)H(l)+b(l) to yield

the output of the current layer, H(l+1). The nonlinearity is traditionally called the

“activation” function, drawing an analogy to the properties of biological neurons.

We choose the function tanh as an activation function due to smoothness and

computational convenience. Other popular choices for activation function are

sigmoid(t) = 1/(1 + exp(−t)) and ReLU(t) = max{t, 0}. To better explain the

activity of each individual neuron, we illustrate how neuron j in the hidden layer

l + 1 works in Figure 2.
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The output layer takes the top hidden layer H(L) as input and predicts θ̂ =

W (L)H(L) + b(L). In many existing applications of deep learning (e.g. computer

vision and natural language processing), the goal is to predict a categorical target.

In those cases, it is common to use a softmax transformation in the output layer.

However, since our goal is prediction rather than classification, it suffices to use

a linear transformation.

2.3. Approximating posterior mean by DNN

We use the DNN to construct a summary statistic: a function which maps

x to an approximation of Eπ[θ|X]. First, we generate a training set Dπ ={
(θ(i), X(i)), 1 ≤ i ≤ N

}
by drawing samples from the joint distribution π(θ, x).

Next, we train the DNN to minimize the squared error loss between training

target θ(i) and estimation θ̂(X(i)). Thus we minimize (2.1) with respect to the

DNN parameters β = (W (0), b(0), . . . ,W (L), b(L)),

J(β) =
1

N

N∑
i=1

‖fβ(X(i))− θ(i)‖22. (2.1)

We compute the derivatives using backpropagation (LeCun et al. (1998)) and

optimize the objective function by stochastic gradient descent method. See the

supplementary material for details.

Our approach is based on the fact that any function which minimizes the

squared error risk for predicting θ from X may be viewed as an approximation of

the posterior mean Eπ[θ|X]. Hence, any supervised learning approach could be

used to construct a prediction rule for predicting θ from x, and thereby provide

an approximation of Eπ[θ|X]. Since in many applications of ABC, we can expect

Eπ[θ|X] to be a highly nonlinear and smooth function, it is important to choose a

supervised learning approach which has the power to approximate such nonlinear

smooth functions.

DNNs appear to be a good choice given their rich representational power

for approximating nonlinear functions. More and more practical and theoretical

results of deep learning in several areas of machine learning, especially computer

vision and natural language processing (Hinton and Salakhutdinov (2006); Hin-

ton, Osindero and Teh (2006); Bengio, Courville and Vincent (2013); Schmidhu-

ber (2015)), show that deep architectures composed of simple learning modules

in multiple layers can model high-level abstraction in high-dimensional data. It is

speculated that by increasing the depth and width of the network, the DNN gains

the power to approximate any continuous function; however, rigorous proof of the
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approximation properties of DNNs remains an important open problem (Faragó

and Lugosi (1993); Sutskever and Hinton (2008); Le Roux and Bengio (2010)).

Nonetheless we expect that DNNs can effectively learn a good approximation to

the posterior mean Eπ[θ|X] given a sufficiently large training set.

2.4. Avoiding overfitting

DNN consists of simple learning modules in multiple layers and thus has

very rich representational power to learn very complicated relationships between

the input X and the output θ. However, DNN is prone to overfitting given

limited training data. In order to avoid overfitting, we consider three methods:

generating a large training set, early stopping, and regularization on parameter.

Sufficiently Large Training Data. This is the fundamental way to avoid

overfitting and improve the generalization, that, however, is impossible in many

applications of machine learning. Fortunately, in applications of Approximate

Bayesian Computation, an arbitrarily large training set can be generated by

repeatedly sampling (θ(i), X(i)) from the prior π and the model M, and dataset

sampling can be parallelized. In our experiments, DNNs contains 3 hidden layers,

each of which has 100 neurons, and has around 3×100×100 = 3×104 parameters,

while the training set contains 106 data samples.

Early Stopping (Caruana, Lawrence and Giles (2000)). This divides the

available data into three subsets: the training set, the validation set and the

testing set. The training set is used to compute the gradient and update the

parameter. At the same time, we monitor both the training error and the vali-

dation error. The validation error usually decreases as does the training error in

the early phase of the training process. However, when the network begins to

overfit, the validation error begins to increase and we stop the training process.

The testing error is reported only for evaluation.

Regularization. This adds an extra term to the loss function that will

penalize complexity in neural networks (Nowlan and Hinton (1992)). Here we

consider L2 regularization (Ng (2004)) and minimize the objective function

J(β;λ) =
1

N

N∑
i=1

‖fβ(X(i))− θ(i)‖22 + λ

L∑
l=1

‖W (l)‖2F, (2.2)

where ‖W‖F is the Frobenius norm of W , the square root of the sum of the

absolute squares of its elements.

More sophisticated methods like dropout (Srivastava et al. (2014)) and tun-

ing network size can probably better combat overfitting and learn better summary
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Figure 3. Ising model on 4× 4 lattice.

statistic. We only use the simple methods and do minimal model-specific tuning

in the simulation studies. Our goal is to show a relatively simple DNN can learn

a good summary statistic for ABC.

3. Example: Ising Model

3.1. ABC and summary statistics

The Ising model consists of discrete variables (+1 or −1) arranged in a lattice

(Figure 3). Each binary variable, called a spin, is allowed to interact with its

neighbors. The inverse-temperature parameter θ > 0 characterizes the extent of

interaction. Given θ, the probability mass function of the Ising model on m×m
lattice is

p(X|θ) =
exp

(
θ
∑

j∼kXjXk

)
Z(θ)

,

whereXj ∈ {−1,+1}, j ∼ k meansXj andXk are neighbors, and the normalizing

constant is

Z(θ) =
∑

x′∈{−1,+1}m×m
exp

θ∑
j∼k

x′jx
′
k

 .

Since the normalizing constant requires an exponential-time computation, the

probability mass function p(x|θ) is intractable except in small cases.

Despite the unavailability of probability mass function, data X can be still

simulated given θ using Monte Carlo methods such as Metropolis algorithm (As-

mussen and Glynn (2007)). It allows use of ABC for parameter inference. The

sufficient statistic S∗(X) =
∑

j∼kXjXk is the ideal summary statistic, because
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{θ (i)} Ising model {X (i)} Deep Neu-
ral Network { S(X (i))}

{ S *(X (i))}known sufficient statsitics

supervised learning

compare

Figure 4. Experimental design on Ising model.

S∗ is univariate, speeds up the convergence of approximation error (1.1) in the

limit of ε→ 0, and losses no information in the approximation (1.2).

Since S∗ results in the ABC posterior with the highest quality, we take

it as the gold standard and compare the DNN-based summary statistic to it.

The DNN-based summary statistic, if approximating Eπ[θ|X] well, should be an

approximately increasing function of S∗(X). As Eπ[θ|X] is an increasing function

of S∗(X), it is a sufficient statistic as well. To see this, view the posterior as an

exponential family with S∗(X) as “parameter” and θ as “sufficient statistic”,

π(θ|X) ∝ π(θ)pθ(X) = π(θ)e− logZ(θ)︸ ︷︷ ︸
carrier measure

exp (S∗(X) · θ),

and then use the mean reparametrization result of exponential family. As Eπ[θ|X]

and S∗(X) are highly non-linear functions in the high-dimensional space {−1,

+1}m×m, they are challenging to approximate.

3.2. Experimental design

Figure 4 outlines the whole experimental scheme. We generate a training set

by the Metropolis algorithm, train a DNN to learn a summary statistic S, and

then compare S(X) to the “gold standard” S∗(X).

Metropolis algorithm generated training, validation, testing sets of size 106,

105, 105, respectively, from the Ising model on the 10 × 10 lattice with a prior

π(θ) ∼ Exp(θc). The value θc = 0.4406 is the phase transition point of Ising

model on infinite lattice: when θ < θc, the spins tend to be disordered; when

θ > θc is large enough, the spins tend to have the same sign due to the strong

neighbor-to-neighbor interactions (Onsager (1944)). The Ising model on a finite

lattice undergoes a smooth phase transition around θc as θ increases, which
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Table 1. The root-mean-square error (RMSE) and training time of the semi-automatic,
FFNN, and DNN methods to predict θ given X. λ is the penalty coefficient in the
regularized objective function (2.2). Stochastic gradient descent fits each FFNN or DNN
by 200 full passes (epochs) through the training set.

Method Training RMSE Testing RMSE Time (s)
Semi-automatic 0.4401 0.4406 4.36
FFNN, λ = 0 0.2541 0.2541 480.08
DNN, λ = 0 0.2319 0.2318 1,348.17
FFNN, λ = 0.001 0.2583 0.2584 447.07
DNN, λ = 0.001 0.2514 0.2512 1,378.33

is slightly different than the sharp phase transition on infinite lattice (Landau

(1976)).

A 3-layer DNN with 100 neurons on each hidden layer was trained to pre-

dict θ from X. For the purpose of comparison, the semi-automatic method with

components of raw vector X as candidate summary statistics was used. We also

tested an FFNN with a single hidden layer of 100 neurons and considered the

regularization technique (2.2) with λ = 0.001. The FFNN used is totally different

from that used by Blum and François (2010). See details in Section 1.3.

Summary statistics learned by different methods led to different ABC pos-

teriors. They were compared to those ABC posteriors resulting from the ideal

summary statistic S∗.

3.3. Results

As shown in Table 1, DNN learns a better prediction rule than the semi-

automatic method and FFNN, although it takes more training time. The regu-

larization technique does not improve the performance, probably because overfit-

ting is not a significant issue given that the training data (N = 106) outnumbers

the ≈ 3× 104 parameters.

Figure 5a displays a scatterplot which compares the DNN-based summary

statistic S and the sufficient statistic S∗. Points in the scatterplot represent to

(S∗(x), S(x)) for an instance x in the testing set. A large number of the instances

are concentrated at S∗ = 192, 200, which appear as points in the top-right corner

of the scatterplot. These instances are relatively uninteresting, so we display a

heatmap of (S(x), S∗(x)) excluding them in Figure 5b. It shows that the DNN-

based summary statistic S(X) approximates an increasing function of S∗(X).

The semi-automatic method constructs a summary statistic that fails to

approximate Eπ[θ|X] (an increasing function of S∗(X)) but centers around the
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Figure 5. DNN-based summary statistic S v.s. sufficient statistic S∗ on the test dataset.
(a) Scatterplot of 105 test instances. Each point represents to (S∗(x), S(x)) for a single
test instance x. (b) Heatmap excluding instances with S∗(x) = 192, 200.
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Figure 6. Summary statistic S constructed by the semi-automatic method v.s. sufficient
statistic S∗ on the test dataset. (a) Scatterplot of 105 test instances. Each point repre-
sents to (S∗(x), S(x)) for a single test instance x. (b) Heatmap excluding instances with
S∗(x) = 192, 200.

prior mean θc = 0.4406 (Figure 6). This is not surprising since the semi-automatic

construction, a linear combination of Xj , is unable to capture the non-linearity

of Eπ[θ|X].
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Figure 7. ABC posterior distributions for xobs generated with true θ = 0.2, 0.4, 0.6, 0.8.

ABC posterior distributions were obtained with the sufficient statistic S∗ and

the summary statistics S constructed by DNN and the semi-automatic method.

For the sufficient statistic S∗, we set the tolerance level ε = 0 so that the ABC

posterior sample follows the exact posterior π(θ|X = xobs). For each summary

statistic S, we set the tolerance threshold ε small enough so that 0.1% of 106

proposed θ′s were accepted. We repeated the comparison for four different ob-

served data xobs, generated from θ = 0.2, 0.4, 0.6, 0.8, respectively; in each case,

we compared the posterior obtained from S∗ with the posteriors obtained from

S, in Figure 7.

We highlights the case with true θ = 0.8 (lower-right subplot in Figure 7).

Since with high probability the spins Xi have the same sign when θ is large, it

becomes difficult to distinguish different values of θ above the critical point θc
based on the data xobs. Hence we should expect the posterior to be small below

θc and have a similar shape to the prior distribution above θc. All three ABC

posteriors demonstrate this property.
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4. Example: Moving Average of Order 2

4.1. ABC and summary statistics

The moving-average model is widely used in time series analysis. With

X1, . . . , Xp the observations, the moving-average model of order q, denoted by

MA(q), is given by

Xj = Zj + θ1Zj−1 + θ2Zj−2 + . . .+ θqZj−q, j = 1, . . . , p,

where Zj are unobserved white noise error terms. We took Zj
i.i.d.∼ N(0, 1)

in order to enable exact calculation of the posterior distribution π(θ|xobs), and

then evaluation of the ABC posterior distribution. If the Zj ’s are non-Gaussian,

the exact posterior π(θ|xobs) is computationally intractable, but ABC is still

applicable.

Approximate Bayesian Computation has been applied to study the poste-

rior distribution of the MA(2) model using the auto-covariance as the summary

statistic (Marin et al. (2012)). The auto-covariance is a natural choice for the

summary statistic in the MA(2) model because it converges to a one-to-one func-

tion of underlying parameter θ = (θ1, θ2) in probability as p → ∞ by the Weak

Law of Large Numbers,

AC1 =
1

p− 1

p−1∑
j=1

XjXj+1 → E(X1X2) = θ1 + θ1θ2,

AC2 =
1

p− 2

p−2∑
j=1

XjXj+2 → E(X1X3) = θ2.

4.2. Experimental design

The MA(2) model is identifiable over the triangular region

θ1 ∈ [−2, 2], θ2 ∈ [−1, 1], θ2 ± θ1 ≥ −1,

so we took a uniform prior π over this region, and generated the training, vali-

dation, testing sets of size 106, 105, 105, respectively. Each instance was a time

series of length p = 100.

A 3-layer DNN with 100 neurons on each hidden layer was trained to pre-

dict θ from X. For purposes of comparison, we constructed the semi-automatic

summary statistic by fitting linear regression of θ on candidate summary statis-

tics - polynomial bases Xj , X
2
j , X

3
j , X

4
j . We also test an FFNN with a single

hidden layer of 100 neurons and considered the regularization technique (2.2)
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Table 2. The root-mean-square error (RMSE) and training time of the semi-automatic,
FFNN and DNN methods to predict (θ1, θ2) given X. λ is the penalty coefficient in the
regularized objective function (2.2). Stochastic gradient descent fits each FFNN or DNN
by 200 full passes (epochs) through the training set.

Training RMSE Testing RMSE Time (s)
Method θ1 θ2 θ1 θ2
Semi-automatic 0.8150 0.3867 0.8174 0.3857 45.63
FFNN, λ = 0 0.1857 0.2091 0.1884 0.2115 543.42
DNN, λ = 0 0.1272 0.1355 0.1293 0.1378 1,402.02
FFNN, λ = 0.001 0.2642 0.2522 0.2679 0.2546 432.27
DNN, λ = 0.001 0.1958 0.1939 0.1980 0.1956 1,282.66

with λ = 0.001. The FFNN used here is different than that used by Blum and

François (2010). See details in Section 1.3.

Next, we generated some true parameters θ from the prior, drew the ob-

served data xobs, and numerically computed the exact posterior π(θ|xobs). Then

we computed ABC posteriors using the auto-covariance statistic (AC1, AC2),

the DNN-based summary statistics (S1, S2), and the semi-automatic summary

statistic. The resulting ABC posteriors are compared to the exact posterior and

evaluated in terms of the accuracies of the posterior mean of θ, the posterior

marginal variances of θ1, θ2, and the posterior correlation between (θ1, θ2).

4.3. Results

Again DNN learns a better prediction rule than the semi-automatic method

and FFNN, but takes more training time (Table 2, Figures 8 and 9). The regu-

larization technique does not improve the performance.

We ran ABC procedures for an observed datum xobs generated by true pa-

rameter θ = (0.6, 0.2), with three different choices of summary statistic: the

DNN-based summary statistic, the auto-covariance, and also the semi-automatic

summary statistic. The tolerance threshold ε was set to accept 0.1% of 105 pro-

posed θ′ in ABC procedures. Figure 10 compares the ABC posterior draws to

the exact posterior which is numerically computed.

The DNN-based summary statistic gives a more accurate ABC posterior

than either the ABC posterior obtained by the auto-covariance statistic or the

semi-automatic construction. One of the important features of the DNN-based

summary statistic is that its ABC posterior correctly captures the correlation

between θ1 and θ2, while the auto-covariance statistic and the semi-automatic

statistic appear to be insensitive to this information (Table 3).
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Figure 8. DNN predicting θ1, θ2 on the test dataset of 105 instances.

θ
( 1
X
)

ˆ

2.0

2.0

Co
un

ts

102

101

100

1.5

1.5

0.5

0.5

1.0

1.0

-0.5

-0.5

0.0

0.0

-1.0

-1.0

-1.5

-1.5
-2.0

-2.0
θ1

θ
( 2
X
)

ˆ Co
un

ts

102

101

100

0.5

0.5

1.0

1.0

-0.5

-0.5

0.0

0.0
-1.0

-1.0
θ2

Figure 9. DNN predicting θ1, θ2 on the test dataset of 105 instances.

Table 3. Mean and covariance of exact/ABC posterior distributions for observed data
xobs generated with θ = (0.6, 0.2) in Figure 10.

Posterior mean(θ1) mean(θ2) std(θ1) std(θ2) cor(θ1, θ2)
Exact 0.6418 0.2399 0.1046 0.1100 0.6995
ABC (DNN) 0.6230 0.2300 0.1210 0.1410 0.4776
ABC (auto-cov) 0.7033 0.1402 0.1218 0.2111 0.2606
ABC (semi-auto) 0.0442 0.1159 0.5160 0.4616 −0.0645

We repeated the comparison for 100 different xobs. As Table 4 shows, the

ABC procedure with the DNN-based statistic better approximates the posterior
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Figure 10. ABC posterior draws (top: DNN-based summary statistics, middle: auto-
covariance, bottom: semi-automatic construction) for observed data xobs generated with
θ = (0.6, 0.2), compared to the exact posterior distribution contours.

moments than those using the auto-covariance statistic and the semi-automatic

construction.

5. Discussion

We address how to automatically construct low-dimensional and informative

summary statistics for ABC methods, with minimal need of expert knowledge.

We base our approach on the desirable properties of the posterior mean as a
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Table 4. Mean squared error (MSE) between mean and covariance of exact/ABC poste-
rior distributions for 100 different xobs.

Posterior MSE for
mean(θ1) mean(θ2) std(θ1) std(θ2) cor(θ1, θ2)

ABC (DNN) 0.0096 0.0089 0.0025 0.0026 0.0517
ABC (auto-cov) 0.0111 0.0184 0.0041 0.0065 0.1886
ABC (semi-auto) 0.5405 0.1440 0.4794 0.0891 0.3116

summary statistic for ABC, though it is generally intractable. We take advantage

of the representational power of DNNs to construct an approximation of the

posterior mean as a summary statistic.

We only heuristically justify our choice of DNNs to construct the approxi-

mation but obtain promising empirical results. The Ising model has a univari-

ate sufficient statistic that is the ideal summary statistic and results in the best

achievable ABC posterior. It is a challenging task to construct a summary statis-

tic akin to it due to its high non-linearity and high-dimensionality, but we see

in our experiments that the DNN-based summary statistic approximates an in-

creasing function of the sufficient statistic. In the moving-average model of order

2, the DNN-based summary statistic outperforms the semi-automatic construc-

tion. The DNN-based summary statistic, which is automatically constructed,

outperforms the auto-covariances; the auto-covariances in the MA(2) model can

be transformed to yield a consistent estimate of the parameters, and have been

widely used in the literature.

A DNN is prone to overfitting given limited training data, but this is not an

issue when constructing summary statistics for ABC. In the setting of Approxi-

mate Bayesian Computation, arbitrarily many training samples can be generated

by repeatedly sampling (θ(i), X(i)) from the prior π and the model M. In our

experiments, the size of the training data (106) is much larger than the number

of parameters in the neural networks (104), and there is little discrepancy be-

tween the prediction error losses on the training data and the testing data. The

regularization technique does not significantly improve the performance.

We compared the DNN with three hidden layers with the FFNN with a

single hidden layer. Our experimental comparison indicates that FFNNs are less

effective than DNNs for the task of summary statistics construction.

Supplementary Materials

The supplementary materials contain an extension of Theorem 1 and show



1616 BAI JIANG, TUNG-YU WU, CHARLES ZHENG AND WING WONG

the convergence of the posterior expectation of b(θ) under the posterior obtained

by ABC using Sb(X) = Eπ [b(θ)|X] as the summary statistic. This extension

establishes a global approximation to the posterior distribution. Implementa-

tion details of backpropagation and stochastic gradient descent algorithms when

training deep neural network are provided. The derivatives of squared error loss

function with respect to network parameters are computed. They are used by

stochastic gradient descent algorithms to train deep neural networks.

Acknowledgment

The authors gratefully acknowledge the National Science Foundation grants

DMS1407557 and DMS1330132.

References

Asmussen, S. and Glynn, P. W. (2007). Stochastic simulation: Algorithms and analysis (Vol.

57). Springer Science & Business Media.

Beaumont, M. A., Zhang, W. and Balding, D. J. (2002). Approximate Bayesian computation

in population genetics. Genetics 162, 2025-2035.

Beaumont, M. A. (2010). Approximate Bayesian computation in evolution and ecology. Annual

Review of Ecology, Evolution, and Systematics 41, 379-406.

Bengio, Y., Courville, A. and Vincent, P. (2013). Representation learning: A review and new

perspectives. Pattern Analysis and Machine Intelligence, IEEE Transactions on 35, 1798-

1828.

Blum, M. G., Nunes, M. A., Prangle, D. and Sisson, S. A. (2013). A comparative review of

dimension reduction methods in approximate Bayesian computation. Statistical Science

28, 189-208.

Blum, M. G. and François, O. (2010). Non-linear regression models for Approximate Bayesian

Computation. Statistics and Computing 20, 63-73.

Caruana, R., Lawrence, S. and Giles, C.L. (2000). Overfitting in neural nets: backpropagation,

conjugate gradient, and early stopping. In Advances in Neural Information Processing

Systems 13: Proceedings of the 2000 Conference 13, 402-408.

Csilléry, K., Blum, M. G., Gaggiotti, O. E. and François, O. (2010). Approximate Bayesian

computation (ABC) in practice. Trends in Ecology & Evolution 25, 410-418.
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Tavaré, S., Balding, D. J., Griffiths, R. C. and Donnelly, P. (1997). Inferring coalescence times

from DNA sequence data. Genetics 145, 505-518.

Toni, T., Welch, D., Strelkowa, N., Ipsen, A. and Stumpf, M. P. (2009). Approximate Bayesian

computation scheme for parameter inference and model selection in dynamical systems.

Journal of the Royal Society Interface 6, 187-202.

Wegmann, D., Leuenberger, C. and Excoffier, L. (2009). Efficient approximate Bayesian com-

putation coupled with Markov chain Monte Carlo without likelihood. Genetics 182, 1207-

1218.

Weiss, G. and von Haeseler, A. (1998). Inference of population history using a likelihood ap-

proach. Genetics 149, 1539-1546.

Department of Statistics, Stanford University, Stanford, California 94305 USA

E-mail: baijiang@stanford.edu

Institute of Computational and Mathematical Engineering, Stanford, Stanford, California 94305

USA

E-mail: tungyuwu@stanford.edu

Department of Statistics, Stanford University, Stanford, California 94305 USA

E-mail: snarles@stanford.edu

Department of Statistics, Stanford University, Stanford, California 94305 USA

E-mail: whwong@stanford.edu

(Received October 2015; accepted September 2016)

mailto:baijiang@stanford.edu
mailto:tungyuwu@stanford.edu
mailto:snarles@stanford.edu
mailto:whwong@stanford.edu

