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Abstract: The nested error regression model is a useful tool for analyzing clustered

(grouped) data, especially so in small area estimation. The classical nested error

regression model assumes normality of random effects and error terms, and ho-

moscedastic variances. These assumptions are often violated in applications and

more flexible models are required. This article proposes a nested error regression

model with heteroscedastic variances, where the normality for the underlying dis-

tributions is not assumed. We propose the structure of heteroscedastic variances by

using some specified variance functions and some covariates with unknown param-

eters. Under this setting, we construct moment-type estimators of model param-

eters and some asymptotic properties including asymptotic biases and variances

are derived. For predicting linear quantities, including random effects, we suggest

the empirical best linear unbiased predictors, and the second-order unbiased es-

timators of mean squared errors are derived in closed form. We investigate the

proposed method with simulation and empirical studies.

Key words and phrases: Empirical best linear unbiased predictor, heteroscedas-

tic variance, mean squared error, nested error regression, small area estimation,

variance function.

1. Introduction

Linear mixed models and the model-based estimators including empirical

Bayes (EB) estimators or empirical best linear unbiased predictors (EBLUP) have

been studied quite extensively in the literature. Of them, small area estimation

(SAE) is an important application, and methods for SAE have received much

attention in recent years due to growing demand for reliable small area estimates.

For a good review on this topic, see Ghosh and Rao (1994); Rao and Molina

(2015); Datta and Ghosh (2012); Pfeffermann (2014). The linear mixed models

used for SAE are the Fay-Herriot models suggested by Fay and Herriot (1979) for

area-level data and the nested error regression (NER) models given in Battese,

Harter and Fuller (1988) for unit-level data. Especially, the NER model has been

used in not only SAE but also biological experiments and econometric analysis
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In the NER model, a cluster-specific variation is added to explain the correlation

among observations within clusters besides the noise, which allow the analysis

to ‘borrow strength’ from other clusters. The resulting estimators, such as EB

or EBLUP, for small-cluster means or subject-specific values provide reliable

estimates with higher precisions than direct estimates like sample means.

In the NER model with m small-clusters, let (yi1,xi1), . . . , (yini
,xini

) be ni
individual observations from the i-th cluster for i = 1, . . . ,m, where xij is a p-

dimensional known vector of covariates. The NER model proposed by Battese,

Harter and Fuller (1988) is given by

yij = x
′
ijβ + vi + εij , i = 1, . . . ,m, j = 1, . . . , ni,

where vi and εij denote random effect and samping error, respectively, and mu-

tually independently with vi ∼ N(0, τ2) and εij ∼ N(0, σ2). The mean of yij
is x′

ijβ for regression coefficients β, and the variance of yij is decomposed as

Var(yij) = τ2 + σ2, the same for all the clusters. Jiang and Nguyen (2012) illus-

trated that the within-cluster sample variances change dramatically from cluster

to cluster for the data given in Battese, Harter and Fuller (1988);they proposed

the heteroscedastic nested error regression (HNER) model in which Var(yij) is

proportional to σ2i , Var(yij) = (λ + 1)σ2i . This is equivalent to the assumption

that Var(vi) = λσ2i and Var(εij) = σ2i . Under this setup, Jiang and Nguyen

(2012) assumed normality for vi and εij , and showed that the maximum like-

lihood (ML) estimators of β and λ are consistent for large m, which implies

that the resulting EB estimator is asymptotically equivalent to the Bayes esti-

mator. Thorough simulation studies, Jiang and Nguyen (2012) found that that

the EBLUP from HNER model can improve the prediction accuracy over that

from NER model when the data is generated from HNER model. However, there

is no consistent estimator for the heteroscedastic variance σ2i because of finiteness

of ni, and the mean squared error (MSE) of the EBLUP cannot be estimated

consistently since it depends on σ2i . To fix the inconsistent estimation of σ2i ,

Kubokawa et al. (2016) proposed the hierarchical model such that the σ2i ’s are

random variables and the σ−2
i have a gamma distribution. The same dispersion

structure was used in Maiti, Ren and Sinha (2014) who applied this hierarchical

structure to the Fay-Herriot model with statistics for estimating σ2i . Kubokawa et

al. (2016) proposed the ML estimators of model parameters, including the shape

and scale parameters in the dispersion distribution of σ2i . They also showed the

consistency of the model parameters and constructed the second-order unbiased

mean squared errors of MSE by using the parametric bootstrap.
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While these two HNER models are useful for analyzing unit-level data with

heteroscedastic variances, the serious drawback is that both require the normality

assumption for random effects and error terms, which are not necessary satisfied

in applications. We address the issue of relaxing assumptions of classical normal

NER models in two directions: heteroscedasticity of variances and non-normality

of underlying distributions.

In data analysis, one often encounters situations in which the sampling vari-

ance Var(εij) is affected by the covariate xij . In such a case, the variance function

is a useful tool for describing its relationship. Variance function estimation has

been studied in the literature in the framework of heteroscedastic nonparamet-

ric regression, see Cook and Weisberg (1983); Hall and Carroll (1989); Muller

and Stadtmuller (1987, 1993) and Ruppert et al. (1997). We propose the use of

the technique to introduce heteroscedastic variances into the NER model with-

out assuming normality of underlying distributions. The variance structure we

consider is Var(yij) = τ2 + σ2ij , the sampling error εij has heteroscedastic vari-

ance Var(εij) = σ2ij . We suggest that the variance function model be given by

σ2ij = σ2(z′ijγ). In terms of modeling the heteroscedastic variances with covari-

ates, the generalized linear mixed models (Jiang (2006)) are also useful tools.

The small area models using generalized linear mixed models are investigated in

Ghosh et al. (1998), but they require strong parametric assumptions compared

to the heteroscedastic model without assuming underlying distributions.

We propose flexible and tractable HNER models without assuming normality

for either vi nor εij . The advantage of the proposed model is that the MSE of the

EB or EBLUP and its unbiased estimator are derived analytically in closed forms

up to second-order without assuming normality for vi and εij . The nonparametric

approach to SAE has been studied by Jiang, Lahiri and Wan (2002); Hall and

Maiti (2006); Lohr and Rao (2009) and others. Most estimators of the MSE have

been given by such numerical methods as the Jackknife and the bootstrap, except

for Lahiri and Rao (1995) who provided an analytical second-order unbiased

estimator of the MSE in the Fay-Heriot model. Hall and Maiti (2006) developed

a moment matching bootstrap method for nonparametric estimation of MSE in

nested error regression models. The suggested method is convenient but brings a

computational burden. We derive a closed expression for a second-order unbiased

estimator of the MSE using second-order biases and variances of estimators of

the model parameters. It can be regarded as a generalization of the robust MSE

estimator given in Lahiri and Rao (1995).

The paper is organized as follows: A setup of the proposed HNER model
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and estimation strategy with asymptotic properties is given in Section 2. In Sec-

tion 3, we obtain the EBLUP and the second-order approximation of the MSE.

Further, we provide second-order unbiased estimators of the MSE by calcula-

tion. In Section 4, we investigate the performance of the proposed procedures

through simulation and empirical studies. Proofs are given in the supplementary

materials.

2. HNER Models with Variance Functions

2.1. Model settings

Suppose there are m small clusters, and let (yi1,xi1), . . . , (yini
,xini

) be the

pairs of ni observations from the i-th cluster, where xij is a p-dimensional known

vector of covariates. We consider the heteroscedastic nested error regression

model

yij = x
′
ijβ + vi + εij , j = 1, . . . , ni, i = 1, . . . ,m, (2.1)

where β is a p-dimensional unknown vector of regression coefficients, and vi and

εij are mutually independent random variables with mean zero and variances

Var(vi) = τ2 and Var(εij) = σ2ij , denoted by

vi ∼ (0, τ2) and εij ∼ (0, σ2ij). (2.2)

No specific distributions are assumed for vi and εij . It is assumed that the

heteroscedastic variance σ2ij of εij is given by

σ2ij = σ2(z′ijγ), i = 1, . . . ,m, (2.3)

where zij is a q-dimensional known vector given for each cluster, and γ is a

q-dimensional unknown vector. The variance function σ2(·) is a known (user

specified) function whose range is nonnegative. Some examples are given below.

The model parameters are β, τ2 and γ, the total number of the model parameters

is p+ q + 1.

Let yi = (yi1, . . . , yini
)′, Xi = (xi1, . . . ,xini

)′ and ϵi = (εi1, . . . , εini
)′. Then

(2.1) is expressed in a vector form as

yi =Xiβ + vi1ni
+ ϵi, i = 1, . . . ,m,

where 1n is an n × 1 vector with all elements equal to one, and the covariance

matrix of ϵi is Σi = Var(yi) = τ2Jni
+ W i, for Jni

= 1ni
1′ni

and W i =

diag(σ2i1, . . . , σ
2
ini

). The inverse of Σi is expressed as
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Σ−1
i =W−1

i

(
Ini

−
τ2Jni

W−1
i

1 + τ2
∑ni

j=1 σ
−2
ij

)
,

whereW−1
i = diag(σ−2

i1 , . . . , σ
−2
ini

). Further, let y = (y′1, . . . ,y
′
m)′,X = (X ′

1, . . . ,

X ′
m)′, ϵ = (ϵ′1, . . . , ϵ

′
m)′ and v = (v11

′
n1
, . . . , vm1′nm

)′. Then (2.1) is written as

y =Xβ + v + ϵ, where Var(y) = Σ = block diag(Σ1, . . . ,Σm). Three examples

of the variance function in (2.3) are as follows.

(a) In the case that the dispersion of the sampling error is proportional to the

mean, it is reasonable to put zij = x(s)ij and σ2(x′
(s)ijγ) = (x′

(s)ijγ)
2 for a

sub-vector x(s)ij of the covariate xij . For identifiability of γ, we restrict γ1 > 0.

(b) Consider the case that m clusters are decomposed into q homogeneous groups

S1, . . . , Sq with {1, . . . ,m} = S1 ∪ . . . ∪ Sq. Then, we put

zij =
(
1{i∈S1}, . . . , 1{i∈Sq}

)′
,

which implies that

σ2ij = γ2t for i ∈ St.

Note that Var(yij) = τ2 + γ2t for i ∈ St. Thus, the models assumes that the

m clusters are divided into known q groups with their variance are equal over

the same groups. Jiang and Nguyen (2012) used a similar setting and argued

that the unbiased estimator of the heteroscedastic variance is consistent when

|Sk| → ∞, k = 1, . . . , q as m→ ∞, where |Sk| denotes the number of elements in

Sk.

(c) Log linear functions of variance were treated in Cook and Weisberg (1983)

and others. That is, log σ2ij is a linear function, and σ2ij is written as σ2(z′ijγ) =

exp(z′ijγ). Similarly to (a), we put zij = x(s)ij .

For (a) and (b), we have σ2(x) = x2, while (c) corresponds to log{σ2(x)} = x.

In simulation and empirical studies in Section 4, we use the log-linear variance

model.

2.2. Estimation

We here provide estimators of β, τ2 and γ. When values of γ and τ2 are

given, the vector β of regression coefficients is estimated by the generalized least

squares (GLS) estimator

β̃ = β̃(τ2,γ) = (X ′Σ−1X)−1X ′Σ−1y =

(
m∑
i=1

X ′
iΣ

−1
i Xi

)−1 m∑
i=1

X ′
iΣ

−1
i yi.

(2.4)
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As γ and τ2 are unknown, τ̂2 and γ̂ are used for τ2 and γ to get β̂ = β̃(τ̂2, γ̂).

For estimation of τ2, we use the second moment of the yij ’s. From (2.1), it

is seen that

E
[
(yij − x′

ijβ)
2
]
= τ2 + σ2(z′ijγ). (2.5)

Based on the ordinary least squares (OLS) estimator β̂OLS = (X ′X)−1X ′y, a

moment estimator of τ2 is given by

τ̂2 =
1

N

m∑
i=1

ni∑
j=1

{
(yij − x′

ijβ̂OLS)
2 − σ2(z′ijγ)

}
, (2.6)

substituting γ̂ into γ, where N =
∑m

i=1 ni.

For estimation of γ, we consider the within difference in each cluster. Let ȳi
be the sample mean in the i-th cluster. For ε̄i = n−1

i

∑ni

j=1 εij ,

yij − ȳi = (xij − x̄i)
′β + (εij − ε̄i),

which does not include the term vi. Then

E
[{
yij − ȳi − (xij − x̄i)

′β
}2]

=
(
1− 2n−1

i

)
σ2(z′ijγ) + n−2

i

ni∑
h=1

σ2(z′ihγ),

which motivates us to estimate γ by solving the estimating equation

1

N

m∑
i=1

ni∑
j=1

[
{yij − ȳi − (xij − x̄i)

′β̂OLS}2

− (1− 2n−1
i )σ2(z′ijγ)− n−2

i

ni∑
h=1

σ2(z′ihγ)

]
zij = 0,

which is equivalent to

1

N

m∑
i=1

ni∑
j=1

[
{yij − ȳi − (xij − x̄i)

′β̂OLS}2zij

− σ2(z′ijγ)(zij − 2n−1
i zij + n−1

i z̄i)

]
= 0, (2.7)

where z̄i = n−1
i

∑ni

j=1 zij . In the homoscedastic case with σ2(z′ijγ) = δ2, the

estimators of δ2 and τ2 reduce to the estimators identical to the Prasad-Rao

estimators (Prasad and Rao (1990)), up to a constant factor.

The function given as the left side of (2.7) does not depend on β and τ2

and the estimator of τ2 does not depend on β but on γ. This suggests a simple

algorithm for calculating the estimates: obtain γ̂ of γ by solving (2.7), then get

the estimate τ̂2 from (2.6) with γ = γ̂. Finally we have the GLS estimate β̂ by
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substituting γ̂ and τ̂2 in (2.4).

2.3. Large sample properties

In this section, we provide large sample properties of our estimators when

the number of clusters, m, goes to infinity, but the ni’s are still bounded. We

need the following conditions under m→ ∞.

(A1) There exist n and n such that n ≤ ni ≤ n for i = 1, . . . ,m. The dimensions p

and q are bounded. The number of clusters with one observation is bounded.

(A2) The variance function σ2(·) is twice differentiable with derivatives (σ2)(1)(·)
and (σ2)(2)(·).

(A3) The following matrices converge to non-singular matrices:

m−1
m∑
i=1

ni∑
j=1

zijz
′
ij , m−1

m∑
i=1

ni∑
j=1

(σ2)(a1)(z′ijγ)zijz
′
ij , m−1X ′Σa2X

for a1 = 1, 2 and a2 = −1, 0, 1.

(A4) E[|vi|8+c] <∞ and E[|εij |8+c] <∞ for 0 < c < 1.

(A5) For all i and j, there exist 0 < c1, c1 < ∞ and values c2, c2 such that

c1 < σ2(z′ijγ) < c1 and c2 < (σ2)(k)(z′ijγ) < c2 with k = 1, 2 in the

neighborhood of the true values.

Conditions (A1) and (A3) are the standard assumptions in small area estimation.

Condition (A2) is non-restrictive, and the typical variance functions σ2(x) = x2

and σ2(x) = expx satisfy it. The condition (A4) is used for deriving the second-

order approximation of the MSE of the EBLUP discussed in Section 3, and

it is satisfied by many continuous distributions, including the normal, shifted

gamma, Laplace, and t-distribution with degrees of freedom larger than 9. The

three examples given in Section 2.1 satisfy (A5).

In what follows, we write σ2ij ≡ σ2(z′ijγ), σ
2
ij(k) ≡ (σ2)(k)(z′ijγ), k = 1, 2,

for simplicity. We use the following notations in the i-th cluster:

u1i =
m

N

ni∑
j=1

{
(yij − x′

ijβ)
2 − σ2ij − τ2

}
, (2.8)

u2i =
m

N

ni∑
j=1

[{
yij − ȳi − (xij − x̄i)

′β
}2
zij − σ2ij(zij − 2n−1

i zij + n−1
i z̄i)

]
,

(2.9)
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with

T 1(γ) =

m∑
k=1

nk∑
h=1

σ2kh(1)zkh,

T 2(γ) =

 m∑
k=1

nk∑
j=1

σ2kh(1)(zkh − 2n−1
k zkh + n−1

k z̄k)z
′
kh

−1

. (2.10)

Here T 1(γ) = O(m) and T 2(γ) = O(m−1) under (A1)-(A5).

Theorem 1. Let θ̂ = (β̂
′
, γ̂ ′, τ̂2)′ be the estimator of θ = (β′,γ ′, τ2)′. Under

(A1)-(A5),

θ̂ − θ =
1

m

m∑
i=1

((ψβ
i )

′, (ψγ
i )

′, ψτ
i )

′ + op(m
−1/2),

where

ψβ
i = m

(
X ′Σ−1X

)−1
XiΣ

−1
i (yi −Xiβ),

ψγ
i = NT 2(γ)u2i, ψ

τ
i = u1i − T 1(γ)

′T 2(γ)u2i.

From Theorem 1, m1/2(θ̂ − θ) is asymptotically normal with mean vector

0 and covariance matrix mΩ, where Ω is a (p + q + 1) × (p + q + 1) matrix

partitioned as

mΩ ≡

 mΩββ mΩβγ mΩβτ

mΩ′
βγ mΩγγ mΩγτ

mΩ′
βτ mΩ′

γτ mΩττ


= lim

m→∞

1

m

m∑
i=1

 E[ψβ
i ψ

β′

i ] E[ψβ
i ψ

γ′

i ] E[ψβ
i ψ

τ
i ]

E[ψγ
i ψ

β′

i ] E[ψγ
i ψ

γ′

i ] E[ψγ
i ψ

τ
i ]

E[ψτ
i ψ

β′

i ] E[ψτ
i ψ

γ′

i ] E[ψτ
i ψ

τ
i ]

 .

One has E[u1i(yij −x′
ijβ)] = 0 and E[u2i(yij −x′

ijβ)] = 0 if the yij are normally

distributed and, in such a case, it follows Ωβγ = 0 and Ωβτ = 0.

The asymptotic covariance matrix mΩ or Ω can be easily estimated. For

example, mΩββ = limm→∞m−1
∑m

i=1E[ψβ
i ψ

β′

i ] can be estimated by

mΩ̂ββ =
1

m

m∑
i=1

ψ̂β
i ψ̂

β′

i ,

where ψ̂β
i is obtained by replacing unknown parameters θ in ψβ

i with estimates

θ̂. One has Ω̂ββ = Ωββ + op(m
−1), from Theorem 1 and Ω = O(m−1).

The proof of the following result is given in the supplementary materials.
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Corollary 1. Under (A1)-(A5), for i = 1, . . . ,m,

E
(
(θ̂ − θ)(θ̂ − θ)′

∣∣∣yi) = Ω+ c(yi)o(m
−1), (2.11)

where c(yi) is a fourth-order function of yi.

Let b
(i)
β (yi), b

(i)
γ (yi) and b

(i)
τ (yi) be the second-order conditional asymptotic

biases defined as

E[β̂ − β|yi] = b
(i)
β (yi) + op(m

−1), E[γ̂ − γ|yi] = b
(i)
γ (yi) + op(m

−1),

E[τ̂2 − τ2|yi] = b(i)τ (yi) + op(m
−1).

Define bβ, bγ and bτ by

bβ =
(
X ′Σ−1X

)−1
{ q∑

s=1

m∑
k=1

X ′
kΣ

−1
k W i(s)Σ

−1
k Xk (Ωβ∗γs

−Ωβγs
)

+

m∑
k=1

X ′
kΣ

−1
k Jnk

Σ−1
k Xk(Ωβ∗τ −Ωβτ )

}
,

bγ = T 2(γ)

[
2

m∑
k=1

col
{
tr
(
EkZkrEkXk

[
V OLSX

′
k − (X ′X)−1X ′

kΣk

])}
r

−
m∑
k=1

nk∑
j=1

zkjσ
2
kj(2)(zkj − 2n−1

k zkj + n−1
k z̄k)

′Ωγγzkj

]
, (2.12)

bτ = − 1

N

m∑
k=1

nk∑
j=1

σ2kj(1)z
′
jkbγ −

2

N

m∑
k=1

tr
{
(X ′X)−1X ′

kΣkXk

}
− 1

2N

m∑
k=1

nk∑
j=1

σ2kj(2)z
′
kjΩγγzkj +

1

N

m∑
k=1

tr
(
X ′

kXkV OLS

)
,

where Ek = Ink
−n−1

k Jnk
, V OLS = (X ′X)−1X ′ΣX(X ′X)−1, Zkr = diag(zk1r,

. . . , zknkr) for r-th element zkjr of zkj , Ωβ∗a for a ∈ {τ, γ1, . . . , γq}, theW i(s) are

defined in the proof of Theorem 2, and col{ar}r denotes a q-dimensional vector

(a1, . . . , aq)
′. Here bβ, bγ , bτ are of order O(m−1).

Theorem 2. Under (A1)-(A5),

b
(i)
β (yi) =

(
X ′Σ−1X

)−1
X ′

iΣ
−1
i (yi −Xiβ) + bβ, b

(i)
γ (yi) = T 2(γ)u2i + bγ ,

b(i)τ (yi) = m−1u1i −m−1T 1(γ)
′T 2(γ)u2i + bτ , (2.13)

where b
(i)
β (yi), b

(i)
γ (yi) and b

(i)
τ (yi) are of order Op(m

−1), and u1i and u2i are

given in (2.8) and (2.9), respectively.

Corollary 2. Under (A1)-(A5), E[θ̂−θ] = (b′β, b
′
γ , bτ )

′+ o(m−1), where bβ, bγ



1110 SHONOSUKE SUGASAWA AND TATSUYA KUBOKAWA

and bτ are given in (2.12).

3. Prediction and Risk Evaluation

3.1. Empirical predictor

We consider the prediction of µi = c′iβ + vi, where ci is a known (user

specified) vector and vi is the random effect in model (2.1). The typical choice

of ci is ci = x̄i which corresponds to the prediction of mean of the i-th cluster.

A predictor µ̃(yi) of µi is evaluated in terms of the MSE E[(µ̃(yi) − µi)
2]. In

the general forms of µ̃(yi), the minimizer (best predictor) of the MSE cannot be

obtain without a distributional assumption for vi and εij . Thus we focus on the

class of linear and unbiased predictors, and the best linear unbiased predictor

(BLUP) of µi in terms of the MSE is given by µ̃i = c′iβ + 1′ni
Σ−1

i (yi −Xiβ).

This can be simplified as

µ̃i = c
′
iβ +

ni∑
j=1

λij
(
yij − x′

ijβ
)
,

where λij = τ2σ−2
ij η

−1
i for ηi = 1 + τ2

∑ni

h=1 σ
−2
ih . In the case of homogeneous

variances, σ2ij = δ2, the BLP reduces to µ̃i = c′iβ + λi (ȳi − x̄′
iβ) with λi =

niτ
2(δ2 + niτ

2)−1 as given in Hall and Maiti (2006). Plugging the estimators

into µ̃i, we get the empirical best linear unbiased predictor (EBLUP)

µ̂i = c
′
iβ̂ +

ni∑
j=1

λ̂ij

(
yij − x′

ijβ̂
)
, λ̂ij = τ̂2σ̂−2

ij η̂
−1
i (3.1)

for η̂−1
i = 1 + τ̂2

∑ni

h=1 σ̂
−2
ih .

3.2. Second-order approximation to MSE

To evaluate the uncertainty of EBLUP given by (3.1), we evaluate MSEi(ϕ) =

E
[
(µ̂i − µi)

2
]
for ϕ = (γ ′, τ2)′. The MSE is decomposed as

MSEi(ϕ) = E
[
(µ̂i − µ̃i + µ̃i − µi)

2
]

= E
[
(µ̃i − µi)

2
]
+ E

[
(µ̂i − µ̃i)

2
]
+ 2E [(µ̂i − µ̃i)(µ̃i − µi)] .

From the expression of µ̃i, we have

µ̃i − µi =

 ni∑
j=1

λij − 1

 vi +

ni∑
j=1

λijεij ,

which leads to
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R1i(ϕ) ≡ E
[
(µ̃i − µi)

2
]
=

 ni∑
j=1

λij − 1

2

τ2 +

ni∑
j=1

λ2ijσ
2
ij = τ2η−1

i . (3.2)

For the second term, using the Taylor series expansion, we have

µ̂i − µ̃i =

(
∂µ̃i
∂θ

)′
(θ̂ − θ) + 1

2
(θ̂ − θ)′

(
∂2µ̃i
∂θ∂θ′

∣∣∣
θ=θ∗

)
(θ̂ − θ), (3.3)

where θ∗ is on the line between θ and θ̂. Calculation shows that

∂µ̃i
∂β

= ci −
ni∑
j=1

λijxij ,
∂µ̃i
∂γ

= η−2
i

ni∑
j=1

σ−2
ij δij(yij − x

′
ijβ),

∂µ̃i
∂τ2

= η−2
i

ni∑
j=1

σ−2
ij (yij − x′

ijβ), (3.4)

where

δij = τ4
ni∑
h=1

σ−4
ih σ

2
ih(1)zih − τ2ηiσ

−2
ij σ

2
ij(1)zij .

Then each element in ∂2µ̃i/∂θ∂θ
′ is a linear function of yi. Hence under (A1)-

(A5), using similar arguments as in Lahiri and Rao (1995), we can show that

E
[
(µ̂i − µ̃i)

2
]
= R2i(ϕ) + o(m−1). (3.5)

The detailed proof is given in the supplementary materials. Here

R2i(ϕ) = η−4
i τ2

 ni∑
j=1

σ−2
ij δij

′

Ωγγ

 ni∑
j=1

σ−2
ij δij

+ η−4
i

ni∑
j=1

σ−2
ij δ

′
ijΩγγδij

+ 2η−3
i

ni∑
j=1

σ−2
ij δ

′
ijΩγτ + η−3

i

ni∑
j=1

σ−2
ij Ωττ

+

ci − ni∑
j=1

λijxij

′

Ωββ

ci − ni∑
j=1

λijxij

 , (3.6)

which is of order O(m−1). All the evaluations of residual terms can be similarly,

and proofs are omitted in what follows.

The cross term E [(µ̂i − µ̃i)(µ̃i − µi)] vanishes under normality for vi and εij
but, in general, it cannot be neglected. Beginning with

µ̃i − µi =

 ni∑
j=1

λij − 1

 vi +

ni∑
j=1

λijεij ≡ wi,

and using (3.3), we obtain



1112 SHONOSUKE SUGASAWA AND TATSUYA KUBOKAWA

E [(µ̂i − µ̃i)(µ̃i − µi)] = E

[(
∂µ̃i
∂θ

)′
(θ̂ − θ)wi

]
+

1

2
E

[
(θ̂ − θ)′

(
∂2µ̃i
∂θ∂θ′

∣∣∣
θ=θ∗

)
(θ̂ − θ)wi

]
.

Using (3.4) and Corollary 1, straightforward calculation shows that

R32i(ϕ) ≡
1

2
E

[
(θ̂ − θ)′

(
∂2µ̃i
∂θ∂θ′

∣∣∣
θ=θ∗

)
(θ̂ − θ)wi

]
= o(m−1),

under (A1)-(A5). From Theorem 2, we obtain

E

[(
∂µ̃i
∂θ

)′
(θ̂ − θ)wi

]
= R31i(ϕ,κ) + o(m−1),

for

R31i(ϕ,κ) = η−2
i

ni∑
j=1

σ−2
ij δ

′
ij

(
m∑
k=1

nk∑
h=1

σ2kh(1)zkhz
′
kh

)−1

M2ij(ϕ,κ)

+m−1η−2
i

ni∑
j=1

σ−2
ij

{
M1ij(ϕ,κ)− T 1(γ)

′T 2(γ)M2ij(ϕ,κ)

}
,

(3.7)

where

M1ij(ϕ,κ) = mN−1τ2η−1
i

{
niτ

2(3− κv) + σ2ij(κε − 3)
}
,

M2ij(ϕ,κ) = mN−1τ2η−1
i n−2

i (ni − 1)2(κε − 3)σ2ijzij ,

and κv, κε are defined as E(v4i ) = κvτ
4 and E(ε4ij) = κεσ

4
ij , respectively with

κ = (κv, κε)
′. From (3.7), it holds that R31i(ϕ,κ) = O(m−1).

Under normality assumption of vi and εij , we have M1ij = 0 and M2ij = 0,

since κ = (3, 3)′. This leads to R31 = 0 and our result is consistent with the

well-known result.

Now, we summarize the result for the second-order approximation of the

MSE.

Theorem 3. Under (A1)-(A5), the second-order approximation of the MSE is

MSEi(ϕ) = R1i(ϕ) +R2i(ϕ) + 2R31i(ϕ,κ) + o(m−1),

where R1i(ϕ), R2i(ϕ) and R31i(ϕ,κ) are given in (3.2), (3.6), and (3.7), respec-

tively, with R1i(ϕ) = O(1), R2i(ϕ) = O(m−1) and R31i(ϕ,κ) = O(m−1).

The approximated MSE given in Theorem 3 depends on unknown parame-

ters, so we derive its second-order unbiased estimator by the analytical means.



HETEROSCEDASTIC NESTED ERROR REGRESSION MODELS 1113

3.3. Analytical estimator of the MSE

From Theorem 3, R2i(ϕ) is O(m−1), so that it can be estimated by the plug-

in estimator R2i(ϕ̂) with second-order accuracy, E[R2i(ϕ̂)] = R2i(ϕ) + o(m−1).

For R31i(ϕ,κ) with order O(m−1), if a consistent estimator κ̂ is available for

κ, this term can be estimated by the plug-in estimator with second-order unbi-

asedness. To this end, we construct a consistent estimator of κ using the fourth

moment of observations. Straightforward calculation shows that

E

 ni∑
j=1

{
yij − ȳi − (xij − x̄i)

′β
}4

= κεn
−4
i (ni − 1)(ni − 2)(n2i − ni − 1)

 ni∑
j=1

σ4ij


+ 3n−3

i (2ni − 3)


 ni∑

j=1

σ2ij

2

−
ni∑
j=1

σ4ij

 ,

whereby we can estimate κε by

κ̂ε =
1

N∗

m∑
i=1

 ni∑
j=1

{
yij − ȳi − (xij − x̄i)

′β̂
}4

−3n−3
i (2ni − 3)


 ni∑

j=1

σ2ij

2

−
ni∑
j=1

σ4ij


 , (3.8)

where N∗ = n−4
i (ni − 1)(ni − 2)(n2i − ni − 1)

∑ni

j=1 σ
4
ij and β̂ is the feasible GLS

estimator of β given in Section 2. For κv,

E
[(
yij − x′

ijβ
)4]

= τ4κv + 6τ2σ2ij + κεσ
4
ij ,

which leads to the estimator of κv given by

κ̂v =
1

Nτ̂4

m∑
i=1

ni∑
j=1

{(
yij − x′

ijβ̂OLS

)4
− 6τ̂2σ̂2ij − κ̂εσ̂

4
ij

}
. (3.9)

From Theorem 1, the estimators given in (3.8) and (3.9) are consistent. Using

them, we can estimate R31i by R31i(ϕ̂, κ̂) with second-order accuracy.

Consider the second-order unbiased estimation of R1i. Here R1i = O(1),

which means that the plug-in estimator R1i(ϕ̂) has the second-order bias with

O(m−1). Thus we need to obtain the second-order bias of the R1i(ϕ̂) and correct

them. By a Taylor series expansion,
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R1i(ϕ̂) = R1i(ϕ) +

(
∂R1i(ϕ)

∂ϕ′

)
(ϕ̂− ϕ)

+
1

2
(ϕ− ϕ)′

(
∂2R1i(ϕ)

∂ϕ∂ϕ′

)
(ϕ̂− ϕ) + op(∥ϕ̂− ϕ∥2).

Then, the second-order bias of R1i(ϕ̂) is expressed as

E[R1i(ϕ̂)]−R1i(ϕ) =

(
∂R1i(ϕ)

∂ϕ′

)
E[ϕ̂− ϕ]

+
1

2
tr

{(
∂2R1i(ϕ)

∂ϕ∂ϕ′

)
E
[
(ϕ̂− ϕ)(ϕ̂− ϕ)′

]}
+ o(m−1)

=

(
∂R1i(ϕ)

∂ϕ′

)
bϕ +

1

2
tr

{(
∂2R1i(ϕ)

∂ϕ∂ϕ′

)
Ωϕ

}
+ o(m−1),

where Ωϕ is the sub-matrix of Ω with respect to ϕ, and bϕ is the second-order

bias of ϕ̂ given in Corollary 2. Straightforward calculation shows that

∂R1i(ϕ)

∂τ2
= η−2

i ,
∂R1i(ϕ)

∂γ
= −τ2η−2

i ηi(1),
∂2R1i(ϕ)

∂τ2∂τ2
= 2τ−2(η−3

i − η−2
i ),

∂2R1i(ϕ)

∂γ∂τ2
= −2η−3

i ηi(1),
∂2R1i(ϕ)

∂γ∂γ ′ = τ2η−3
i (2ηi(1)η

′
i(1) − ηiηi(2)),

where

ηi(1) ≡
∂ηi
∂γ

= −τ2
ni∑
j=1

σ−4
ij σ

2
ij(1)zij ,

ηi(2) ≡
∂2ηi
∂γ∂γ ′ = τ2

ni∑
j=1

(
2σ−2

ij σ
4
ij(1) − σ2ij(2)

)
σ−4
ij zijz

′
ij .

Therefore, we obtain the expression of the second-order bias

Bi(ϕ) =− τ2η−2
i η′i(1)bγ + η−2

i bτ − 2η−3
i η′i(1)Ωγτ + τ−2(η−3

i − η−2
i )Ωττ

+ τ2η−3
i

{
η′i(1)Ωγγηi(1) −

1

2
ηitr

(
ηi(2)Ωγγ

)}
,

(3.10)

with Bi(ϕ) = O(m−1). Noting that Bi(ϕ) can be estimated by Bi(ϕ̂) with

E[Bi(ϕ̂)] = Bi(ϕ) + o(m−1) from Theorem 1, we propose the bias corrected

estimator R̂1i(ϕ̂)
bc = R1i(ϕ̂)−Bi(ϕ̂), with E[R̂1i(ϕ̂)

bc] = R1i(ϕ) + o(m−1).

Theorem 4. Under (A1)-(A5), the second-order unbiased estimator of MSEi is

M̂SEi = R̂1i(ϕ̂)
bc +R2i(ϕ̂) + 2R31i(ϕ̂, κ̂), and E

[
M̂SEi

]
= MSEi + o(m−1).

The proposed estimator of MSE can be easily implemented and presents less

computational burden than the bootstrap. We do not assume normality of vi
and εij in the derivation of this estimator, and thus it is expected to have a
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robustness property.

4. Simulation and Empirical Studies

4.1. Model based simulation

We first compared the performances of EBLUP obtained from the proposed

HNER and variance functions (HNERVF) with several existing models in terms

of simulated mean squared errors (MSE). We considered the conventional nested

error regression (NER) model, heteroscedastic NER model given by Jiang and

Nguyen (2012) referred as JN, and the heteroscedastic NER with random dis-

persions (HNERRD) proposed in Kubokawa et al. (2016). In applying the NER

model, we used the unbiased estimator for variance components given in Prasad

and Rao (1990) to calculate EBLUP. We also considered log-link gamma mixed

(GM) models as competitors from the generalized linear mixed models, as they

also allow heteroscedasticity for the variances as the quadratic function of means.

We used glmer function in lme4 package in ‘R’ to apply the GM model.

We set m = 20 and ni = 8 in all cases, and we computed the simulated MSE

in 10 scenarios denoted by S1, . . . , S10. The simulated MSE for some area-specific

parameter µi was

MSEi =
1

R

R∑
r=1

(µ̂
(r)
i − µ

(r)
i )2, (4.1)

where R = 5, 000 was the number of simulation runs, µ̂
(r)
i the predicted value

from some models and µ
(r)
i the true values in the r-th iteration. In all scenarios,

we generated covariates xij ’s from the uniform distribution on (0, 1), and they

were fixed in simulation runs. From S1 to S3, we considered the heteroscedastic

model with area-level heteroscedastic variances given by

S1 ∼ S3 : yij = β0 + β1xij + vi + εij , vi ∼ (0, τ2), εij ∼ (0, σ2i ), µi = β0 + vi,

where σ2i = exp(0.8 − zi) and (β0, β1, τ) = (1, 0.5, 1.2). We generated zi’s from

the uniform on (−1, 1), and they were fixed in simulation runs. The scenarios

S1, S2 and S3 had both vi and εij are normal, t with 6 degrees of freedom, and

chi-squared with 5 degrees of freedom, respectively, where the t- and chi-squared

distributions were scaled and located to meet the specified means and variances.

For S4, we took the homoscedastic model

S4 : yij = β0 + β1xij + vi + εij , vi ∼ N(0, τ2), εij ∼ N(0, σ2), µi = β0 + vi,

with (β0, β1, τ, σ) = (1, 0.5, 1.2, 1.5). In S5 and S6, we used the heteroscedastic
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model with unit-level heteroscedastic variances,

S5, S6 : yij = β0+β1xij +vi+εij , vi ∼ N(0, τ2), εij ∼ N(0, σ2ij), µi = β0+vi,

where σ2ij = exp(0.8 − zij) in S5 and σ2ij ∼ Γ(5, 5/ exp(0.8 − zij)) in S6. For S7

and S8, we considered the mixed model

S7,S8 : yij = exp(β0 + β1xij + vi)εij , µi = exp(β0 + vi),

with vi ∼ N(0, τ2), εij ∼ Γ(3, 3) and (β0, β1, τ) = (0.5, 1, 0.3) in S7, and vi ∼
t6(0, τ

2), εij ∼ SLN(1, σ2), and (β0, β1, τ, σ) = (1.2, 0.6, 0.4, 0.4) in S8. Here

t6(a, b) denotes the t-distribution with 6 degrees of freedom with mean a and

variance b and SLN(a, b) denotes the scaled log-normal distribution with mean

a and variance b. Hence, S7 corresponds to the gamma mixed model with log-

link function and S8 corresponds to its misspecified version. Finally, S9 to S10

are the mixed models

S9 : yij = (β0+β1xij+vi)
2εij , vi ∼ N(0, τ2), εij ∼ SLN(1, σ2), µi = (β0+vi)

2

with (β0, β1, τ, σ) = (1, 0.6, 1.5, 0.5), and

S10 : yij = {exp(β0 + β1xij) + vi}εij , vi ∼ N(0, τ2), εij ∼ SLN(1, σ2),

µi = exp(β0) + vi,

with (β0, β1, τ, σ) = (1, 0.3, 1.2, 0.5). Both S9 and S10 are heteroscedastic models

in the sense that Var(yij) depends on xij .

Under these scenarios, we computed the simulated MSE values of predictors

from five methods (HNERVF, HNERRD, NER, JN and GM) in each area. Since

one can apply GM only to the data with positive yij ’s, the MSE values of GM

model were calculated from S7 to S10. In Table 1, we show the mean, max,

and min values of MSE over all areas for each model and scenario. In S1 to S3,

HNERVF performs better than the other models, and NER model performs worst

since the true model is heteroscedastic. In S4, NER model performs best among

four models since it is the true model and other HNER models are overfitted.

Here the inefficiency of the prediction of JN is more serious than that of HNERVF

and HNERRD. As in S5 and S6, the heteroscedastic variances were unit-level,

the amount of improvement of HNERVF over other models was greater. The

scenario S7 was a GM model, so that it is reasonable that MSE of GM was

smallest among five models. The scenario S8 is not a GM model, but it is close

to GM model in that it works well compared to the other models. However, once

GM is seriously misspecified as in S9 and S10, GM does not work well because of

its parametric assumptions. From S8 to S10, all models were misspecified, but
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Table 1. Simulated values of MSE for various scenarios and models.

Model S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
HNERVF 0.368 0.370 0.371 0.311 0.280 0.293 0.269 0.619 0.198 0.376
HNERRD 0.383 0.383 0.387 0.310 0.341 0.379 0.285 0.641 0.259 0.369

mean NER 0.398 0.405 0.410 0.307 0.342 0.384 0.375 0.726 0.220 0.384
JN 0.386 0.392 0.396 0.324 0.357 0.392 0.292 0.684 0.318 0.385
GM — — — — — — 0.130 0.451 0.231 0.396
HNERVF 0.598 0.633 0.569 0.340 0.354 0.469 0.342 1.511 0.299 0.435
HNERRD 0.630 0.634 0.603 0.342 0.424 0.523 0.405 1.603 0.415 0.419

max NER 0.642 0.639 0.596 0.339 0.423 0.526 0.518 1.992 0.336 0.439
JN 0.634 0.643 0.618 0.372 0.445 0.545 0.426 1.834 0.532 0.441
GM — — — — — — 0.149 0.970 0.372 0.473
HNERVF 0.138 0.145 0.150 0.272 0.202 0.196 0.205 0.398 0.142 0.297
HNERRD 0.156 0.157 0.166 0.272 0.254 0.255 0.219 0.408 0.142 0.302

min NER 0.173 0.177 0.202 0.269 0.256 0.256 0.286 0.442 0.152 0.305
JN 0.157 0.160 0.166 0.288 0.273 0.256 0.220 0.414 0.168 0.314
GM — — — — — — 0.104 0.335 0.168 0.309

the HNERVF model worked well compared to other models. It is best when it

is the true model, but even if HNERVF is misspecified, it works reasonably well

owing to its flexible structure.

4.2. Finite sample performances of the MSE estimator

We investigated the finite sample performances of the MSE estimators given

in Theorem 4. To this end, consider the data generating process

yij = β0 + β1xij + vi + εij , vi ∼ (0, τ2), εij ∼ (0, exp(γ0 + γ1zij))

with β0 = 1, β1 = 0.8, τ = 1.2, γ0 = 1 and γ1 = −0.4. We divided m = 20

areas into 5 groups (G = 1, . . . , 5), so that each group had 4 areas and the areas

in the same group had the same sample size nG = G + 3. Following Hall and

Maiti (2006), we considered five patterns of distributions of vi and εij : M1: vi
and εij both normally distributed; M2: vi and εij both scaled t-distribution with

degrees of freedom 6; M3: vi and εij both scaled and located χ5 distribution;

M4: vi and εij scaled and located χ5 and −χ5 distributions, respectively, and

M5: vi and εij both logistic distributions. The simulated values of the MSE were

obtained from (4.1) based on R = 10, 000 simulation runs. Based on R = 5, 000

simulation runs, we calculate the relative bias (RB) and coefficient of variation

(CV) of MSE estimators given by
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Table 2. The mean values of percentage relative bias (RB) and coefficient of variation
(CV) of MSE estimator and relative bias of naive MSE estimator (RBN) in each group.

Group Measure M1 M2 M3 M4 M5
RB −8.72 −12.50 −10.86 −11.51 −11.81

G1 CV 17.48 23.60 23.47 23.40 21.24
RBN −12.67 −13.74 −13.10 −13.57 −13.39
RB −7.61 −9.72 −10.58 −10.57 −7.27

G2 CV 17.52 23.24 22.70 23.03 20.31
RBN −10.16 −12.66 −11.48 −11.33 −10.54
RB −7.89 −8.39 −7.65 −8.92 −6.34

G3 CV 19.85 26.05 24.66 25.37 22.94
RBN −9.31 −9.43 −8.70 −9.86 −7.58
RB −6.52 −4.74 −4.96 −5.65 −4.27

G4 CV 22.02 28.37 26.93 27.68 24.98
RBN −10.83 −7.68 −7.98 −6.52 −6.42

RBi =
1

R

R∑
r=1

M̂SE
(r)

i −MSEi

MSEi
, CV2

i =
1

R

R∑
r=1

M̂SE
(r)

i −MSEi

MSEi

2

,

where M̂SE
(r)

i is the MSE estimator in the r-th iteration. In Table 2, we report

mean and median values of RBi and CVi in each group. For comparison, results

for the naive MSE estimator, without any bias correction, are reported in Table 2

as RBN. The naive MSE estimator is the plug-in estimator of the asymptotic MSE

(3.2), obtained by replacing τ2 and γ in (3.2) by τ̂2 and γ̂, respectively. In Table

2, the relative bias is small, less than 10% in many cases. When the underlying

distribution is not normal, the MSE estimator still provides small relative bias

although it has higher coefficient of variation. The naive MSE estimator is more

biased than the analytical MSE estimator in all groups and models, so that the

bias correction in MSE estimator is successful.

4.3. Data application

We applyed the HNERVF model together with HNERRD, NER, JN, and

GM models considered in the simulation study in Section 4.1 to the data that

originates from the posted land price (PLP) data along the Keikyu train line

in 2001. This train line connects the suburbs in the Kanagawa prefecture to

the Tokyo metropolitan area. Those who live in the Kanagawa prefecture take

this line to work or study in Tokyo, so that it is expected that the land price

depends on the distance from Tokyo. The PLP data are available for 52 stations

on the Keikyu train line, and we considered each station as a small area, namely,
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Figure 1. Plot of OLS residuals against distance Dij (Left) and estimated root of MSE
(RMSE) in HNERVF and NER models (Right).

m = 52. For the i-th station, data of ni land spots are available, where ni varies

around four and some areas have only one observation.

For j = 1, . . . , ni, yij denotes the scaled value of the PLP (Yen/10,000) for

the unit meter squares of the j-th spot, Ti is the time to take from the nearby

station i to the Tokyo station around 8:30 in the morning, Dij is the value of

geographical distance from the spot j to the station i, and FARij denotes the

floor-area ratio, or ratio of building volume to lot area of the spot j. The three

covariates FARij , Ti, and Dij are also scaled by 100,10 and 1,000, respectively.

This data set is treated in Kubokawa et al. (2016), where they pointed out that

the heteroscedasticity seem to be appropriate from boxplots of some areas and

the Bartlett test for testing homoscedastic variance. They used the PLP data

with log-transformed observations, namely log yij , but we used yij in this study

since the results are easier to interpret than the results from log yij . In the left

panel of Figure 1, we show the plot of the pairs (Dij , eij), where the eij are the

OLS residuals

eij = yij − (β̂0,OLS + FARij β̂1,OLS + Tiβ̂2,OLS +Dij β̂3,OLS).

The figure indicates that the residuals are more variable for small Dij than for

large Dij , and the variances are exponentially decreasing with respect to Dij .

Thus we applied the HNERVF model with the exponential variance function
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yij = β0 + FARijβ1 + Tiβ2 +Dijβ3 + vi + εij , (4.2)

where vi ∼ (0, τ2) and εij ∼ (0, exp(γ0+γ1Dij)). To compare the results, we also

applied HNERRD, NER, JN, and GM to the PLP data with the same covari-

ates. In applying the NER model, we regarded it as the submodel of HNERVF

by putting γ1 = 0 and used the same estimating method with HNERVF. The

estimated regression coefficients from the five models are given in Table 3. As the

conditional expectation of the GM model is exp(β0+FARijβ1+Tiβ2+Dijβ3+vi),

while that of other models has the linear form β0+FARijβ1+Tiβ2+Dijβ3+ vi,

the scale of the estimated coefficients of GM is different from those of other mod-

els. However, the signs of estimated coefficients are the same over all models.

The resulting signs are intuitively natural since the PLP is expected to be de-

creasing as the distance between the spot and the nearest station gets large or

the nearest station gets distant from Tokyo station. Moreover, in the HNERVF

model, the estimated value of γ1 is γ̂1 = −1.82, which is consistent with the

observation from the left panel of Figure 1. Using Theorem 1, the asymptotic

standard error of γ̂1 is 0.492, so that γ1 seems significant.

We considered estimating the and price of a spot with floor-area ratio 100%

and distance from 1, 000m from station i, namely µi = β0 + β1 + β2Ti + β3 + vi
under the HNERVF, HNERRD, NER, and JN models, and µi = exp(β0 + β1 +

β2Ti + β3 + vi) under the GM model. In the figure given in the supplementary

materials, we provide the predicted values of µi of each model. From the figure, all

five models provide relatively similar predicted values, and the predicted values

tend to decrease with respect to the area index. This comes from the effect of

Ti, since Ti increase as the area index increases.

We calculated the mean squared errors (MSE) of predictors. In the JN model,

the consistent estimator of MSE cannot be obtained without any knowledge of

grouping of areas (stations), as shown in Jiang and Nguyen (2012). For the GM

model, the second-order unbiased estimator of MSE is hard to obtain. Thus, we

considered the MSE estimator of the HNERVF, HNERRD and NER models. We

used the analytical estimator given in Theorem 4 for HNERVF and NER, and

the parametric bootstrap MSE estimator developed in Kubokawa et al. (2016) for

HNERRD with 1,000 bootstrap replication. We found that the estimated MSE

of the HNERRD model is greater than 700 for all areas, while the estimated MSE

of the HNERVF and NER models were smaller than 20. The estimated value of

shape parameter in dispersion (gamma) distribution in HNERRD was close to 2,

which may inflate the MSE values. The estimated values of the root of the MSE
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Table 3. The estimated regression coefficients in each model.

Model β0 β1 β2 β3
HNERVF 42.31 2.81 −3.56 −0.661
HNERRD 37.72 3.88 −3.24 −0.960
NER 33.35 6.58 −3.18 −0.832
JN 37.01 3.41 −2.59 −3.19
GM 3.63 0.168 −0.122 −0.039

(RMSE) of the HNERVF and NER models are given in the right panel of Figure

1. The estimated RMSE of HNERVF is smaller than that of NER in many areas.

In particular, this is true in 37 areas among 52 areas. Especially, in the latter

areas, the amount of improvement is relatively large.

5. Concluding Remarks

In the context of small-area estimation, homogeneous nested error regression

models have been extensively studied in the literature. However, some data sets

show heteroscedasticity in variances as pointed out in Jiang and Nguyen (2012).

To extend the traditional homogeneous nested error regression models, Jiang and

Nguyen (2012) and Kubokawa et al. (2016) have proposed heteroscedastic nested

error regression models. The drawback of these is the normality assumption re-

quired for the response values. To overcome the problem, we have proposed the

structure of unit-level heteroscedastic variances modeled by some covariates and

unknown parameters, and suggested heteroscedastic nested error regression mod-

els without assuming specific underlying distributions. In terms of the variance

modeling with covariates, the generalized linear mixed models are also popu-

lar tools, but they require somewhat strong parametric assumptions. Therefore,

the HNERVF model has clear benefits in applications. Conversely, a drawback

of HNERVF is probably the structure of heteroscedastic variances specified by

some covariates and unknown parameters, while the heteroscedastic models of

Jiang and Nguyen (2012) and Kubokawa et al. (2016) do not requires such a

specific structure. However, the heteroscedastic variances can be often modeled

by some covariates as in the data application given in Section 4.3.

Supplementary Materials

In the supplementary material, we provide the proofs of Theorem 1, 2, Corol-

lary 1, equation (3.5), the derivation of R31i(ϕ,κ), evaluation of R32i(ϕ), and

the figure showing predicted values in data analysis.
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