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Abstract: In many clinical studies, patients may be asked to report their medication

adherence, presence of side effects, substance use, and hospitalization information

during the study period. However, the exact occurrence time of these recurrent

events may not be available due to privacy protection, recall difficulty, or incom-

plete medical records. Instead, the only available information is whether the events

of interest have occurred during the past period. In this paper, we call these in-

complete recurrent events as repeated current status data. Currently, there are no

valid standard methods for this kind of data. We propose to use the Andersen-Gill

proportional intensity assumption to analyze such data. Specifically, we propose a

maximum sieve likelihood approach for inference and we show that the proposed

estimators for regression coefficients are consistent, asymptotically normal and at-

tain semiparametric efficiency bounds. Simulation studies show that the proposed

approach performs well with small sample sizes. Finally, our method is applied to

study medication adherence in a clinical trial on non-psychotic major depressive

disorder.
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semiparametric efficiency, sieve estimation.

1. Introduction

During many clinical studies, patients may be asked to report their med-

ication adherence, presence of side effects, substance use, and hospitalization

information, which occur repeatedly over time. However, due to privacy issues,

recall difficulty or incomplete survey questionnaires or medical records, the ex-

act times and frequencies of these events may not be observed. Instead, the

only available information is whether such an event has occurred or not in the

period since the most recent visit. One motivating example of our work comes

from studying medication adherence in a Sequenced Treatment Alternatives to

Relieve Depression (STAR*D) study. The primary goal of this study was to

evaluate feasible treatment strategies to improve clinical outcomes for patients
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with treatment-resistant depression. In the study, those patients who failed to

achieve remission or response for current treatments after a specified number of

weeks were encouraged to enter the next treatment level (Gaynes et al. (2008)),

because evidence showed that patients who achieved remission function better

were less prone to relapse than those who only achieved partial improvement

in symptoms (Sinyor, Schaffer and Levitt (2010)). Since some anti-depressant

drugs tend to have strong side effects (Trivedi et al. (2006), Howland (2008)),

many patients chose to leave the study or were likely to miss taking medication

from time to time. Therefore, understanding factors of the medication adherence

was important for evaluating the effectiveness of treatments and trial manage-

ment. However, the exact frequency and the exact event times for medication

non-adherence were not observed due to recall difficulty. Instead, patients were

only asked to report non-adherence since their last medication visit, resulting in

incomplete information which only indicated whether or not they missed taking

prescribed medicine since the most recent visits.

We term these repeated events data with incomplete information as repeated

current status data. They share similarity with traditional current status data in

univariate survival analysis, but the events are repeatedly observed over periods

within the same subject. One unique feature is that the exact frequency of events

is not observed, but only the presence or absence of the event in each time period

is known. Such data pose significant statistical challenges when the goal is to

assess the association between risk factors and the true recurrent events. There

are no valid standard methods to analyze the repeated current status data. One

intuitive method is to treat the observed current status outcomes, i.e., whether

at least one event occurred or not, as a sequence of binary outcomes collected

longitudinally and to apply a generalized linear model or generalized linear mixed

effect model (Liang and Zeger (1986), Liang, Zeger and Albert (1988)). However,

this approach cannot provide an accurate estimate of the risk effects on the

recurrent events of interest and is shown in our numerical studies to lead to

substantial bias and incorrect inference. Alternative approaches for analyzing

incomplete recurrent events data mainly focus on analyzing panel count data

(e.g., Kalbfleisch and Lawlessa (1985), Sun and Kalbfleisch (1995), Sun and Wei

(2000)), where the observed information consists of the total count of events up to

a sequence of given time points. Based on a working model of a non-homogeneous

Poisson process, Wellner and Zhang (2000, 2007) studied the panel count data

without and with covariates based on some pseudo-likelihood functions; Zhu et al.

(2014) analyzed a mixed recurrent-event and panel-count data using maximum
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likelihood estimation procedure with a non-homogeneous Poisson process. These

approaches are not applicable for analyzing the repeated current status where

the total count of recurrent events is indeed not available.

In this paper, we propose an efficient method to analyze repeated current

status data. We assume that recurrent events follow the proportional intensity

model (Andersen and Gill (1982)). For inference, we propose a spline-based

sieve maximum likelihood estimation approach. One significant difference of

our method, as compared to the estimation approach for traditional current

status data or interval censored data (e.g., Huang and Rossini (1997), Cai and

Betensky (2003)), is that we need to account for the dependence among repeated

current status outcomes from the same subject. Proving the invertibility of

the information operator is necessary for establishing asymptotic distributions

and semiparametric efficiency of the proposed estimators, should account for the

distribution of the counting process for the visit time points.

The remainder of this paper is organized as follow. In Section 2, we approxi-

mate the baseline intensity function using a sequence of B-splines, then maximize

the observed likelihood function for inference. The consistency and asymptotic

efficiency of the parameter estimators are established in Section 3. Section 4

shows numerical results from extensive simulation studies and an application of

the proposed method to analyze data from the STAR*D study.

2. Method and Inference Procedure

Let N(t) denote the total number of recurrent events before time t, and

X be the time-independent covariate that relates to N(t). To study the effect

of X on the recurrent events, given the covariate X, N(t) is assumed to be a

non-homogeneous Poisson process with intensity function

λ(t|X) = λ(t) exp(X ′β), (2.1)

where β ∈ Rp is a p-dimensional regression parameter of interest, and λ(t) is an

unspecified baseline hazard function.

Let 0 = Ti0 < Ti1 < · · · < TiKi
be the visit time points for subject i, where

Ki is the total number of observation (or visit) time points for subject i and

TiKi
is the last time point (censoring time) when subject i is lost to follow-up.

As these visit time points might depend on the covariates, we assume that they

are independent of recurrent events given the covariates. For repeated current

status data, we only observe whether any recurrent events have occurred in the

interval (Ti,j−1, Tij ] for j = 1, · · · ,Ki, not the number of events. We observe a
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sequence of indicators ∆ij = I(δNij > 0) with δNij =
∫ Tij

Ti,j−1
dN(s) = N(Tij) −

N(Ti,j−1), j = 1, · · · ,Ki. Thus, the data from n i.i.d subjects consists of Oi =

{Ti1, · · · , TiKi
,∆i1, · · · ,∆iKi

, Xi}, i = 1, · · · , n. Under a Poisson assumption and

intensity (2.1), the observed likelihood function is

Ln(β,Λ) =

n∏
i=1

Ki∏
j=1

[
exp

{
−(Λ(Tij)− Λ(Ti,j−1)) exp(X

′
iβ)

} ]1−∆ij

×
[
1− exp

{
−(Λ(Tij)− Λ(Ti,j−1)) exp(X

′
iβ)

} ]∆ij , (2.2)

where Λ(t) =
∫ t
0 λ(s)ds is the cumulative baseline hazard function. Our goal is

to estimate (β,Λ) by maximizing Ln(β,Λ) over the parameter space Θ = B×A,

where B is a bounded open subset of Rp, and A = {Λ : Λ is a non-decreasing

function over [0, τ ]}, where τ denotes the study duration.

We develop a spline-based sieve maximum likelihood estimation motivated

by the penalized spline method of Cai and Betensky (2003). Specifically, we use

B-spline functions to model the baseline hazard function λ(t): let the set of spline

knots be 0 = t1 = · · · = tl < tl+1 < · · · < tmn+l < tmn+l+1 = · · · = tmn+2l = 1,

where mn is knots number depending on n, and l is the order of B-spline. Let

{Bi(·), i = 1, · · · , kn = mn + l} be the B-spline basis functions corresponding

to these knots (Schumaker (2007)). Then the log-transformed hazard function,

log λ(·), can be approximated by a linear combination of these B-spline functions,

denoted as Bn(t)
′α, where Bn(t) = (B1(t), · · · , Bkn

(t))′ and α = (α1, · · · , αkn
)′ ∈

Rkn . Equivalently, Λ(t) can be approximated by
∫ t
0 exp(Bn(s)

′α) ds, which guar-

antees that the approximation of Λ(t) is both positive and non-decreasing for

t > 0. Under this sieve approximation, the observed log-likelihood function can

be written as

ln(β, α) =

n∑
i=1

Ki∑
j=1

(1−∆ij)
[
−
∫ Tij

Ti,j−1

exp
(
Bn(s)

′α
)
ds · eX′

iβ
]

+ ∆ij log
(
1− exp

{
−
∫ Tij

Ti,j−1

exp
(
Bn(s)

′α
)
ds · eX′

iβ
})

. (2.3)

To prevent unrealistically large values of α’s, we impose some additional bound

on the α’s but allow the bound to increase as the sample size increases. It is then

equivalent to restrict Λ to belong to the space

Sn =
{
Λ̃(·) : Λ̃(t) =

∫ t

0
exp(Bn(s)

′α)ds, t ∈ [0, τ ],

where α ∈ Rkn satisfies max
j=1,··· ,kn

|αj | ≤ Dn

}
,
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where Dn is some pre-specified number increasing with n. Thus, we maximize

logLn(β,Λ) over the space (β,Λ) ∈ B × Sn.

Many optimization algorithms can be implemented for the maximization. In

numerical studies, we use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-

rithm to solve this optimization problem. In our numerical studies, optimization

is usually quick and robust to the choice of initial values.

We denote the maximum likelihood estimate by θ̂n = (β̂n, Λ̂n), where Λ̂n =∫ t
0 exp(Bn(s)

′α̂n)ds and (β̂n, α̂n) is the maximizer of (2.3). In the next section,

we show that
√
n(β̂n−β0) is asymptotically normal with covariance matrix Σ−1,

where β0 is the true parameter. Thus, to make inference for β0, we need to

estimate Σ−1 consistently. Following Huang and Rossini (1997) and Murphy and

van der Vaart (2000), we apply a sieve profile likelihood approach: if pln(β) is

the profile log-likelihood function for β, pln(β) = maxΛ∈Sn
{ln(β,Λ)}, then the

(r, s)th element of Σ can be estimated by

−pln(β̂n + hner − hnes)− pln(β̂n + hner)− pln(β̂n − hnes) + pln(β̂n)

nh2n
,

where er and es are the rth and sth canonical vectors respectively, and hn is

some perturbation constant usually set to be cn−1/2 for some positive constant

c. Using the estimate for Σ, we can construct asymptotic confidence intervals for

β0 and perform Wald’s test for the hypothesis that β0 is zero.

3. Asymptotic Results

We establish asymptotic properties of the sieve maximum likelihood estima-

tors (β̂n, Λ̂n). Since the results depend on the distribution of the observation

time points, we need some notations. Let K be the number of observation points

and Θ = B × A. For any Borel sets B1, B2 in [0, τ ] and B3 in Rp, we define

measures P , ν and µ as

P (B1 ×B2 ×B3) =

∫
B3

∞∑
k=1

P (K = k|X = x)

×
k∑

j=1

P (Tj−1 ∈ B1, Tj ∈ B2|K = k,X = x)dF (x),

ν(B1 ×B3) =

∫
B3

∞∑
k=1

P (K = k|X = x)

k∑
j=1

P (Tj ∈ B1|K = k,X = x)dF (x),

and µ(B1) = ν(B1 ×Rp), where F (·) is the distribution of X on Rp. Hence, the
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measure P corresponds to the joint distribution of a randomly selected observed

intervals and X, ν is the joint distribution of a randomly selected observed time

point and X, and µ is the marginal distribution for a randomly selected obser-

vation time point.

For the asymptotic properties of the proposed estimators, we require some

regularity conditions.

(C.1) The true value β0 in the interior of compact set B. The true baseline

function λ0(t) is strictly positive in [0, τ ] and is rth continuously differentiable in

[0, τ ], for some r > 2.

(C.2) X is uniformly bounded by a positive constant M ; P (K < k0|X) = 1

almost surely for some constant k0, and P (K ≥ 1|X) > 0.

(C.3) The observation time points satisfy P ( min
j=1,··· ,K

(Tj − Tj−1) ≥ t0|X) = 1 for

some t0 > 0 and P (TK = τ |X) > 0. The measure µ is dominated by Lebesgue

measure in [0, τ ] with a positive Radon-Nikodym derivative.

(C.4) If g(t) + X ′β = 0 almost surely for some determination function g and

vector β, then g ≡ 0 and β = 0.

(C.5) The number of knots mn satisfies m
3/2
n /

√
n → 0,

√
n/m2r

n → 0.

(C.6) Dn satisfies Dn → ∞ and Dn/ log n → 0.

Remark. (C.1) is a boundedness and smoothness condition for the true value.

(C.2) and (C.3) require that some subjects have at least two observation time

points and that the observed time intervals have at least the length t0. (C.3) en-

sures that the union of the supports of Tj ’s contains [0, τ ] so that Λ is estimable

on this interval. These conditions usually hold in practice when the follow-up

visits are scheduled in the studies with certain variability. (C.4) is an identifi-

ability condition concerning the linear independence of covariate X. (C.5) and

(C.6) set the constraints on the size of the sieve space in terms of the order of

knot number and the bound of the sieve functions. Particularly, we can choose

mn = na for a ∈ (1/(4r), 1/3) and Dn = log log n.

Let θ0 = (β0,Λ0) be the true parameter, and θ̂n = (β̂n, Λ̂n) be the proposed

estimator.

Theorem 1. Under conditions (C.1) – (C.6),

∥β̂n − β0∥ → 0 a.s., and sup
t∈[0,τ ]

|Λ̂n(t)− Λ0(t)| → 0.

Additionally, d2(θ̂n, θ0) = ∥β̂n−β0∥2+ ∥Λ̂n−Λ0∥2L2(µ)
≤ oP (n

−1/2)+OP (m
−2r
n ),

and n1/2(β̂n − β0)
d→ Nd

(
0,Σ−1

)
, where Σ−1 is the semiparametric efficiency

bound for β0 (Bickel et al. (1993)).
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We conclude therefore that β̂n is an efficient estimator for β0. The proof

mainly follows standard arguments for sieve estimation with the challenge of

handling dependent multivariate observation time points. Apart from what is

need for the traditional current status data (see Huang (1996)), our proof of

efficiency theory relies on the derivation of the efficient score function in the

presence of multivariate observation time points. The details of the proof are

given in the Appendix.

4. Simulation Studies

To assess the behavior of the proposed method with finite sample sizes, we

conducted two simulation studies.

Simulation 1. Two covariates X1 ∼ Bernoulli(0.5, 0, 1) (discrete) and X2 ∼
N(0, 1) (continuous) were used for the intensity function λ(t|X) = λ0(t)

exp(X1β1 +X2β2), where λ0(t) = 0.5 for Case I and λ0(t) = t for Case II. Com-

binations of different β1 and β2 were introduced to test the proposed estimate

method and algorithm. For the time points with t0 = 0.6, for each i, we generated

Ti1 randomly from Unif(t0, 2), then took Ti,j+1 = Tij + t0, j = 0, 1, · · · ,Ki − 1

until TiKi
and Ki satisfied τ − TiKi

< t0, where τ = 4. To calculate the sieve

maximum likelihood estimates, we chose even quantiles of the observation time

points as the knots and the number of the knots, mn, was chosen to be three,

since the differences in the simulation results were small when we varied mn from

2 to 5. We used a sieve space with Dn = C log{log(n)}, and set C = 10 in both

simulations and data analyzes. In the simulation, we took n = 100 and 300 and

repeated each simulation setting 1,000 times. To estimate the asymptotic vari-

ance using profile likelihood approach, we considered hn = cn−1/2 with c = 0.5, 1

and 3.

For most simulated data, the BFGS algorithm converged within 50 iterations

and showed relative robustness for different initial values. Table 1 presents the

simulation results under two cases of cumulative baseline hazard functions and

different settings of β1 and β2 with the proposed method. Column ‘Bias’ de-

notes the average of the bias of the estimates for β1 and β2, ‘SD’ is the empirical

standard deviation of estimates, ‘SE’ stands for the mean of the estimated stan-

dard errors by the profile likelihood method with c = 0.5, 1, 3, and ‘CP’ presents

the coverage proportion of 95% confidence intervals corresponding to each ‘SE’.

Further, we compared the proposed method with a naive approach based on gen-

eralized estimating equations that treated ∆ij ’s as a sequence of binary outcomes
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Table 1. Results of Simulation 1 under different scenarios.

SE CP % GEE Model
Case n True Bias SD c = 0.5 c = 1 c = 3 c = 0.5 c = 1 c = 3 Bias SD SE CP
I 100 β1= 1 0.012 0.160 0.159 0.160 0.166 95.2 95.2 96.0 0.365 0.218 0.223 65.0

β2= 1 0.025 0.099 0.101 0.103 0.113 95.4 95.6 97.2 0.383 0.141 0.141 21.4

β1= 0 0.001 0.167 0.164 0.164 0.165 95.2 95.4 95.6 −0.018 0.223 0.212 94.0
β2= 1 0.018 0.102 0.103 0.105 0.114 95.6 95.6 97.4 0.270 0.142 0.137 52.2

β1=−1 −0.015 0.217 0.199 0.198 0.195 94.2 93.6 92.2 −0.193 0.254 0.242 87.4
β2= 1 0.031 0.118 0.116 0.118 0.125 95.4 95.8 97.2 0.209 0.150 0.144 67.2

300 β1= 1 0.005 0.087 0.090 0.090 0.092 96.6 96.6 97.0 0.360 0.127 0.128 18.8
β2= 1 0.008 0.058 0.056 0.057 0.060 93.2 93.8 95.2 0.376 0.082 0.081 0.0

β1= 0 0.005 0.096 0.093 0.093 0.094 93.6 93.6 93.8 −0.001 0.125 0.122 94.4
β2= 1 0.005 0.058 0.057 0.058 0.061 94.6 94.8 96.2 0.273 0.080 0.079 5.0

β1=−1 0.004 0.110 0.112 0.112 0.111 95.4 95.2 95.0 −0.202 0.135 0.139 70.2
β2= 1 0.000 0.064 0.063 0.064 0.066 94.4 94.4 94.8 0.220 0.082 0.084 26.8

II 100 β1= 1 0.033 0.177 0.170 0.171 0.177 94.8 95.0 96.0 0.575 0.276 0.273 45.0
β2= 1 0.035 0.111 0.119 0.123 0.137 96.4 96.8 98.4 0.557 0.169 0.168 5.8

β1= 0 0.001 0.144 0.141 0.141 0.142 94.4 94.4 94.4 −0.010 0.241 0.224 94.4
β2= 1 0.024 0.100 0.104 0.107 0.118 96.8 97.2 98.6 0.484 0.149 0.149 6.2

β1=−1 −0.021 0.154 0.154 0.154 0.153 94.8 94.4 94.0 −0.387 0.227 0.223 61.0
β2= 1 0.030 0.103 0.103 0.105 0.113 95.4 96.0 97.4 0.390 0.147 0.142 20.4

300 β1= 1 0.016 0.098 0.095 0.095 0.097 92.8 93.2 94.0 0.551 0.167 0.157 5.4
β2= 1 0.010 0.064 0.065 0.066 0.071 95.6 96.8 97.8 0.545 0.098 0.097 0.0

β1= 0 −0.001 0.080 0.080 0.080 0.080 94.6 94.6 94.6 −0.003 0.131 0.129 94.8
β2= 1 0.005 0.059 0.058 0.059 0.065 95.0 95.2 97.4 0.460 0.090 0.085 0.0

β1=−1 −0.005 0.085 0.088 0.087 0.087 95.6 95.6 95.6 −0.373 0.125 0.128 16.4
β2= 1 0.007 0.057 0.057 0.058 0.060 95.2 96.0 97.0 0.376 0.079 0.082 0.0

measured longitudinally, since currently there are no other options for analyzing

such kind of longitudinal data with repeated current status. The results by the

GEE model with independent correlation structure are also reported in Table 1.

From Table 1, we observe that the proposed estimates perform satisfactorily

under both Case I and Case II scenarios in terms of fairly small bias and accu-

rate agreement between the estimated and the empirical standard errors. The

proposed variance estimation method was not sensitive to the choice of tuning

parameter c, although the choice of c = 1 might yield a better coverage. Com-

paring the results of proposed method to that by GEE, we see that treating

repeated current status as longitudinal outcomes can result in severe bias and

incorrect inference in assessing the true association between the covariates and

the recurrent events. Figure 1 displays the estimated curves for Λ(t) under Case

I and Case II baseline hazard functions, respectively. It shows that the estimated

curves by the proposed B-spline method were close to the true curves on average.
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Figure 1. Estimated cumulative baseline hazard functions: the solid lines are the true
ones, dash lines are the estimated ones; (A),(B) correspond to Case I and (C), (D)
correspond to Case II with sample sizes 100 (left) and 300 (right).

Simulation 2. In the second simulation, we used a polynomial function as

the baseline,

λ(t) = 1.225 + 2.627t− 4.708t2 + 2.901t3 − 0.716t4 + 0.06t5, 0 ≤ t ≤ τ,

which corresponds to the cumulative hazard function

Λ(t) = 1.225t+ 2.627
t2

2
− 4.708

t3

3
+ 2.901

t4

4
− 0.716

t5

5
+ 0.01t6.

We generated covariates from two non-symmetric distributions in this simulation,

X1 ∼ Bernoulli (0.6, 0, 1) and X2 ∼ exp(1). What is more, we generated the

visit time points Tijs using a Poisson process with intensity 0.5.

Results are presented in Table 2 and Figure 2. Table 2 shows that the

proposed method still performs well, and consistent with the results in Simulation

1. Figure 2 shows that as the sample size increases, the accuracy of estimated

baseline hazard function is significantly improved.
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Table 2. Results of Simulation 2 under different scenarios.

SE CP % GEE Model
n True Bias SD c = 0.5 c = 1 c = 3 c = 0.5 c = 1 c = 3 Bias SD SE CP
100 β1= 1 0.123 0.347 0.323 0.325 0.337 93.9 94.3 95.3 0.337 0.186 0.298 85.0

β2= 1 0.169 0.337 0.307 0.310 0.331 94.5 94.8 95.8 0.417 0.273 0.270 72.6

β1= 0 −0.012 0.259 0.247 0.247 0.247 94.7 95.0 94.9 0.468 0.266 0.238 49.5
β2= 1 0.100 0.240 0.240 0.243 0.257 95.4 95.6 96.6 0.316 0.168 0.232 78.5

β1=−1 −0.057 0.254 0.238 0.239 0.234 94.4 94.2 93.9 0.494 0.280 0.218 37.6
β2= 1 0.081 0.197 0.194 0.198 0.206 95.1 95.6 96.3 0.256 0.124 0.200 79.9

300 β1= 1 0.029 0.159 0.162 0.162 0.164 95.2 95.4 96.3 0.337 0.140 0.169 50.5
β2= 1 0.033 0.142 0.146 0.147 0.151 96.1 96.2 96.4 0.373 0.166 0.151 28.9

β1= 0 0.004 0.129 0.133 0.133 0.133 95.5 95.6 95.6 0.465 0.232 0.135 4.9
β2= 1 0.025 0.124 0.122 0.122 0.125 94.4 94.5 95.4 0.287 0.102 0.131 42.9

β1=−1 −0.024 0.131 0.130 0.129 0.129 94.8 94.8 94.6 0.504 0.266 0.124 1.7
β2= 1 0.027 0.103 0.101 0.102 0.104 94.6 94.5 95.0 0.228 0.067 0.113 51.0

5. Application to the STAR*D Study

We applied our method to study medication adherence in the Sequenced

Treatment Alternatives to Relieve Depression the Sequenced Treatment Alterna-

tives to Relieve Depression (STAR*D) trial. This trial was a phase-IV multi-site,

multi-stage randomized clinical trial to compare various treatment strategies for

patients with non-psychotic major depressive disorder (Rush et al. (2004)). The

aim of the STAR*D study was to find the best subsequent treatment for subjects

who failed to achieve adequate response to an initial antidepressant treatment

(citalopram, Level 1 treatment). All patients received the Level 1 treatment, and

for those who did not benefit from Level 1 treatment, Level 2 treatments were de-

signed to help determine an appropriate next treatment step. Medications used

in Level 2 treatment included sertraline (Zoloft), bupropion-SR (Wellbutrin), or

venlafaxine-XR (Effexor). These medications were chosen for comparison be-

cause they represent three different classes of medications. Sertraline is an selec-

tive serotonin reuptake inhibitor (SSRI), the same class as the citalopram used in

Level 1. Bupropion belongs to another class of antidepressant medications that

work on different neurotransmitters than SSRIs. Venlafaxine is a dual-action

medication that works on two neurotransmitters simultaneously. The STAR*D

trial enrolled 4,041 outpatients with non-psychotic depression at 23 psychiatric

and 18 primary care sites and obtained 80,820 observations in total. After ex-

cluding the incomplete observations, the final data set for our analysis consisted

of 1,958 patients with 9,150 observations and the maximum follow-up time up to

168 days.
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Figure 2. Estimated baseline hazard functions (left) and cumulative baseline hazard
functions (right) in Simulation 2: the solid lines are the true ones, dash lines are the
estimated ones. The figures in first and second rows correspond to n = 100 and 300.

Our interest is to assess the association between various baseline factors and

the patient’s medication adherence in Level 2 treatment. In the study, medi-

cation adherence is assessed by a categorical variable collected at baseline ap-

proximately, week 2, 4, 6, 9, 12, and 14 after entering the Level 2 treatment.

The variable collecting information on “How often missed medication since the

last visit” takes values in the categories “never”, “rarely”, “sometimes” and so

on. Therefore, the exact incidence of non-adherence is not available but we do

know whether there was any non-adherence during specific follow-up time inter-

vals. Here, ∆ is the indicator of whether the the event of “missing medication” at

least some times has occurred or not during each observational interval. The pro-

portion of missing at least some medication is about 28%. For our analysis, the

baseline covariates are demographic variables including sex, race (white versus

others), and age (range 18 to 75, median 40), impact of your family and friends,

parent history of depression, and a baseline clinician-rated Quick Inventory of
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Figure 3. (A) Bar plot for the visit count number Ki; (B) The histogram of the visit
times with events occurred ∆ = 1 in the corresponding time intervals.

Depressive Symptomatology (QIDS) score ranging from 0 to 26 in the sample

(median 16), a measure of the severity of a patient’s depressive symptoms.

Figure 3 (A) and (B) describe the distributions of the frequencies of follow-

up intervals and the actual follow-up time periods when some non-adherence

has occurred prior to the time, respectively. There is a wide variability in the

follow-up assessment patterns between the patients. For example, 229 patients

have a minimum number of 2 assessments, and most patients (n = 550) have 6

follow ups. Figure 3 (B) suggests that the intensity of the non-adherence events

may be adequately estimated in the time interval [0, 100] since Level 2 baseline,

due to dense observations of occurrences. In addition, the histogram in Figure

3 (B) suggests some sinusoidal pattern of the event intensity that may be well

captured by the B-spline basis expansion of the baseline hazard. The Pearson

correlation coefficients of paired (∆iL, ∆iR)’s in neighboring observation intervals

(like [0,20] and [20,40], [20,40] and [40,60]) are all very small and the p-values of

independence tests corresponding to these intervals are all significantly smaller

than 0.05.
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Table 3. Association between baseline characteristics and medication non-adherence in
the STAR*D study.

Proposed Method GEE Model
Covarates Est. SE P-value Est. SE P-value
Family and Friends Impact 0.059 0.012 0.000 0.068 0.020 0.001
Female −0.096 0.048 0.045 −0.082 0.082 0.318
White −0.379 0.059 0.000 −0.518 0.104 0.000
Age −0.022 0.002 0.000 −0.026 0.003 0.000
Parent History of Depression −0.016 0.053 0.765 −0.037 0.087 0.676
Baseline QIDS −1.132 0.643 0.078 0.382 0.204 0.062

To determine the number of knots and the degree of the B-splines, we con-

sidered mn from 2 to 9 and l between 2 and 3. Using the BIC criterion, we

selected mn = 2 and l = 3. With this choice, the results are reported in Table 3,

where the standard errors are estimated using the profile likelihood approach with

hn = n−1/2. From this table, we conclude that family and friends impact, sex,

white race, and age are significant predictors for medication non-adherence, while

parent history of depression is not significant, and baseline QIDS is marginally

significant. Particularly, the results show that non-whites are more likely to be

non-adherent and males are more likely to miss medication. Interestingly, using

GEE to analyze the sequence of binary outcomes yields insignificant gender effect

and shows that the effect of baseline QIDS to be the opposite sign as the pro-

posed method. Higher QIDS score at the baseline indicates more severe depres-

sive symptoms, and a sicker patient is expected to be more adherent. Therefore,

the coefficient of this variable on medication non-adherence is expected to be

negative, consistent with that of the proposed method.

Figure 4 shows the estimated baseline hazard function and the estimated cu-

mulative baseline hazard function. The sine wave shape of the estimated hazard

function up to day 120 is consistent with the observed event intensity described

in Figure 3(B). The estimated cumulative baseline hazard function demonstrates

a significant increase of the cumulative hazard rate before day 120. The flattened

portion of Λ0(t) after day 120 may be due to insufficient events toward the end

of the study. On average, one expects about 20 episodes of non-adherent events

in the 4 month study follow-up period, or about 5 episodes per month.

6. Discussion

In this work, we study the Andersen-Gill model for analyzing repeated cur-

rent status data. This type of data occurs frequently in medical studies due
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Figure 4. (A) The estimated baseline hazard function, and (B) the estimated cumulative
baseline hazard function.

to practical constraints or incomplete information. However, no valid analysis

method has been yet available and clinical researchers usually resort to trans-

forming the problem into one of analyzing sequences of binary longitudinal data

and using standard GEE methods. This can lead to severe bias and incorrect

inference.

The proposed sieve estimators are shown to be consistent, asymptotic nor-

mal and, more importantly, seimparametrically efficient. The estimation of the

regression coefficients and their asymptotic variances is computationally easy.

Numerical studies show that the proposed estimators performs well under mod-

erate sample sizes. Although we have focused on a nonhomogeneous Poisson

process with proportional intensity model, the approach can be generalized to

allow latent frailty and non-proportional intensities. It can also be adapted to

allow time-dependent covariates. The Poisson assumption may be restrictive in

practice, and a possible generalization is to include some latent frailty in our cur-

rent model. This would be a challenge, both computationally and theoretically.

We will pursue this in future work.

The main reasons for using the sieve likelihood approach over the nonpara-

metric maximum likelihood approach used in Zeng, Cai and Shen (2006) are two
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fold. The smooth sieve approach yields a smooth estimate of the baseline func-

tion and so can be easily visualized for patterns, as in Figure 2. Then too, our

experience is that the computation for the nonparametric maximum likelihood

estimate may not be stable due to sparse information of observed time points,

while the sieve estimation uses fewer parameters and in borrowing strength from

neighboring intervals due to smoothing, is computationally more stable.
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Appendix: Proof of Theorem 1

For convenience, we assume τ = 1 and let Gn =
√
n(Pn − P ), where Pn is

the empirical measure and P is the true probability measure.

Consistency. By Schumaker (2007) and (C.1), there exists a function Λ̃0 ∈ Sn

such that ∥Λ̃0 − Λ0∥∞ = O(m−r
n ), where ∥ · ∥∞ is the supreme norm. We use

Hellinger distance (see van de Geer (1993), Zeng, Cai and Shen (2006)) to prove

consistency. Because

sup
t∈[0,1]

|Λ̂n(t)− Λ0(t)| ≤ sup
t∈[0,1]

|Λ̂n(t)− Λ̃0(t)|+ sup
t∈[0,1]

|Λ̃0(t)− Λ0(t)|,

we only need to show ∥β̂n − β0∥ → 0, and supt∈[0,1] |Λ̂n(t)− Λ̃0(t)| → 0, a.s.

Let G(t) = exp{−Λ̃(t)}, G̃0(t) = exp{−Λ̃0(t)} and G0(t) = exp{−Λ0(t)}.
We consider a class of the likelihood functions denoted by

F =
{
fβ,G =

K∏
j=1

fβ,G,j :fβ,G,j =
[
1−

( G(Tj)

G(Tj−1)

)eX
′β]∆j

( G(Tj)

G(Tj−1)

)eX
′β(1−∆j)

with (β,G) ∈ Θ∗, Tj ∈ [0, 1] and T0 = 0
}
,

where Θ∗ = B×{e−Λ̃ : Λ̃ ∈ Sn}. First, we calculate the bracket covering number

for F . For any ε > 0 and (β1, G1), (β2, G2) ∈ Θ∗, such that ∥β1 − β2∥ < ε,

supt∈[0,1] |G1(t)−G2(t)| < ε, we wish to set boundaries for the difference between√
fβ1,G1

and
√

fβ2,G2
. There are two scenarios:

Case I. If fβ1,G1
> η, where η is a constant, satisfying η > εK0e

BM (MO(Dn) +

1) > 0, we have fβ2,G2
> η − (fβ1,G1

− fβ2,G2
). By the definition, we know

|fβ1,G1
− fβ2,G2

| ≤ |fβ1,G1,1 − fβ2,G2,1|+ · · ·+ |fβ1,G1,K − fβ2,G2,K |.
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Note that |fβ1,G1,j − fβ2,G2,j | ≤
∫ Tj

Tj−1
dΛ1(t) · |eX

′β1 − eX
′β2 | + |

∫ Tj

Tj−1
d(Λ1(t) −

Λ2(t))|eX
′β2 . Furthermore, since only l B-spline basis functions are non-zero at

each s,

Λ̃(t) ≤
∫ t

0
exp

{ kn∑
j=1

|αj | ∥Bnj(s)∥∞
}
ds ≤ O(1) exp(lDn)τ

holds for any Λ̃ ∈ Sn, hence |fβ1,G1,j − fβ2,G2,j | ≤ εeBM (MO(Dn) + 1) and

fβ2,G2
≥ η − εK0e

BM (MO(Dn) + 1) > 0. Therefore,

|
√

fβ1,G1
−
√

fβ2,G2
| =

∣∣∣ fβ1,G1
− fβ2,G2√

fβ1,G1
+
√

fβ2,G2

∣∣∣
≤ εK0e

BM (MO(Dn) + 1)

2
√

η − εK0eBM (MO(Dn) + 1)
.

Case II. If fβ1,G1
≤ η, then we have fβ2,G2

≤ η+ εK0e
BM (MO(Dn) + 1). There-

fore, |
√

fβ1,G1
−

√
fβ2,G2

| ≤ √
η +

√
η + εK0eBM (MO(Dn) + 1). If we choose

η = 2εK0e
BM (MO(Dn) + 1), then in either case we have

|
√

fβ1,G1
−
√

fβ2,G2
| ≤ 4

√
εK0eBM (MO(Dn) + 1)

= C1

√
εK0eBM (MO(Dn) + 1).

Consequently, if we define cn = εK0e
BM (MO(Dn) + 1), it holds

logN[]

(
O(1)

√
cnε,

√
F , ∥ · ∥∞

)
≤ logN[](ε,Θ

∗, ∥ · ∥∞) ≤ O(ε−1),

where N[](·) denotes the bracket covering number, or

logN[]

(
O(1)

√
ε,
√
F , ∥ · ∥∞

)
≤ O(cnε

−1).

According to (C.6) and the results of Theorem 2.4 and Lemma 1.1 in van de Geer

(1993), plus the fact that fβ̂n,Ĝn
∈ F , we obtain that the Hellinger distance be-

tween fβ̂n,Ĝn
and fβ0,G̃0

converges to zero as n → ∞, so E(
√

fβ̂n,Ĝn
−
√

fβ0,G̃0
)2 →

0, a.s. Since β̂n is in a compact set B and Ĝn is a bounded non-increasing function,

by Helly’s Selection Theorem, for any subsequence we can find a sub-subsequence,

still subscripted by n, such that β̂n → β∗, Ĝn(·) → G̃∗(·) point-wise with prob-

ability 1. Because fβ̂n,Ĝn
is bounded by 1, and fβ̂n,Ĝn

converges to fβ0,G̃0
in

Hellinger distance, we conclude that fβ∗,G̃∗ = fβ0,G̃0
hold for any t ∈ [0, 1],

G̃0(t) > 0. For K = 1, we have ln(G∗(T1)) · eX
′β∗

= ln(G̃0(T1)) · eX
′β0 , a.s. Then

by (C.4), we obtain that β∗ = β0, G
∗(t) = G̃0(t), t ∈ [0, 1]. Hence,

∥β̂n − β0∥ → 0, sup
t∈[0,1]

|Ĝn(t)− G̃0(t)| → 0, a.s..
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Since the transform function G(·) is one-to-one and continuous, we can easily

obtain supt∈[0,1] |Λ̂n(t)− Λ̃0(t)| → 0, a.s., and consistency holds.

Convergence rate. Denote the log-likelihood function for one subject as

l(θ;O) =

K∑
j=1

{
∆j log

[
1− exp(−δΛje

X′β)
]
− (1−∆j)δΛje

X′β
}
,

where δΛj = Λ(Tj) − Λ(Tj−1). The first derivatives of log-likelihood l(θ;O)

respect to β and Λ along the submodels β + ϵb and Λ + ϵh, respectively, are

l̇β(θ;O) =

K∑
j=1

{ ∆j

1− exp(−δΛjeX
′β)

− 1
}
δΛje

X′βX,

l̇Λ(θ;O)[h] =

K∑
j=1

{ ∆j

1− exp(−δΛjeX
′β)

− 1
}
eX

′βδhj ,

and the second derivatives of log-likelihood l(θ;O) respect to β and Λ along the

submodels β + ϵb and Λ + ϵh, respectively, are

l̇ββ(θ;O) =

K∑
j=1

Ψj(θ,O)δΛje
X′βXX ′,

l̇Λβ(θ;O)[h] =

K∑
j=1

Ψj(θ,O)XeX
′βδhj ,

Ψj(θ,O) =
∆j

1− exp(−δΛjeX
′β)

− ∆j exp(−δΛje
X′β)δΛje

X′β

[1− exp(−δΛjeX
′β)]2

− 1,

l̇ΛΛ(θ;O)[h1, h2] =

K∑
j=1

−∆je
2X′β exp(−δΛje

X′β)δh1jδh2j
[1− exp(−δΛjeX

′β)]2
,

where δhj =
∫ Tj

Tj−1
dh(s) for h ∈ H(Λ), H(Λ) =

{
h : (∂Λϵ)/(∂ϵ)

∣∣
ϵ=0

= h, h ∈
L2([0, 1]), h(0) = 0, and Λϵ is a parametric path in A, Λϵ|ϵ=0 = Λ

}
is the tangent

space.

If
(
l̇β, l̇Λ

)∗
is the dual operator of

(
l̇β, l̇Λ

)
, then the information operator

I(β,Λ) =
(
l̇β, l̇Λ

)∗(
l̇β, l̇Λ

)
satisfies

−
⟨
I(β,Λ)[b, h], [b, h]

⟩
L2(P )

= P
{
b′ l̇ββb+ 2(l̇Λβ[h])

′b+ l̇ΛΛ[h, h]
}
,

where b ∈ Rp, h ∈ H(Λ). By Lemma 1 (see the end of the proof) and (C.2), we

know I(β0,Λ0) is an invertible operator, which implies

∥I(β0,Λ0)[b, h]∥2L2(P ) ≥ O(1)
(
∥b∥2 + ∥h∥2L2(µ)

)
. (A.1)

For every θ in a neighborhood of θ0, we expand P{l(θ;O)− l(θ0;O)} at the true
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values θ0. The first derivative in the expansion vanishes and

P{l(θ0;O)− l(θ;O)} =
⟨
I(β∗,Λ∗)[β − β0,Λ− Λ0], [β − β0,Λ− Λ0]

⟩
L2(P )

where (β∗,Λ∗) is between (β,Λ) and (β0,Λ0). Hence, for the neighborhood of

(β0,Λ0) sufficiently small, by (A.1) we have P{l(θ0;O)−l(θ;O)} ≥ O(1)d2(θ, θ0).

Let Mζ(θ0) = {l(θ;O)− l(θ0;O) : (∥β − β0∥2 + ∥Λ− Λ0∥2L2(µ)
)1/2 ≤ ζ, β ∈

B, Λ ∈ Sn} with some ζ > 0. For any 0 < ϵ < ζ, similar to the calculation of

Shen and Wong (1994), we obtain logN[](ϵ,Mζ(θ0), L2(P )) ≤ O(1)mn log(ζ/ϵ).

What is more, with consistency and (C.1), (C.2), and (C.3), we know that there

exists a M0 > 0 such that ∥l(θ;O) − l(θ0;O)∥∞ ≤ M0. Hence, by Lemma 3.4.2

of van der Vaart and Wellner (1996), it holds

E∗∥Gn∥Mζ(θ0) ≤ O(1)J̃[](ζ,Mζ(θ0), L2(P ))
[
1 +

J̃[](ζ,Mζ(θ0), L2(P ))

ζ2
√
n

M0

]
,

where J̃[](ζ,Mζ(θ0), L2(P )) =
∫ ζ
0

{
1 + logN[](ϵ,Mζ(θ0), L2(P ))

}1/2
dϵ, hence

J̃[](ζ,Mζ(θ0), L2(P )) ≤ O(1)m1/2
n ζ. (A.2)

If ϕn(ζ) = J̃[](ζ,Mζ(θ0), L2(P ))
[
1 + (J̃[](ζ,Mζ(θ0), L2(P )))/(ζ2

√
n)M0

]
, and

rn satisfies r2nϕ(1/rn) ≤ n1/2, we obtain r2nJ̃[](1/rn,M1/rn(θ0), L2(P )) ≤ n1/2.

Hence, by (A.2) and Theorem 3.2.5 of van der Vaart and Wellner (1996), we

obtain d(θ̂n, θ0) ≤ OP ((mn/n)
1/2) + OP (m

−r
n ). Furthermore, by (C.5) it holds

d2(θ̂n, θ0) ≤ oP (n
−1/2) +OP (m

−2r
n ).

Asymptotic normality. The proof is divided into four steps.

Step 1. By Lemma 1, we know there exists a least favorable direction for β0,

which is defined as a tangent function h∗ for Λ that satisfies

P
{
l̇βΛ(θ0;O)[h]− l̇ΛΛ(θ0;O)[h∗, h]

}
= 0,

for any h ∈ H(Λ0). Therefore, we have the efficient score function for (β,Λ),

l∗(θ0;O) = l̇β(θ0;O)− l̇Λ(θ0;O)[h∗]

=

K∑
j=1

{ ∆j exp(−δΛ0je
X′β0)

1− exp(−δΛ0jeX
′β0)

− 1 + ∆j

}(
δΛ0je

X′β0X − eX
′β0δh∗j

)
.

By Schumaker (2007), there exists a function h∗n ∈ Sn such that ∥h∗n − h∗∥∞ =

O(m−r
n ).

Step 2. According to (C.5) and the fact that

∥l̇Λ(θ0;O)[h∗n]− l̇Λ(θ0;O)[h∗]∥∞ ≤ C O(m−r
n ),

we obtain P
{
l̇β(θ0;O) − l̇Λ(θ0;O)[h∗n]

}
= P l̇Λ(θ0;O)[h∗n] ≤ oP (n

−1/2). By the
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definition of h∗, (C.3), (C.5), and the fact that

∥l̇ΛΛ(θ0;O)[h∗n, Λ̂n − Λ0]− l̇βΛ(θ0;O)[Λ̂n − Λ0]

− l̇ΛΛ(θ0;O)[h∗, Λ̂n − Λ0] + l̇βΛ(θ0;O)[Λ̂n − Λ0]∥∞
=∥l̇ΛΛ(θ0;O)[h∗n − h∗, Λ̂n − Λ0]∥∞ ≤ C O(m−r

n ),

we conclude that P
{
l̇ΛΛ(θ0;O)[h∗n, Λ̂n −Λ0]− l̇βΛ(θ0;O)[Λ̂n −Λ0]

}
≤ oP (n

−1/2).

Step 3. We show −P
{
l̇ββ(θ0;O)− l̇Λβ(θ0;O)[h∗]

}
is positive. As

−P
{
l̇ββ(θ0;O) + l̇Λβ(θ0;O)[h∗]

}
= P

{
l̇β(θ0;O) + l̇Λ(θ0;O)[h∗]

}⊗2 ≥ 0,

we need only show that P
{
l̇β(θ0;O)+l̇Λ(θ0;O)[h∗]

}⊗2
> 0. Otherwise, if l̇β(θ0;O)

+ l̇Λ(θ0;O)[h∗] ≡ 0, we have
∑K

j=1

{
∆j/(1− exp{−δΛ0je

X′β0})− 1
}
δΛ0j(α

∗
Kj +

X) ≡ 0, which indicates −(α∗
Kj +X) ≡ 0, a contradiction.

Step 4. Since Pn{l̇β(θ̂n;O)− l̇Λ(θ̂n;O)[h∗n]} = 0, it holds that

(Pn − P )
{
l̇β(θ̂n;O)− l̇Λ(θ̂n;O)[h∗n]

}
= −P{l̇β(θ̂n;O)− l̇Λ(θ̂n;O)[h∗n]}.

An expansion on (β0,Λ0) of the right-hand side of the above equation yields

Gn

{
l̇β(θ̂n;O)− l̇Λ(θ̂n;O)[h∗n]

}
= −

√
nP

{
l̇β(θ0;O)− l̇Λ(θ0;O)[h∗n] +

[
l̇ββ(θ0;O)− l̇Λβ(θ0;O)[h∗n]

]
(β̂n − β0)

+ l̇ΛΛ(θ0;O)[h∗n, Λ̂n − Λ0]− l̇βΛ(θ0;O)[Λ̂n − Λ0]
}

+
√
nOP (∥β̂n − β0∥2 + ∥Λ̂n − Λ0∥2L2

).

For the left-hand side, it is easy to check that l̇β(θ̂n;O) − l̇Λ(θ̂n;O)[h∗n] belongs

to the P-Donsker class {l̇β(θ;O)− l̇Λ(θ;O)[h] : θ ∈ B × Sn, h ∈ L2([0, 1])}, and
by the result in Step 2,

Pn

{
l̇β(θ0;O)− l̇Λ(θ0;O)[h∗]

}
+ oP (n

−1/2)

= −
(
P
{
l̇ββ(θ0;O)− l̇Λβ(θ0;O)[h∗]

}
+ oP (n

−1/2)
)
(β̂n − β0)

+OP

{
∥β̂n − β0∥2 + ∥Λ̂n − Λ0∥2L2

}
.

By the result in Step 3, we have
√
n(β̂n − β0) =− P−1

{
l̇ββ(β0,Λ0;O)− l̇Λβ(β0,Λ0;O)[h∗]

}
×

√
nPn

{
l̇β(β0,Λ0;O)− l̇Λ(β0,Λ0;O)[h∗]

}
+ oP (1) +

√
nOP

{
∥β̂n − β0∥2 + ∥Λ̂n − Λ0∥2L2

}
.

By (C.5) and the convergence rate obtained previously, the last term here is also

oP (1). Hence, the asymptotic normality of
√
n(β̂n − β0) holds.

Lemma 1. Under (C.1)–(C.4), there exists a unique h∗ ∈ H(Λ0) such that

P{l̇βΛ(β0,Λ0)[h]− l̇ΛΛ(β0,Λ0)[h
∗, h]} = 0, for any h ∈ H(Λ0).
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Proof. By P{l̇βΛ(β0,Λ0)[h]− l̇ΛΛ(β0,Λ0)[h
∗, h]} = 0 and simple algebra, we need

only prove that there exists a unique h∗ ∈ H(Λ0) such that

P
{ K∑

j=1

(δh∗j − δΛ0jX)
e2X

′β0 exp(−δΛ0je
X′β0)

1− exp(−δΛ0jeX
′β0)

δhj
}
= 0,

for any h ∈ H(Λ0). Taking δh∗(s, t) = h∗(t)−h∗(s) and δΛ0(s, t) = Λ0(t)−Λ0(s),

we can rewrite the above equation as

0 =

∫ τ

0

∫ t

0

{
δh∗(s, t)Γ1(s, t)− δΛ0(s, t)Γ2(s, t)

}
(h(t)− h(s))ds dt

=

∫ τ

0
h(t)

{∫ t

0
δh∗(s, t)Γ1(s, t)− δΛ0(s, t)Γ2(s, t)ds

−
∫ τ

t
δh∗(t, s)Γ1(t, s)− δΛ0(t, s)Γ2(t, s)ds

}
dt,

where Γi(s, t) =
∞∑
k=1

P (K = k)
k∑

j=1
I(Tj−1 = s, Tj = t)αij(s, t)PTj−1,Tj |K(s, t),

i = 1, 2, α1j(s, t) = E
{
(e2X

′β0 exp(−δΛ0(Tj−1, Tj)e
X′β0))/(1 − exp(−δΛ0(Tj−1,

Tj)e
X′β0))

∣∣Tj−1 = s, Tj = t
}
, and α2j(s, t) = E

{
(Xe2X

′β0 exp(−δΛ0(Tj−1, Tj)

eX
′β0))/(1 − exp(−δΛ0(Tj−1, Tj)e

X′β0))
∣∣Tj−1 = s, Tj = t

}
. Since this holds for

any h ∈ H(Λ0), we conclude that∫ t

0
δh∗(s, t)Γ1(s, t)ds−

∫ τ

t
δh∗(t, s)Γ1(t, s)ds

≡
∫ t

0
δΛ0(s, t)Γ2(s, t)ds−

∫ τ

t
δΛ0(t, s)Γ2(t, s)ds. (A.3)

Since δh∗(s, t) = h∗(t)− h∗(s), we can rewrite (A.3) as

h∗(t)

∫ τ

0
Γ1(s, t)I[0,t](s) + Γ1(t, s)I[t,τ ](s)ds

−
∫ τ

0
h∗(s)

[
Γ1(s, t)I[0,t](s) + Γ1(t, s)I[t,τ ](s)

]
ds

≡
∫ t

0
δΛ0(s, t)

[
Γ2(s, t)I[0,t](s) + Γ2(t, s)I[t,τ ](s)

]
ds. (A.4)

If we can show the left-side of (A.4) is a Fredholm operator with respect to h∗

and the operator is one-to-one, then the conclusion follows from Rudin (1973).

This gives the invertibility of the information operator I(β0,Λ0), given the non-

singularity of the information matrix for β0 as proved earlier.

It is easy to see that∫ τ

0
Γ1(s, t)I[0,t](s) + Γ1(t, s)I[t,τ ](s)ds > 0,
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hence the first term of the left-side is an invertible operator with respect to

h∗. Then, under (C.1), (C.2), and (C.3), we know Γ1(s, t)
∣∣
0<s<t<τ

is bounded.

Hence, we conclude that the second term of the left-side is a compact operator

with respect to h∗. Thus the left-side of (A.4) is a Fredholm operator. Finally,

we only need to show it is an one-to-one operator, that is, it is 0 if and only if

h∗ ≡ 0. But it is ∫ τ

0

∫ t

0
δh∗(s, t)Γ1(s, t)(h(t)− h(s))ds dt = 0

for any h ∈ H(Λ0). As Γ1(s, t) > 0, we get h∗ ≡ 0.
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