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Abstract: Over the last decade, large-scale multiple testing has found itself at the

forefront of modern data analysis. Often data are correlated, so that the observed

test statistic used for detecting a non-null case, or signal, at each location in a

dataset carries some information about the chances of a true signal at other lo-

cations. Brown et al. (2014) proposed, in the neuroimaging context, a Bayesian

multiple testing model that accounts for the dependence of each volume element on

the behavior of its neighbors through a conditional autoregressive (CAR) model.

Here, we propose a generalized CAR model that allows for inclusion of points with

no neighbors at all, something that is not possible under conventional CAR models.

We consider also neighborhoods based on criteria other than physical location, such

as genetic pathways in microarray determined from existing biological knowledge.

This provides a unified framework for the simultaneous modeling of dependent and

independent cases, resulting in stronger Bayesian learning in the posterior. We

justify the selected prior distribution and prove that the resulting posterior distri-

bution is proper. We illustrate the utility of our proposed model by using it to

analyze both simulated and real microarray data in which the genes exhibit de-

pendence that is determined by physical adjacency on a chromosome or predefined

gene pathways.

Key words and phrases: Conditional autoregressive model, enrichment, microarray,

multiple testing, significance analysis of microarrays, spike-and-slab prior.

1. Introduction

High throughput data analysis presents many challenges across a variety of

disciplines. Many of the problems are ubiquitous in the sciences, and exacerbated

when the datasets are massive in size. Often, the goal is to detect the presence

of a signal over a very large number of cases, creating a massive multiple testing

problem. Prior to the last two decades, most multiple testing procedures were

constructed to control an overall error rate for a relatively small number of simul-

taneous tests (Efron (2010)). The advent of high throughput technology revealed

that classical procedures can be inappropriate in the presence of thousands of

simultaneous tests (Benjamini (2010)).
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Suppose our data consist of J cases, each of which arises independently from

a normal distribution with case-specific mean, yj ∼ N(θj , σ
2), j = 1, . . . , J .

For example, in genetics, yj may be the test statistic quantifying the differential

expression of gene j between cancerous and healthy tissue (Efron and Tibshirani

(2002)). In functional neuroimaging, signals are observed over time at thousands

of points in the brain and a test statistic yj is calculated at each point j to

summarize the observed difference in that area’s signal between some stimulus

condition versus a baseline (Friston et al. (1995)). A common question of interest

is whether or not θj = 0 at each j, and a hypothesis test is conducted at each of

thousands of locations to determine which of the θj are non-zero, indicating an

interesting signal. The goal is to find a statistical procedure which corrects for

multiplicity without sacrificing too much sensitivity.

A similar issue arises in variable selection, where one is interested in deter-

mining which variables contribute in a meaningful way to the observed response.

A Bayesian approach is to assume the coefficient corresponding to each variable,

βj , belongs to either the null class in which βj ∼ N(0, σ2), or the non-null class,

βj ∼ N(θj , σ
2), θj ̸= 0 (e.g., Mitchell and Beauchamp (1988); George and Mc-

Culloch (1993); Scott and Berger (2006); Efron (2008)). Each βj is assigned a

prior probability p of belonging to the null class with the interpretation that

p ≈ 1 models very sparse signals. This mixing proportion, p, is usually unknown,

but it can be assigned a prior distribution to reflect the researcher’s beliefs about

the level of sparsity in the data, or it can be estimated via empirical Bayes. The

posterior inclusion probabilities are estimated from the posterior distribution. A

Beta prior on p induces a multiplicity adjustment in that the model automatically

penalizes for the number of tests in a posteriori probability statements. Scott

and Berger (2010) discuss this issue and the conditions under which multiplicity

correction can be induced.

Much of the work thus far developed assumes independent hypothesis tests.

This assumption is untenable in many applications. Nontrivial dependence struc-

tures are known to exist in neuroimaging data (Lee et al. (2014)), syndromic

surveillance (Banks et al. (2012)), gene microarray (Zhao, Kang and Yu (2014)),

and RNA sequencing (RNA-seq; Love, Huber and Anders (2014)). Correla-

tion can cause the null distribution of the observed test statistics to be over-

or under-dispersed relative to the theoretical null under independence. Conse-

quently, either too few or too many test statistics may be declared significant.

The deleterious impact correlation can have on empirical Bayes methods and

false discovery rate control (FDR; Benjamini and Hochberg (1995)) was investi-



BAYESIAN CORRELATED SIGNAL DETECTION 1127

gated in Qiu, Klebanov and Yakolev (2005). Efron (2007) focused on the effects

of dependence on the distribution of test statistics. Work has been done on

incorporating known dependence structure into Bayesian models for identifica-

tion of interesting cases (e.g., Smith and Fahrmeir (2007); Li and Zhang (2010);

Stingo et al. (2011); Lee et al. (2014); Zhao, Kang and Yu (2014); Zhang et al.

(2014)), but it has been limited, particularly with respect to exploring the multi-

ple testing adjustments incurred through data-dependent estimation of inclusion

probabilities.

Many datasets include isolated observations. For example, genes in microar-

ray data share common pathways, but many genes are in no pathway at all. It

is important to include as many cases as possible when evaluating the posterior

distribution. A standard CAR model assumes every observation has at least

one neighbor, so that one is forced to either use an inappropriate neighborhood

structure or exclude isolated points. In the current paper, we extend a model

proposed by Brown et al. (2014) for Bayesian multiple testing and discuss more

general neighborhood structures to provide a unified treatment of cases with at

least one neighbor and with no neighbor. We use a less restrictive improper

prior distribution for the variance components and establish the propriety of the

posterior distribution of our model, ensuring that inferences are valid. In ad-

dition to allowing the newly proposed model to identify isolated non-null cases,

we demonstrate that the inclusion of isolated points results in stronger Bayesian

learning and improved estimation of the signal strengths of the selected cases.

We motivate a common model used in Bayesian signal detection in Section

2. This leads to our proposed extension to accommodate local dependence. We

prove the propriety of the posterior distribution of our proposed model and dis-

cuss computation. In Section 3, we report on simulated correlated microarray

data used to study our model’s performance against a prior assuming indepen-

dence and assuming a conventional CAR structure. We also compare it against

results obtained from the significance analysis for microarrays (SAM) procedure

(Efron et al. (2001); Tusher, Tibshirani and Chu (2001)). We apply our procedure

to two gene microarray datasets in Section 4, one using dependence determined

by adjacency on a chromosome, and the other with gene pathways defining the

neighborhoods. Section 5 concludes with a discussion.

2. Methods

2.1. Mixture priors for multiplicity adjustment

To facilitate a Bayesian multiple testing correction, we postulate a “two
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groups model” (Efron (2008)). We assume two possible cases for each of the

observed test quantities, reflected through the prior on θj ,

π(θj | p, τ2) = pδ0(θj) + (1− p)φ0,τ2(θj) j = 1, . . . , J, (2.1)

where δ0(·) is the Dirac delta spike at zero and φ0,τ2(·) is the Gaussian den-

sity function with mean zero and variance τ2. So-called “spike-and-slab” or

“spike-and-bell” priors of this form are standard in Bayesian variable selection,

introduced by Mitchell and Beauchamp (1988) for variable selection in linear

regression. The model was used by Geweke (1996), who provided a procedure

for selecting models subject to order constraints among the variables included in

each. Similarly, George and McCulloch (1993) treated each regression coefficient

as arising from a mixture of two continuous distributions with different variances

for stochastic search variable selection. Literature on Bayesian variable selection

was reviewed in Clyde and George (2004) and O’Hara and Sillanpää (2009). Scott

and Berger (2006) explored Model (2.1) and ways in which it induces multiplicity

correction, along with graphical displays and decision rules for inference.

By allowing p to be determined by the data, the joint posterior distributions

obtained from spike-and-slab priors adapt to the number of tests, resulting in the

posterior inclusion probabilities, pj := P (θj ̸= 0 | y), being penalized to account

for the multiple tests (Scott and Berger (2006, 2010)). Specifically, Scott and

Berger (2006) used a Beta(α, 1) prior density on p, where α is specified, and with

π(τ2, σ2) = (τ2 + σ2)−2 as a prior density for the variance components. Under

this model, Scott and Berger (2006, Lemma 3) showed that

pj = 1− E

(1 + 1− p

p

√
σ2

σ2 + τ2
exp

(
y2j τ

2

2σ2(σ2 + τ2)

))−1
 , (2.2)

where the expectation is taken with respect to the joint posterior distribution of

p, σ2, and τ2.

2.2. Incorporation of local dependence

Posterior inference can be sharpened if we exploit correlation among poten-

tial predictors in the search for interesting signals. Brown et al. (2014) pro-

posed allowing the continuous component of (2.1) to share information across

observations by writing θj as γjµj , γj
iid∼ Bern(1 − p) and µj is Gaussian, so

that y ∼ N(Γµ, σ2I), with y = (y1, . . . , yJ)
T , Γ = diag{γi, i = 1, . . . , J},

and µ = (µ1, . . . , µJ)
T . The lattice structure of datasets such as those aris-

ing from neuroimaging and gene microarray makes a conditional autoregressive
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model (CAR; Besag (1974)) a natural choice for incorporating local dependence

into the prior on µ. Since the potential non-null signals are expected to be

as much positive as negative, a priori it is reasonable to assume such signals

have zero means. Thus, we consider prior distributions of the form µj | µ
(−j)

∼
N
(∑J

i=1 cjiµi, τ
2
j

)
, j = 1, . . . , J , where µ

(−j)
= (µ1, . . . , µj−1, µj+1, . . . , µJ)

T ,

cjj = 0, and cji = 0 except when cases j and i are neighbors. The intrinsic

autoregressive model (IAR; Besag, York and Mollié (1991)) takes cji = wji/wj .

and τ2j = τ2/wj ., where wji ̸= 0 if and only if sites j and i are neighbors and

wj . =
∑J

i=1wji. Under an IAR model for µ, the prior density is

π(µ | τ2) ∝ exp

(
− 1

2τ2
µT (Dw −W)µ

)
, (2.3)

where Dw = diag{wj ., j = 1, . . . , J} and W = {wji}Jj,i=1. Note that (Dw −
W)1 = 0 so that the IAR is improper. However, a “propriety parameter”, ρ,

can be used such that µj | µ
(−j)

∼ N(ρ
∑J

i=1wjiµi/wj ., τ2/wj .) with precision

matrix τ−2(Dw − ρW). This matrix is nonsingular if λ−1
1 < ρ < λ−1

J , where

λ1 < 0 and λJ > 0 are the smallest and largest eigenvalues of D
−1/2
w WD

−1/2
w ,

respectively (Banerjee, Carlin and Gelfand (2015)).

Any data having a lattice structure with known or suspected correlations

occurring along predefined networks can be modeled with a CAR model. For

instance, genes in microarray are known to express themselves in clusters along

a chromosome (e.g., Xiao, Reilly and Khodursky (2009)), or to behave in concert

along specific gene pathways (Subramanian et al. (2005)). Neighborhoods can be

defined in terms of adjacency on a chromosome or based on predefined pathways

determined from prior knowledge. Care should be taken in defining neighbor-

hoods, though, as such datasets often include genes that are not members of

any known pathway and thus are isolated. Including isolated points in the IAR

induces zero rows in the precision matrix, a problem that cannot be fixed with a

propriety parameter. In response, we adjust the neighborhood weights to allow

for inclusion of the isolated points while avoiding a singular precision matrix.

We modify the usual IAR model by defining the neighborhood weights about

µj to be cji = wji/(d+wj .) with conditional variance τ2/(d+wj .), where d > 0.

The consequent precision matrix is τ−2(Dw+dI−W). Then xT (Dw+dI−W)x =∑J
i=1 dx

2
i + (1/2)

∑
i

∑
j wij(xi − xj)

2 ≥ 0, with strict inequality for x ̸= 0.

Thus, with d > 0, we are able to include isolated points in the model while

maintaining the propriety of the distribution. If we take d = 1, then for any

isolated point j′, wj′ . = 0 so that E(µj′ | µ
(−j′)) = 0, V ar(µj′ | µ

(−j′)) = τ2,
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and µj′ | τ2 ∼ N(0, τ2), independently of other points. Hence, we can facilitate

conditional independence of µj while allowing all J points to share information

about plausible values of the hypervariance through the prior distribution on

the variance components. Taking this view, we can express the traditional IAR

model as a special case in which every point in a dataset has at least one neighbor

and d = 0.

Let the joint density of the data and parameters be given by f(y,ψ,µ, p,γ),

where ψ contains nuisance parameters modeled in the prior distribution. When

γj = 0 for all j, µ does not appear in the resulting likelihood and thus is

Bayesianly unidentified (Gelfand and Sahu (1999)). This means that
∫
µ f(y,ψ |

γ = 0,µ)π(µ)dµ ≡
∫
µ f(y,ψ | γ = 0)π(µ)dµ = f(y,ψ | γ = 0)

∫
µ π(µ)dµ, so

that we must have a proper prior on µ for the posterior distribution to be proper,

making the inclusion of ρ necessary when d = 0. See McLachlan and Peel (2000,

Chap. 4) for further discussion of prior distributions in finite mixture models.

Usually, there is little direct information available about ρ, so estimating it

may be difficult. Previous work has shown that appreciable interaction between

adjacent points only occurs when ρ is close to its upper bound under the d = 0

model (Banerjee, Carlin and Gelfand (2015)). To give the data more freedom

in determining the spatial association without specific regard for interpretability,

we consider the prior πρ(ρ) ∝ I(λ−1
1 < ρ < λ−1

J ). It is important to note that

inclusion of ρ is still possible when d > 0, provided that ρ is bounded between

the reciprocals of the smallest and largest eigenvalues of (Dw + dI)−1/2W(Dw +

dI)−1/2.

An additional advantage of including ρ in the joint model for µ is that, under

positive spatial association, the posterior distribution becomes insensitive to the

choice of d in the neighborhood weights. This is because as d grows, ρ is allowed

to increase as well. In other words, if d1 < d2, then λ−1
J,1 < λ−1

J,2, where λJ,i > 0 is

the maximum eigenvalue of (Dw + diI)
−1/2W(Dw + diI)

−1/2, i = 1, 2. A proof

is in the Supplementary Material.

We also wish to avoid strong information about either the noise variance,

σ2, or the hypervariance, τ2. Gelman (2006) suggested that the priors specified

for the variance parameters in hierarchical models may have a disproportionate

effect in that they can restrict posterior inference. Conversely, priors used for

scale hyperparameters that are intended to be noninformative may, in fact, be

too weak in placing considerable probability on unreasonable extreme values in

the posterior. To address this, Gelman (2006) proposed the use of a weakly

informative prior on the scale hyperparameter such as the folded-t distribution.
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Scott and Berger (2006) argued for the use of a joint prior on σ2 and τ2 with

density π(τ2,σ2)(τ
2, σ2) = (τ2+σ2)−2 = (σ2)−1(1+ τ2/σ2)−2(σ2)−1 ≡ πτ2|σ2(τ2 |

σ2)πσ2(σ2) so that a standard improper prior on σ2 can be used while scaling

τ2 by σ2. The prior on τ2 | σ2 is similar to the prior on τ2 which results from

placing a folded-t2 prior on τ with scale σ. Supplementary Figure 1 illustrates a

slight difference between the two priors for small values of τ2 so that the Scott-

Berger (SB) prior on τ2 is slightly less informative than a folded-t. However, the

SB prior and the folded-t-based prior are tail equivalent in that the ratio of the

two densities is O(1) as τ2 → ∞. We thus follow the precedent set by Scott and

Berger (2006) and use the same joint prior distribution on τ2 and σ2.

This leads to the model

yj | γj , µj , σ2 indep∼ N(γjµj , σ
2); γj | p

iid∼ Bern(1− p), j = 1, . . . , J,

µj | µ(−j)
, τ2, ρ ∼ N

(
J∑

i=1

ρwjiµi

d+ wj .
,

τ2

d+ wj .

)
, d ≥ 0, j = 1, . . . , J,

p ∼ Beta(α, 1), α ≥ 1; ρ ∼ Unif(ν−1
1 , ν−1

J ),

πτ2|σ2(τ2 | σ2) =

(
1

σ2

)(
1 +

τ2

σ2

)−2

, τ2 > 0; πσ2(σ2) =
1

σ2
, σ2 > 0,

(2.4)

where ν1 and νJ are the smallest and largest eigenvalues of (Dw+dI)−1/2W(Dw+

dI)−1/2, respectively. Since we are using an improper prior in (2.4), the posterior

density is not guaranteed to be integrable. We provide a proof in the Appendix

that the posterior distribution is indeed proper.

The practical effect of ρ having room to increase along with d in our pro-

posed model can be seen through simulation. Consider a 20 × 20 array of

observations arising from both null and non-null distributions. The activa-

tion pattern was created by drawing from an Ising distribution (e.g., Higdon

(1994)), p(x) ∝ exp(β
∑

i∼j I(xi = xj)), x ∈ {0, 1}400, with interaction parame-

ter β = 0.35. The null cases (xi = 0) were drawn from N(0, 1) and the non-null

cases were drawn from N(3.5, 1). The binary activation pattern and simulated

data array are displayed in Supplementary Figures 2 and 3. We use these data to

estimate the posterior distributions under model (2.4) with d = 0, 1, and 5. See

Subsection 2.3 for implementation details. A descriptive measure of spatial asso-

ciation is Moran’s I, I(y) = n
∑

i

∑
j wij(yi−y)(yj−y)/[(

∑
i ̸=j wij)

∑
i(yi−y)2],

where values away from zero are evidence of spatial association according to the

predefined neighborhood structure (e.g., Banerjee, Carlin and Gelfand (2015,

Sec. 4.1)). Figure 1 displays smoothed histograms of realizations of I(y∗) from
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Ι ρ

π
(ρ
|ψ
)

Figure 1. Smoothed histograms of 2,000 realizations of Moran’s I from the corresponding
posterior predictive distributions (left panel) and estimated marginal posterior distribu-
tions of ρ under model (2.4) (right panel). The dark vertical line in the left panel is at
the observed value, I(y).

2,000 replications each from the three respective posterior predictive distribu-

tions, p(y∗ | y) =
∫
Θ f(y∗ | θ)π(θ | y)dθ, along with the approximate marginal

posterior densities of ρ. For each value of d, the posterior of ρ tends to concen-

trate near its upper bound and the posterior predictive densities of I are nearly

indistinguishable. Regardless of the value of d, ρ adjusts accordingly and the

overall spatial association is consistent with the data.

Including as many cases as possible when evaluating the posterior distribu-

tion is important. It is often the case that the dataset to be analyzed contains

subsets of correlated observations among many independent observations. A

standard CAR structure assumes every observation has at least one neighbor

and this may be inappropriate, excluding isolated points for example. With our

proposed approach, adjusting the weights with d > 0 in the denominator allows

for the inclusion of all cases when evaluating the posterior distribution while

simultaneously preserving the dependence among the cases sharing common net-

works as well as the independence of the isolated cases. In the sequel, we consider

the performance of our model when d = 0 or d = 1. These are admittedly ad hoc

values, and may not be appropriate for all situations.

2.3. Computational implementation

We facilitate Gibbs sampling (Geman and Geman (1984)) by reparameter-
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izing the model as τ2 = ησ2. For ease of notation, take D∗
w := Dw + dI. Then

π(µ,γ, σ2, η, ρ, p | y) ∝ (σ2)−J−1 exp

(
−(y − Γµ)T (y − Γµ)

2σ2

)
×|η(D∗

w − ρW)−1|−1/2 exp

(
−µ

T (D∗
w − ρW)µ

2ησ2

)
×pJ−

∑J
i=1 γi+α−1(1− p)

∑J
i=1 γi(1+η)−2I(ν−1

1 < ρ < ν−1
J ).

The full conditional distribution of µ isN(RΓy, σ2R), whereR = (Γ+η−1(D∗
w−

ρW))−1 (Carlin and Louis (2009)). To avoid matrix inversion with extremely

large J , we update µ element-wise. The full conditional distributions are given

in the Supplementary Material.

We use rejection sampling to draw from the conditional distribution of η.

However, the importance ratio determining the acceptance probability is η2/(1+

η)2 → 0 as η → 0, meaning that iterations can slow down on this step with

candidate densities that concentrate on extremely small values of η. Possible

alternatives are an adaptive Metropolis algorithm (Carlin and Louis (2009)) or

adaptive rejection sampling (Gilks and Wild (1992)).

We follow Carlin and Banerjee (2003) and use slice sampling (Neal (2003)) to

draw from the full conditional distribution of ρ. Our experience is that the algo-

rithm performs better with the “doubling” procedure outlined by Neal (2003) to

adaptively determine good proposal intervals. The determinant |D∗
w−ρW|1/2 ∝

|I − ρ(D∗
w)

−1/2W(D∗
w)

−1/2|1/2 in the conditional density of ρ can be quickly

computed using the eigenvalues of (D∗
w)

−1/2W(D∗
w)

−1/2. Matrix computations

can also be eased by calculating µTD∗
wµ =

∑J
j=1(d+wj .)µ

2
j and µTWµ before

searching for an acceptable update for ρ. These only need to be calculated once

for each Gibbs iteration.

From (S1.1) in the Supplementary Material, we can see the strong depen-

dence between γ and p in their conditional distributions. On the kth iteration, if

the sample draw p(k) is close to 1, then most of the draws γ
(k)
i , i = 1, . . . , J , will

be zero. But then
∑

i γi will be close to zero so that the conditional Beta density

will concentrate close to 1, leading to another high value of p, and so on. Thus,

in spite of the computationally convenient conditional conjugacy, an MCMC rou-

tine can get stuck in the region of the parameter space with most γi = 0, slowing

convergence. The situation can be ameliorated by reparameterizing to eliminate

boundary constraints on p and using Langevin-Hastings proposals to push the

chain toward the posterior mode (Gilks and Roberts (1996)). Randomly mixing

in ordinary Metropolis proposals in place of Langevin-Hastings proposals offers
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further improvements when the chain is far from the mode (Carlin and Louis

(2009, Chap. 3)).

The quantities of interest are the marginal posterior inclusion probabilities

for each signal j, P (γj = 1 | y). To estimate this from the posterior sample

draws, we recognize that in Model (2.4), P (γj = 1 | y) = E(p∗j ), where the

expectation is taken with respect to π(µ,γ(−j), σ
2, η, ρ, p, | y), and p∗j := P (γj =

1 | µ,γ(−j), σ
2, η, ρ, p,y) is given by

p∗j =
(1− p)φ0,σ2(yj − µj)

(1− p)φ0,σ2(yj − µj) + pφ0,σ2(yj)
. (2.5)

This quantity can be estimated by N−1
∑N

i=1 p̂
∗,(i)
j , where p̂

∗,(i)
j is the plug-in

estimate of p∗j evaluated with the ith draws p(i), µ
(i)
j , σ2,(i) from the posterior,

and N is the Monte Carlo sample size. Similarly, we use (2.2) to estimate the

inclusion probabilities under the Scott-Berger model using p(i), σ2,(i), τ2,(i) drawn

from the appropriate posterior. Both of these estimators are “Rao-Blackwellized”

in the sense of Gelfand and Smith (1990) and thus have smaller Monte Carlo

variance than other more naive estimators (Carlin and Louis (2009, Chap.3)).

3. Simulation Studies

To evaluate performance, we simulated a dataset in a manner similar to

Xiao, Reilly and Khodursky (2009), resulting in a correlation structure as some-

times arises among genes on chromosomes. For the jth gene on the ith subject,

i = 1, . . . , 10, j = 1, . . . , 1, 000, the observed expression level Xij was drawn from

N(µij , 1). Five of the subjects were taken as controls with baseline (i.e., null

case) expression levels over all 1,000 genes, so that µij = 0 for i = 1, . . . , 5, j =

1, . . . , 1, 000. The remaining five “treatment” subjects’ data were simulated so

that 100 genes were differentially expressed: For i = 6, . . . , 10, µij = 1.5, j =

1, . . . , 20, 111, . . . , 130, 211, . . . , 230 and µij = −1.5, j = 311, . . . , 330, 411, . . . , 430.

For each control subject, we generated the gene expression levels by drawing

the vector of observations (Xi,1, . . . , Xi,1,000)
T = Xi ∼ N(0, I), i = 1, . . . , 5.

For the treatment group, the null cases were again simulated as i.i.d. stan-

dard normal. We modeled correlation among the differentially expressed cases

by drawing each group of twenty test statistics as X
(k)
i ∼ N(µ(k),Σ), i =

6, . . . , 10, where X
(k)
i , k = 1, . . . , 5, is the kth cluster of non-null cases, (i.e.,

µ(k) = (1.5, 1.5, . . . , 1.5)T , k = 1, 2, 3, µ(k) = (−1.5,−1.5, . . . ,−1.5)T , k = 4, 5),

and Σ = {0.9|i−j|}20i,j=1. Pooled t statistics, tj , j = 1, . . . , 1, 000, were then

calculated between the control and treatment conditions for each gene and sub-
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sequently normalized via probit transformation of the p-values (Efron (2010)),

yielding test statistics y = (y1, . . . , y1,000)
T , where yj = Φ−1(F (tj)) with F (·)

being the cdf of the t statistics.

We analyzed the simulated data using both our proposed model and the

Scott-Berger (SB) model assuming independence. In our model, we considered

the sharing of information across genes using three different neighborhood struc-

tures. These neighborhoods, displayed graphically in Supplementary Figure 4,

have adjacency matrices

W1 =


0 1 0 . . . 0 0

1 0 1 . . . 0 0

0 1 0 1 . . . 0
...

. . .
...

0 0 0 . . . 1 0

 , W2 =


0 1 1 0 0 . . . 0 0 0

1 0 1 1 0 . . . 0 0 0

1 1 0 1 1 . . . 0 0 0
...

. . .
...

0 0 0 0 0 . . . 1 1 0

 ,

W3 =


0 1 1/2 13 0 0 . . . 0 0 0

1 0 1 1/2 1/3 0 . . . 0 0 0

1/2 1 0 1 1/2 1/3 . . . 0 0 0
...

. . .
...

0 0 0 0 0 0 . . . 1/2 1 0

 .

We implemented also the Significance Analysis for Microarrays (SAM) procedure

as outlined in Efron (2010). SAM is a popular method for analyzing microarray

data designed to approximately control the false discovery rate (FDR). For this

procedure, we varied the FDR criterion between 0.05 and 0.15 to study perfor-

mance across FDR levels commonly used in practice.

Each neighborhood was one in which every location had at least one neighbor

so that, in (2.4), wj . > 0 for all j. We took d = 0, reducing to the IAR model

considered in Brown et al. (2014). To enforce sparsity a priori, we took α = 150

in the prior on p. In the SB model, we found that the best results were obtained

with a uniform prior on p. The data generating mechanism was different from

what is assumed under either our model or SB, allowing us to study robustness,

as well.

We implemented the SB model using Gibbs sampling with nested rejection

sampling steps for the non-standard distributions. To draw from the posterior

of our proposed model, we used Gibbs sampling with nested rejection and slice

sampling steps described in Subsection 2.3. The algorithms were coded entirely

in R (R Core Team (2015)). For both models, a single chain used a burn-in
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Table 1. False non-discovery proportions (FNP), false discovery proportions (FDP), and
misclassification proportions (MCP) for the simulated gene expression data.

SB SAM(0.05) SAM(0.10) SAM(0.15) CAR (W1) CAR (W2) CAR (W3)
FNP 0.100 0.094 0.088 0.086 0.055 0.058 0.062
FDP 0.000 0.125 0.133 0.158 0.000 0.022 0.024
MCP 0.100 0.094 0.089 0.087 0.052 0.056 0.060

period of 5,000 iterations followed by an additional 10,000 sampling iterations,

thinning to every fifth draw for a final sample of size 2,000. We ran three chains in

parallel and assessed convergence with trace plots and scale reduction factors for

selected parameters (Gelman and Rubin (1992)). Upon attaining approximate

convergence, the retained draws from each of the three chains were combined for

a final Monte Carlo sample size of 6,000. The posterior inclusion probabilities

were estimated using (2.2) for SB and (2.5) for our model. We thresholded the

estimated posterior inclusion probabilities at 0.95.

Table 1 displays the empirical error rates for the SB model, the SAM proce-

dure, and our model using W1, W2, and W3 as neighborhoods. The SB model

results in the highest overall misclassification proportion, due to the false non-

discoveries. In this case, the SB model is overcorrecting for multiplicity to the

point that no cases are selected at all (hence the identically zero false discovery

proportion). The SAM procedure performs better in terms of non-discoveries and

overall misclassification proportion, but false positives account for 13% - 16% of

all discoveries. Our proposed model performs better than SB or SAM, regardless

of the selected neighborhood structure. The first-order neighborhood with unit

weights (W1; top illustration in Supplementary Figure 4) performs best both in

terms of non-discoveries and false discoveries, but all of the error rates are very

close when compared to the other two approaches.

Figure 2 displays the empirical receiver operating characteristic (ROC) curves

for the SB, SAM, and CAR(W1) models. The ROC curves for the CAR(W2)

and CAR(W3) models are virtually indistinguishable from CAR(W1) and are

not displayed. The approximate areas under the curves for CAR(W1), SB, and

SAM are 0.897, 0.869, and 0.850, respectively. Hence, ours attains the best

overall discriminatory power.

Insight into the reasons for the discrepancies between our model and the SB

model can be gained by examining the smoothed approximate posterior densities

of p, σ2, and τ2 = ησ2, displayed in Figure 3. Incorporating the dependence

results in much stronger Bayesian learning about these parameters. In this sim-

ulation, 100 out of 1,000 cases were non-null, so that we expected p to be large,
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Figure 2. Empirical ROC curves for the simulated microarray data.
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Figure 3. Smoothed posterior estimates of p, σ2, and τ2 for the simulated microarray
data.

though not exactly 0.9 since correlation among the cases reduces the effective

sample size (Carlin and Louis (2009, Chap. 3)). That was indeed the case under

our model. The SB model results in considerably lower estimates of p and weakly

identified distributions of σ2 and τ2, contributing to the error rates observed in

Table 1.

Supplementary Figure 5 plots the estimated inclusion probabilities versus

the test statistics. All of the statistics are assigned relatively high probabilities

of being non-null under SB, but the lack of information about σ2 and τ2 pre-

vents distinctions being drawn that are strong enough to pass a 0.95 threshold.

Our approach, on the other hand, results in stronger statements about the like-

lihoods of cases being non-null. The ‘jagged’ quality of the curve corresponding
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to the CAR(W1) model is due to the estimated inclusion probabilities being

not a function of the yj values alone, but also of their location with respect to

nearby observed values. To see this, consider the circled point in Supplementary

Figure 5, which corresponds to the circled case in the graphical depiction of the

test statistics in Supplementary Figure 6. This relatively extreme observation

is in the middle of uninteresting test statistics. This is a truly null case, so the

incorporation of local dependence prevents a false discovery.

Instead of physical adjacency, it may be desired to facilitate the sharing of

information within gene sets such as those used in enrichment analysis (Sub-

ramanian et al. (2005)). To illustrate this, we simulated another dataset with

expression characteristics similar to the simulation carried out in Efron and Tib-

shirani (2007). We again considered a collection of 1,000 genes, with genes 11-20,

111-130, 211-230, 311-330, 411-430 defining five different gene sets. The set con-

sisting of genes 111-130 was simulated as differentially expressed by drawing them

independently from N(2.5, 1); similarly, the genes 411-430 were drawn indepen-

dently from N(−1.5, 1). The remaining genes, including those in the remaining

gene sets, were all drawn from N(0, 1). To distinguish dependence determined

by pathway membership from dependence determined by physical adjacency, the

genes were labeled and randomly permuted so that genes sharing common path-

ways were not adjacent in the physical sense. Many genes were members of no

pathway and so were isolated.

Suppose a researcher were to mistakenly assume the dependence structure

for these data followed the same pattern as the previous example in which every

gene is correlated with its physical neighbors and the usual proper IAR with

adjacency matrix W1 is used with d = 0 in (2.4). We compared the performance

of this CAR structure to our proposed approach with the adjacency matrix W

determined by defining genes that are in the same set to be neighbors. To include

all observations without reducing the rank of the precision matrix, we set d = 1

in (2.4) so that the marginal distributions of isolated µj were N(0, τ2). We

implemented both models using MCMC with the same burn-in and sampling

settings as the previous simulation.

Supplementary Figure 7 displays the empirical ROC curves from our model

under both neighborhood assumptions. It is apparent that making incorrect

assumptions about the neighborhood structure severely inhibits the model’s dis-

criminatory power. In fact, thresholding the posterior inclusion probabilities

at 0.95 as before results in no cases being identified at all under the physical

adjacency assumption. The misspecified correlation results in the model overes-
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Figure 4. Smoothed posterior estimates of p, σ2, and τ2 with and without the isolated
cases.

timating the noise variability in the data, as is clear upon examination of Sup-

plementary Figure 8. Superimposed on the histogram are two mean-zero normal

densities with variances equal to the posterior means of σ2 under both mod-

els. The overestimation of σ2 results in poor identification of the non-null cases,

indicated with the dark tick marks along the x-axis. Incorporating a more ap-

propriate neighborhood structure results in improved estimation of the variance

components and thus superior discrimination among cases.

Even with knowledge of an approximately correct dependence structure, one

might want to use a standard CAR model by discarding the isolated cases. The

isolated points provide information about the parameters common to both the

null and non-null components of the data distribution and hence useful informa-

tion would be discarded. Consider the smoothed marginal posterior densities of

p, σ2, and τ2 displayed in Figure 4. Eliminating the isolated cases reduces J in

(2.4), so we obtain considerably less posterior concentration about the error vari-

ance, which in turn affects the amount of information available to estimate the

second variance component, τ2. As is the case in any hypothesis testing scenario,

the operating characteristics are directly affected by the amount of information

we have about the error variability. This results in the “borderline” cases being

misclassified as noise at a 0.95 inclusion probability threshold, thus increasing the

false non-discovery proportion. (See Supplementary Figure 9.) The false discov-

ery, false non-discovery, and misclassification proportions at the 0.95 threshold

with and without isolated cases are given in Table 2.

In addition to detection, there is often an interest in estimating the true

signal strengths of the non-null cases. Figure 5 plots the smoothed approximate

posterior densities and approximate 95% credible intervals about the signals, µ,

for two typical non-null cases in the simulated gene pathway data. Again, the
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Table 2. Error rates for the simulated pathway example using pathway-based neighbor-
hoods.

With Isolated Cases Without Isolated Cases
FNP 0.008 0.178
FDP 0.000 0.000
MCP 0.008 0.130

posteriors were evaluated with and without the isolated cases using neighbor-

hoods defined by pathway membership. The true signal strengths for these two

cases were E(Z) ≈ −2.78 (top panel) and E(Z) ≈ 2.12 (bottom panel), indicated

in the plots by vertical lines. The Figure illustrates the reduction in posterior

uncertainty that can be obtained by including all of the data points. For the

top panel, the approximate 95% credible intervals with and without the isolated

cases are [−3.36,−2.40] and [−3.77,−2.12], respectively. For the bottom panel,

the intervals are [1.70, 2.66] and [1.24, 3.07] with and without the isolated cases,

respectively. The average widths of the approximate 95% credible intervals over

all of the cases in (non-null) Pathway 2 with and without isolated observations

are 0.960 (0.014) and 1.71 (0.060), respectively. Likewise, the average widths

over cases in Pathway 5 with and without isolated observations are 0.934 (0.011)

and 1.70 (0.043), respectively. By including the isolated points, we attain an

approximate four-fold increase in the precisions of the signal estimates.

In practice, the most appropriate neighborhood structure to use in the CAR

model may not be known. For gene microarray, only biologically meaningful

dependence structures would usually be considered so that one would not be

faced with completely unguided choices. Even among interpretable neighbor-

hoods, we still might wish to compare competing neighborhood assumptions.

Consider again the simulated pathway data, only we do not know whether the

dependence is among biologically-determined pathways, or if it is a function of

physical adjacency. In this case, we can gauge the spatial dependence by con-

sidering Moran’s I statistic under different neighborhood assumptions, whence

the competing models can be examined by looking at the strength of estimated

spatial association according to each. For the simulated pathway data, we have

I(y) = 0.0041 for the (incorrect) adjacency assumption, and I(y) = 2.0747 for

the (correct) pathway assumption. The lack of association under the adjacency

structure is indicative of the invalid assumption, since we would expect there to

be some kind of association (otherwise there’s no need for a CAR model at all).

Further, we can investigate competing models’ predictive capabilities through the
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Figure 5. Smoothed approximate posterior densities of the signal strengths µj for two
non-null cases in the simulated gene pathway example. The bars at the top are the
approximate 95% posterior credible intervals. The vertical lines indicate the true means
of the non-null distributions of the test statistics.

use of root mean square predictive error (RMSPE) and the Wantanabe-Akaike

information criterion (WAIC; Wantanabe (2010)), the latter of which is asymp-

totically equivalent to Bayesian leave-one-out cross validation but averages over

the posterior distribution instead of relying on point estimates, unlike AIC or

DIC (Gelman et al. (2014)). The RMSPEs for the adjacency assumption and

pathway assumption are 1.58 and 1.50, respectively. Likewise, the WAICs for

the adjacency and pathway assumption are 3,016.50 and 2,794.61, respectively.

The correct neighborhood structure is favored according to both criteria.

The true correlation structure among gene expression data is complex. The

implementation of our proposed model (and similar CAR models), however, re-

quires neighborhood structures to be specified a priori, and this specification can

potentially be incomplete or simplistic. To study the performance of our proposed

model under partially incorrect neighborhood assumptions, we simulated 1,000

expression levels over ten subjects (five treatment, five control) with genes 11-20,

111-130, 211-230, 311-330, 411-430 defining five different gene sets as before. We

again supposed that the second and fifth sets were enriched in the treatment

group. In contrast to the previous simulation, we assumed for each treatment

subject that the correlation among signals was induced according to a directed

graph, as might occur in metabolic pathways in which a signal originates from a
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single gene and cascades via several networks to other genes downstream (Stingo

et al. (2011)). A parent gene was selected at random from each of the two active

gene sets, and the signals for each were simulated as µp ∼ N(2.5, 0.752). Within

each pathway, seven additional child nodes were selected at random and their

signals were taken to be µc1 , . . . , µc7
iid∼ N(0.92µp, 0.75

2). The remaining signals

were drawn independently from N(0.92
∑7

s=1 µcs , 0.75
2). The observed expres-

sion levels were taken to be Xik
indep.∼ N(µk, 1), i = 1, . . . , 10, where k indexes

over all genes, including the parent nodes and child nodes, and i indexes the

subjects. It was taken that the assumed neighborhood structure omits two genes

that are members of one of the active sets, and likewise for one of the inactive sets.

Lastly, we randomly selected 30 isolated genes and drew their expression levels

from N(0,Σ) for all subjects, treatment and control, where Σ = {0.9|i−j|}30i,j=1.

Our proposed model thus incorrectly assumes uniform correlation within each

pathway, uses incomplete pathway definitions, and ignores correlation among a

subset of genes with no known pathway membership.

Table 3 displays the empirical false nondiscovery proportions, false discovery

proportions, and overall misclassification proportions for these simulated data

under the SB model and our proposed pathway-determined CAR model with

0.95 posterior probability threshold, as well as SAM with three common thresh-

olds. Despite the model misspecification, our model performs comparably to SB

and the generally applicable SAM procedure. In fact, our approach still yields the

smallest empirical misclassification proportion, though they are all close. Even

though we have partially incorrect assumptions about the correlation structure,

our approach is still superior to that of assuming independence in terms of predic-

tive capability, as evident in the lower RMSPE and WAIC values, also displayed

in Table 3. Further, the assumed neighborhood structure in our model predicts

non-zero spatial correlations that are fairly consistent with those observed in the

actual data under the same structure. This is evident in Supplementary Figure

10, which plots a histogram of realized I(y) values from the posterior predictive

distribution along with the observed value. Under the assumed neighborhood

structure, P (I(y∗) ≥ I(y) | y) ≈ 0.1175.

These simulation results indicate that overall performance of the mixture

prior can be improved by using common information across local neighborhoods,

when it is available. This improvement is due to the induced penalty on the in-

clusion probabilities of statistics surrounded by uninteresting observations, and

to improved estimation of the mixing proportion and variance components in the

data. By choosing the neighborhood weights appropriately, we demonstrate how
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Table 3. Error rates and predictive capabilities of the independence Bayesian (SB) and
the CAR models under incorrect correlation assumptions, along with error rates from
the SAM procedure with three common thresholds. SAM is not used for prediction, so
the RMSPE and WAIC are not applicable.

SB CAR SAM(0.05) SAM(0.10) SAM(0.15)
FNP 0.012 0.009 0.009 0.009 0.009
FDP 0.000 0.031 0.061 0.088 0.114
MCP 0.012 0.010 0.011 0.012 0.013

RMSPE 1.326 0.759 − − −
WAIC 3470.804 2778.664 − − −

our model can accommodate isolated genes that have no neighbors. Our pro-

posed approach is evidently superior to a conventional CAR model, even when

the correct pathway information is used to define the neighborhoods but isolated

points are discarded. Incorporating spatial dependence and isolated cases results

in much sharper Bayesian learning in the posterior distribution, thereby reducing

uncertainty. Simple diagnostics such as Moran’s I under different assumed neigh-

borhood structures can be helpful when competing neighborhoods are available,

as well as considering predictive capabilities through measures such as WAIC. We

demonstrate that even simplistic correlation assumptions still perform competi-

tively with alternatives such as the SAM procedure while predicting dependence

features that are consistent with the observed data. Judging from model fit cri-

teria, partially incorrect correlation assumptions are better than ignoring them

altogether.

4. Applications

4.1. E. coli data

For application of our model, we considered the microarray expression data

from Xiao, Reilly and Khodursky (2009). This dataset contains transcriptional

activity on the Escherichia coli chromosome measured as log ratios of transcript

abundances between a control and various chemical, physiological, and genetic

perturbations comprising 53 experimental conditions. The observed gene ex-

pression levels are the average log ratios across conditions. We have 4 replicate

measurements on 4,276 genes. Test statistics are calculated by dividing the mean

difference by the standard error plus a small constant to reduce the effect of ex-

treme observations, as done with SAM. The statistics are probit transformed to

yield equivalent z statistics.
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Table 4. Error rates for the E. Coli data under the independence (SB) model and the
CAR model with selected values of α in πp(p). For the CAR model, d = 0. The SB
model uses a uniform prior on p.

SB α = 1 α = 500 α = 1, 000 α = 1, 775
FNP 0.002 0.001 0.001 0.001 0.001
FDP 0.407 0.782 0.532 0.422 0.379
MCP 0.007 0.033 0.011 0.007 0.006

The E. coli chromosome has been shown to have correlated expression levels

according to gene location, but with a circular structure so that the first and last

genes on the chromosome are considered neighbors (Xiao, Reilly and Khodursky

(2009)). This structure led us to use the adjacency matrix obtained by replacing

the last elements of the first row and first column of W1 in Section 3 by 1. We

took d = 0 since each point has two neighbors.

We simulated the posterior distributions of the SB and CAR models using

the MCMC algorithms described in Sections 2 and 3. The resulting posterior

activation probabilities were thresholded at 0.99 to select genes as being differ-

entially expressed. To evaluate performance, we compared the selected genes to

a list of 41 genes identified in Macnab (1992) as having a known or suspected

function in the E. coli chromosome. This list serves as a reference with which we

calculated approximate false discovery and false non-discovery proportions.

To illustrate the effect of the shape parameter in the prior for p in our model,

we simulated the posterior distribution while varying α. For the SB model, we

again took p ∼ Unif(0, 1). Table 4 gives the empirical error rates. For lower

values of α, the sensitivity results in generally higher error rates compared to

SB. However, for higher α, we attain uniformly better performance, with all

three error rates outperforming the independence model. The effect of α on the

marginal posterior distributions of p and ρ can be seen in Supplementary Figure

11. Higher α values result in higher estimated values of p, as expected, but they

also result in sharper posterior inferences about both p and ρ. The false discovery

proportions are all quite high. As this analysis is based on a dataset, there is no

way of knowing which of these are true false discoveries. The high FDP could

be due to Macnab (1992) listing the most interesting genes, not necessarily all

interesting genes.

4.2. Male vs. female lymphoblastoid cell data

For an application with a different neighborhood structure, we considered

mRNA expression profile data collected from lymphoblastoid cell lines derived
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from fifteen males and seventeen females. This dataset was analyzed in Sub-

ramanian et al. (2005) with gene set enrichment analysis (GSEA), who sought

to identify gene sets enriched in males (male > female) and enriched in females

(female > male). Each cell line contains measurements on 22,283 genes. The

existing catalog for this dataset includes 319 cytogenetic gene sets, 24 for each

of the 24 human chromosomes, and 295 associated with cytogenetic bands. For

our analysis, we calculated two-sample t-statistics and normalized.

We considered two variants of our proposed CAR testing approach, both of

which use the 319 gene sets to define the neighborhoods, but with one model

including the isolated points and the other excluding isolated points, allowing

for a conventional CAR model. With the isolated cases included, we set d = 1

in (2.4); d = 0 when they were excluded. We took α = 1 in the prior on p.

The MCMC algorithm, identical under both models, used a burn in of 25,000

iterations, followed by 10,000 sampling iterations, of which every fifth draw was

retained. The posterior inclusion probabilities were calculated using (2.5) and

thresholded at 0.99 to identify differentially expressed genes.

The estimated posterior inclusion probabilities under both models were quite

similar, though not exactly the same. This can be seen in Supplementary Figure

12, which plots the posterior inclusion probabilities versus the test statistics for

both models. The differences result in a couple of disagreements on the selection

of differentially expressed genes, listed in Table 5.

The disagreements between the two approaches can partly be explained by

the reliability of the estimates themselves. Table 5 lists the effective sample sizes

(ESS) of the MCMC draws of the signals for each identified gene, µ
(1)
j , . . . , µ

(2,000)
j

(Kass et al. (1998)), which approximate of the number of independent pieces

of information about a parameter produced by an MCMC algorithm. Lower

numbers reflect higher autocorrelation in the chain and hence slower convergence.

The differences between the two approaches were substantial. With a couple of

exceptions, the retained values from the Markov chain under the conventional

CAR were more highly correlated than in the gCAR, thus reducing the amount

of available information about these parameters. On the other hand, including

the isolated cases in this instance generally results in the Markov chain samples

being almost as good as an i.i.d. sample from the posterior.

Table 5 also indicates the pathway membership for each case. There are

six gene sets in which the identified individual genes appear, and the clustering

of genes along the X and Y chromosome is apparent. If one were to use the

approach of simply declaring as enriched the pathways including the individual
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Table 5. Genes selected by the generalized CAR model including isolated cases (gCAR)
or conventional CAR model with isolated cases excluded (CAR). The × indicates se-
lection under the gCAR with isolated points; the • indicates selection when ignoring

isolated points. Also listed are the effective sample sizes (ESS) of µ
(1)
j , . . . , µ

(2000)
j .

ESS Pathway
Gene gCAR CAR chrX chrXq13 chrXp22 chrY chrYp11 chrYq11

201028_s_at 1,855.221 1,164.651 • • • •
201909_at 2,000.000 1,012.763 ×• ×•
204409_s_at 2,000.000 557.216 ×• ×•
204410_at 2,106.911 1,221.072 ×• ×•
205000_at 2,000.000 694.079 ×• ×•
205001_s_at 2,000.000 2,000.000 ×• ×•
206624_at 2,000.000 1,561.820 ×• ×•
206700_s_at 2,148.696 615.271 ×• ×•
214131_at 1,594.909 1,873.845 • •
214218_s_at 2,000.000 85.484 ×• ×•
214983_at 1,778.600 2,000.000 •
221728_x_at 1,936.754 131.264 ×• ×•
203974_at 2,000.000 × (Isolated case)

differentially expressed genes, our results would agree closely with those found

in the GSEA. In particular, the GSEA identified the Y chromosome (chrY) and

two Y bands with at least 15 genes (chrYp11, chrYq11) as being associated

with higher expression levels in males. Two of the genes selected by both models

appear in the chrX and chrXq13 gene sets. These genes are associated with

the set of X chromosome inactivation genes, which is expected to be enriched

in females. Note that the gCAR identifies an isolated gene (203974_at) that

does not appear in any of the predefined gene sets. This gene would have been

missed entirely if we used a conventional CAR structure, since it would have

been discarded from the analysis. We notice also a particular gene selected only

by the conventional CAR that appears in both the X and Y chromosome. This

curious case could be a false positive, though, as the slower MCMC convergence

under the conventional CAR model makes the posterior inference less reliable

than its gCAR counterpart.

The applications presented here illustrate two different approaches to defin-

ing neighborhoods across which information may be shared when searching for

non-null cases. While the results are sensitive to the choice of hyperparameters

as well as the threshold, it is apparent that “good” choices can lead to desirable

operating characteristics. Applying our proposed approach to these data yields

results consistent with past analyses. These results demonstrate our model’s
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ability to harness shared information between cases without sacrificing the possi-

bility of identifying independent cases, something that would not be possible un-

der the conventional CAR assumption. In this analysis, we found that including

the isolated cases substantially reduced the autocorrelation, resulting in quicker

convergence and much greater sampling efficiency than is obtained from the con-

ventional CAR. This is an important consideration when performing MCMC in

a large-scale setting, where the computational burden limits the feasible number

of iterations. Our results suggest that there could be a positive effect on the

sampling efficiency of an MCMC algorithm by including isolated, independent

cases in our generalized CAR structure. This is possibly an interesting topic for

future research that we do not pursue here.

5. Discussion

We present a unified approach to correlated Bayesian testing whereby iso-

lated cases and neighboring cases can be analyzed simultaneously. This allows

for improved estimation of the signal strengths, the possibility of identifying iso-

lated cases, and sharper posterior inferences. We suggest simple diagnostics that

can aid a researcher in determining the most appropriate neighborhood structure

when choosing among plausible models. When little prior information is available

concerning correlation structure, we note that there exist in the literature pro-

posed techniques for discovering structure such as sparse factor modeling (West

(2003)) and independent components analysis (Comon (1994)). We demonstrate

the robustness of our approach to model misspecification by applying it to sim-

ulated data with a complex correlation structure in which the assumptions are

partially incorrect. It performs competitively with well-established procedures.

The results presented here are seen to be sensitive to the choice of the shape

parameter in the prior for the mixing proportion, p, in our proposed model. This

is in part because large α values result in both prior and posterior concentration

of p about large values. Large values of p mean that the Gibbs sampler tends to

visit sparser models more often, and thus parameters that only appear in non-

null cases are updated less frequently. Certain applications necessitate the use

of a prior that enforces known sparsity (e.g., Carvalho et al. (2008)). While the

choice of shape hyperparameter does have a considerable effect on subsequent

inferences, we demonstrate how finding a good value leads to desirable operating

characteristics. In working with our model, we found that an acceptable value of

the shape parameter seems to depend on the strength of the correlation across



1148 D. ANDREW BROWN, GAURI S. DATTA AND NICOLE A. LAZAR

neighboring observations. The best way to choose this value or otherwise tune

the prior to approximately match the true a priori non-null probability in the

data is still an open problem worthy of further investigation.

A related point is the thresholding of the location-specific a posteriori in-

clusion probabilities. We use in this paper an informal 0.95 decision rule for

selecting non-null cases. Decision rules in the Bayesian testing paradigm have

been proposed through average risk optimization and use of the so-called Bayes

false discovery rate (bFDR) (e.g., Efron and Tibshirani (2002); Tadesse et al.

(2005); Bogdan, Ghosh and Tokdar (2008)). Most results concerning the rela-

tionship between bFDR and frequentist error measures are based on assumed

independence in the data, which we are not considering. Performance also is

determined in part by specification of the prior probabilities of the hypotheses.

The approach of Scott and Berger (2006) on which our model is based enjoys the

virtue of inducing an automatic multiplicity adjustment, even in the correlated

case (Brown et al. (2014)). While expression (2.5) allows our calculations to

viewed as a fully Bayesian treatment of local false discovery rates (Efron (2010,

Chap.5)), much work remains to be done on establishing optimal decision rules

under dependence.

This paper provides a glimpse at the possibility of facilitating more reliable

inference by capturing (or at least approximating) the true dependence struc-

tures that are inherent in modern high-dimensional data. While this issue has

garnered more interest in the recent literature (e.g., Smith and Fahrmeir (2007);

Li and Zhang (2010); Stingo et al. (2011); Lee et al. (2014); Zhang et al. (2014);

Zhao, Kang and Yu (2014)) relatively limited work has been done on modeling

nontrivial dependence in Bayesian models for signal detection, particularly in

the high-dimensional setting where classical multiple testing approaches are no

longer appropriate. We propose using a Markov random field in the continuous

component of the spike-and-slab mixture. An avenue of future work could be the

exploration of other dependence structures. Work has been done on modeling

complex measures of distance and covariance structures (e.g., Dryden, Koloy-

denko and Zhou (2009)), but there is a need for much further research toward

building a class of multiple testing models capable of dealing with a wide variety

of dependence types.

Supplementary Materials

The online Supplementary Material for this paper contains the full condi-
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tional distributions derived from Model (2.4), additional facts including details

of simplifications used in the proof of posterior propriety in the Appendix, and

Supplementary Figures discussed in Sections 3 and 4.
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Appendix. Proof of Posterior Propriety of the Proposed Model

Let Θ = (µT , σ2, τ2, ρ)T and let f(y,Θ,γ, p) be the joint density of the data

and the parameters. For any γ ∈ {0, 1}J ,

f(y,Θ,γ, p) = (2πσ2)−J/2 exp

− 1

2σ2

J∑
j=1

(yj − γjµj)
2


×(2π)−J/2|τ2(D∗

w − ρW)−1|−1/2 exp

(
− 1

2τ2
µT (D∗

w − ρW)µ

)
×(σ2 + τ2)−2πρ(ρ)αp

J−
∑

j γj+α−1(1− p)
∑

j γj

≡ f(y,Θ | γ)π(γ,p)(γ, p),

where π(γ,p)(γ, p) = αpJ−
∑

j γj+α−1(1− p)
∑

j γj . Hence,∫
p

∫
Θ
f(y,Θ,γ, p)dΘdp ∝

∫
Θ
f(y,Θ | γ)dΘ,

since
∫ 1
0 pJ−

∑
j γj+α−1(1− p)

∑
j γjdp < ∞. So, it suffices to establish that∫

ρ

∫
τ2

∫
σ2

∫
µ
f(y,µ, σ2, τ2, ρ | γ)dµdσ2dτ2dρ < ∞, ∀γ ∈ {0, 1}J .

Write f1(y | µ) := f(y | µ,γ = 1) to simplify notation. We have that

f1(y | µ) =
J∏

j=1

f(yj | µj , γj = 1) =

J∏
j=1

N(yj | µj , σ
2).

Since (D∗
w − ρW) is positive definite, µ ∼ NJ(0, τ2(D∗

w − ρW)−1). Thus, the

marginal density of y is that of a NJ(0, σ2I + τ2(D∗
w − ρW)−1) distribution.

Integration over µ yields

f1(y, σ
2, τ2, ρ) = π

(τ2,σ2)
(τ2, σ2)πρ(ρ)NJ(y | 0, σ2I+ τ2(D∗

2 − ρW)−1).
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Take η := τ2/σ2 and integrate over σ2 using the inverse gamma integral to obtain

f1(y, η, ρ) ∝ πρ(ρ)(1 + η)−2|I+ η(D∗
w − ρW)−1|−1/2

×
∫ ∞

0
(σ2)−(J/2)−1 exp

(
− 1

2σ2
yT (I+ η(D∗

w − ρW)−1)−1y

)
dσ2

∝ πρ(ρ)(1 + η)−2 |I+ η(D∗
w − ρW)−1|−1/2

(yT (I+ η(D∗
w − ρW)−1)−1y)J/2

.

But yT (I+η(D∗
w−ρW)−1)−1y = yT (D∗

w)
1/2(D∗

w+η(I−ρW∗)−1)−1(D∗
w)

1/2y =

xT (D∗
w+η(I−ρW∗)−1)−1x, where W∗=(D∗

w)
−1/2W(D∗

w)
−1/2 and x=(D∗

w)
1/2y.

Let w
(J)

= max1≤j≤J wj . Then, after substantial simplification (see Supplemen-

tary Material), it can be shown that, for all ρ ∈ (ν−1
1 , ν−1

J ),

(xT ((w
(J)

+ d)I+ η(I− ρW∗)−1)−1x)−J/2 ≤ k′(w
(J)

+ d+ η)J/2, (A.1)

where 0 < k′ < ∞ is constant.

Similarly, after substantial simplification (see Supplementary Material), we

can show that

|I+ η(D∗
w − ρW∗)−1|−1/2 ≤

k′
∏J

j=1max{(1− ρνj)
1/2, 1}

(w
(1)

+ d+ η)J/2
, (A.2)

establishing that

f(y, η, ρ) ≤ C(w
(J)

+ d+ η)J/2

(∏J
j=1max{(1− ρνj)

1/2, 1}
(w

(1)
+ d+ η)J/2

)
(1 + η)−2πρ(ρ)

(A.3)

where 0 < C < ∞. Also,∫ ∞

0

(
w

(J)
+ d+ η

)J/2 (
w

(1)
+ d+ η

)−J/2
(1 + η)−2dη < ∞.

It follows that
∫ ν−1

J

ν−1
1

∫∞
0 f1(y, η, ρ)dηdρ < ∞, showing that

∫
Θ f1(y,Θ)dΘ < ∞.

Now consider the case |{γj : γj = 1}| = J1 < J , where | · | denotes car-

dinality. Let S1 = {j : γj = 1} ⊊ {1, . . . , J}, y1 = {yj : j ∈ S1}, and

y0 = {yj : j ∈ Sc
1} so that we may partition y as y = (yT

0 ,y
T
1 )

T . Then∫
σ2

∫
τ2

∫
ρ

∫
µ

∫
y1

f(y0,y1, τ
2, σ2, ρ,µ | γ∗)dy1dµdρdτ

2dσ2 is proportional to∫ ∞

0
(σ2)−(J−J1)/2 exp

− 1

2σ2

∑
j∈Sc

1

y2j

∫ ∞

0
(σ2 + τ2)−2dτ2dσ2 < ∞, ∀y0 (a.e.).

The proof is completed by considering the case γj = 0, for all j. The pre-

ceding argument still applies, though, with S1 = ∅ and J1 = 0. The result is

therefore established.
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