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Abstract: When a disease progression goes through several stages marked by a

nonterminal, recurrent event such as relapse, or a terminal event such as death,

which terminates the progression, researchers can be concerned with the duration

or gap times between successive events (stages) and wish to study the covariates

effects on the gap times. How previous events or gap times affect the current gap

time can be also of interest. We propose a unifying framework for joint regression

analysis of gap times between successive events. The proposed mixture modeling

framework consists of a logistic regression for predicting the path of transition (to

a nonterminal or terminal event) at each stage, and a proportional hazards model

for predicting the gap times for transition to the nonterminal and terminal events

at each stage; these components of the model are conditional on the past event his-

tory and stage-specific covariates. In particular, when the number of stages is fixed

at one or two, the proposed framework can be applied to the analysis of conven-

tional competing risks or semicompeting risks data. We develop a semiparametric

maximum likelihood inference procedure for the proposed models. For which the

large sample theory follows directly from martingale theory. Explicit expressions

for the information matrix are derived, which facilitate direct variance estimation

and convenient computation. Simulation results reveal the proposal’s worth, and

applications to two clinical studies illustrate its utility.

Key words and phrases: Competing risks, martingale processes, mixture model,

multiple events, recurrent data.

1. Introduction

In event time studies, individuals can experience multiple events. With com-

peting risks data, subjects are assumed to be susceptible to several dependent

events and only the first occurring event time is observable (Tsiatis (1998)).

There are also studies in which individuals can experience a nonterminal event

before reaching the terminal event. Data of this type are called semicompeting
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risks data (Fine, Jiang and Chappel (2001)). Here the nonterminal event might

recur a number of times in a subject. Joint analysis of such multiple events

is often of interest, and it imposes substantial challenges owing to the need to

account for dependence among multiple events.

Various modeling strategies have been proposed for joint analysis of com-

peting or semicompeting risks. Extending the model in Fine (1999) for a single

event, Chang et al. (2007) and Lu and Peng (2008) consider the mixture model

framework for competing risks. In this, a parametric or semiparametric model is

specified for each of the event time distributions conditional on event type, and

a multinomial model for the event type; these models can depend on covariates.

An alternative framework consists of semiparametric transformation models for

marginal regression models, and a copula model for the joint distribution of the

events (Peng and Fine (2007); Hsieh, Wang and Ding (2008); Chen (2010, 2012)).

In the analysis of a recurrent event together with a dependent terminal event,

random effects models have been applied when the event times measured from

a common origin (Liu, Wolfe and Huang (2004); Ye, Kalbfleisch and Scaubel

(2007); Rondeau et al. (2007); Zeng and Lin (2009)) or the gap times between

consecutive recurrent events (Huang and Liu (2007)) are of interest. In such

models, dependence among event times or gap times among events in the same

subject are implicitly introduced via the random effects.

A more general framework for analysis of multiple events can be formulated

as multi-state models. As elaborated in Andersen and Keiding (2002), the oc-

currence of an event in a subject can be viewed as the subject’s transition from

one state to another in a multi-state model. Andersen, Abildstrom and Rosthøj

(2002) proposed analysis of competing risks under the framework of multi-state

models. Xu, Kalbfleisch and Tai (2010) develop an illness-death model with

shared frailty to address positive dependence between event times for semicom-

peting risks data. Hu and Tsodikov (2014) utilize the illness-death model and

proportional hazards assumption to study the joint distribution of the nontermi-

nal and terminal event times in semicompeting risks. Such illness-death, or more

general, multi-state models explicitly characterize dynamics of disease progres-

sion and hence can be useful in clinical studies.

In this work we propose a unifying modeling and analysis framework for

multi-event settings. We consider the mixture regression model for the illness-

death process as in Chang et al. (2007) and Lu and Peng (2008), and extend this

model to allow for the building-block illness-death process to repeatedly evolve

through multiple stages. The mixture regression model considered consists of a
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logistic regression for predicting the transition to a nonterminal “relapse” state or

to a terminal “death” state at each stage, and a proportional hazards model for

predicting the gap or duration times for transition to the “relapse” and “death”

states at each stage, both components conditional on the past event history and

stage-specific covariates. When some Markov assumption is reasonable, such

models can incorporate one or a few prior gap times as predictors. When obser-

vation is only to the occurrence of the first event, the proposed models reduce to

those considered in Chang et al. (2007) and Lu and Peng (2008). Our proposal

can also be applied when the nonterminal event is non-recurrent, the conventional

setting of semicompeting risks (Fine, Jiang and Chappel (2001)).

We develop semiparametric maximum likelihood inference procedure for the

proposed models, where the score functions are expressed as martingales, so that

the large sample theory follows from martingale theory. Explicit expressions for

the information matrix are derived, that facilitate direct variance estimation and

convenient computation. In addition to the covariate effects on the gap times

between events, the proposed analysis allows for direct assessments of impacts

from previous events or gap times on the current gap time, that differs from such

existing methods as Huang and Liu (2007).

This article is structured as follows. In Section 2, we introduce the data struc-

ture considered, and the proposed models. The maximum likelihood estimation

procedure and its asymptotic properties are in Sections 3 and 4, respectively. The

results of simulation studies, and applications to clinical studies are reported in

Sections 5 and 6. The final section provides some discussions and conclusions.

2. Model and Data

Suppose that disease progression can be classified into two states, R and D,

in which D is terminal and R is a nonterminal state. It is assumed that the

evolution of the disease can reach state R repeatedly before entering D. Figure

1 illustrates a cancer progression, where R denotes cancer relapse and D denotes

death. Stage k (k = 1, 2, 3, · · · ) of the progression is the period between the

(k − 1)th and kth relapse.

Let ζk (k = 1, 2, 3, · · · ) be the “path” indicator at stage k, which equals 1

if a subject follows the path from state 0 or R to R, and equals 0 if a subject

moves directly to D. For subjects with ζk = 1, let TR
k be the kth gap time from

state 0 → R (if k = 1) or R → R (if k > 1). For subjects with ζk = 0, let TD
k

be the kth gap time from state 0 → D (if k = 1) or R → D (if k > 1). Let
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Figure 1. The illness-death model.

S∗
l =

∑l
k=1 Tk be the cumulative duration time from the initial study time up

to the lth event, where Tk = TR
k when ζk = 1 and Tk = TD

k when ζk = 0. Let

ζ0 := 1, and for k = 1, 2, · · · , Hk be the event time information prior to stage k

when ζk−1 = 1. Let Xk (k = 1, 2, · · · ) be a set of stage-specific covariates. For

simplicity we assume Xk is constant within stage k.

To model the probability that ζk = 1, we assume that, conditional on ζk−1 =

1, Hk, and Xk, ζk follows a logistic regression model (Farewell (1982); Lu and

Peng (2008)) with covariates Wk and parameter βp :

P (ζk = 1 | Hk, Xk, ζk−1 = 1) = pk(βp) =
exp(β′

pWk)

1 + exp(β′
pWk)

, ζ0 := 1, k ≥ 1, (2.1)

where Wk is a vector of functions of Hk and Xk that are relevant for predicting

the path status at stage k. In practice, Wk may include some subset of Xk and

the duration time TR
k−1 at the immediate previous stage; such a choice is based

on a Markov-type assumption that the path status at stage k depends on the

previous event times only through the duration time in the previous stage.

Given the path status ζk at stage k, Hk and Xk (k = 1, 2, · · · ), the hazard

functions for the duration times TR
k and TD

k at stage k are modeled by propor-

tional hazards models:

lim
∆→0

∆−1P (t ≤ TR
k < t+∆ |TR

k ≥ t, ζk = 1,Hk, Xk) = exp(θ′rQr)λr(t),

lim
∆→0

∆−1P (t ≤ TD
k < t+∆ |TD

k ≥ t, ζk = 0,Hk, Xk) = exp(θ′dQd)λd(t),
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where λr and λd are nonnegative, unknown baseline hazard functions for the re-

current and terminal events, respectively, and Qr and Qd are vectors of functions

of Hk and Xk that are relevant for predicting the duration times TR
k and TD

k .

For example, we may consider the specific models given as

lim
∆→0

∆−1P (t ≤ TR
k < t+∆ |TR

k ≥ t, ζk = 1,Hk, Xk) = exp(β′
rZk+αrT

R
k−1)λr(t),

(2.2)

lim
∆→0

∆−1P (t ≤ TD
k < t+∆ |TD

k ≥ t, ζk = 0,Hk, Xk) = exp(β′
dZk+αdT

R
k−1)λd(t),

(2.3)

where TR
0 := 0, Zk is some subset of Xk. In this example, the regression pa-

rameters βr, βd assess the covariate effects on gap times for the recurrent and

terminal events, and αr and αd are the association parameters measuring the

effect of immediate previous gap time on the current gap times for relapse and

death, respectively. Models (2.2) and (2.3) are based on the Markov assumption

that, given the immediate previous duration time TR
k−1, the current duration

times TR
k and TD

k are independent of all earlier duration times {TR
1 , . . . , TR

k−2}.
We focus on the specifics of models (2.2) and (2.3).

We further allow the existence of an external censoring time V ∗ that is in-

dependent of the recurrent gap times and the terminal event time given {Xk :

k ≥ 1}. Let (V ∗
i , Xik, ζik), i = 1, · · · , n, be n independent and identically dis-

tributed replicates of (V ∗, Xk, ζk), with (TR
ik , T

D
ik ), i = 1, · · · , n, independent

and identically distributed replicates from models (2.2)-(2.3). Let τ denote the

maximum follow-up time in the study and Vi = min(V ∗
i , τ). The observed re-

current data consist of {
(
Sik, δ

R
ik, δ

D
ik, Xik

)
, i = 1, 2, · · · , n; k = 1, 2, · · · }, where

Sik = min(S∗
ik, Vi), and δRik = ζikI(S

∗
ik ≤ Vi), δ

D
ik = (1− ζik)I(S

∗
ik ≤ Vi) indicating

whether the kth duration times for relapse and death are uncensored or not.

The path indicator ζik is not directly observable, but δRik = 1 implies ζik = 1,

and δDik = 1 implies ζik = 0.

Remark 1. Our modeling framework is similar to that in Fine (1999) and Chang

et al. (2007) as developed for non-recurrent events. Although such a type of model

conditions on the path information, it is a natural extension of the semiparametric

transformation models to the competing risks setting, and is useful in the study

of covariate-specific probability of failure from a given cause over time. Here

the regression coefficients βr and βd are the effects of the covariate for patients

who would subsequently experience the recurrence event and the death event,

respectively. Similarly, the baseline hazards λr(t) and λd(t) are referred to the
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two groups of patients.

Remark 2. Although the proposed analysis builds upon the hazards models in

(2.2) and (2.3), the cumulative incidence function (CIF) for relapse and death

events can be simply found with (2.1). To obtain the CIF for the relapse and

death events at stage k, P (Tk ≤ t, ζk = 1 | Xk, Tk−1) and P (Tk ≤ t, ζk =

0 | Xk, Tk−1), we note that

P (Tk ≤ t, ζk = 1 | Xk, Tk−1)

= P (ζk = 1 | ζk−1 = 1, Xk)P (Tk ≤ t | ζk = 1, Xk, Tk−1)

=
exp(β′

pWk)

1 + exp(β′
pWk)

[
1− exp{− exp(αrTk−1 + β′

rZk)Λr(t)}
]
,

and analogously for P (Tk ≤ t, ζk = 0 | Xk, Tk−1). Therefore, the CIF can be

estimated directly by evaluating the probability of (ζk = 1), the proportion of

subjects who experience relapse, and the distribution of the failure time given

the event type through its corresponding cumulative hazard function. A practical

example with CIF estimation is provided in Section 6.2.

3. Maximum Likelihood Method

In the following, since gap times are considered, the time index t is reset to

zero at the occurrence of each “relapse” event (nonterminal event). Based on

(2.1), (2.2) and (2.3), we derive the likelihood and the score using the counting

process approach. Let Gik = Sik − Si,k−1 be the gap times subject to censoring

with Gi0 := 0, and Yik(t) = I(Gik ≥ t) the “at risk” process. Let NR
ik(t) =

δRikI(Gik ≤ t) and ND
ik (t) = δDikI(Gik ≤ t) be the counting processes for the

transitions to states R and D, respectively. When death or censoring occurs in

the kth stage and there is no way to observe a following event in subject i, we

have Gil := 0 and Yil(·) := 0 for l > k by definition.

In our formulation the population at each stage is considered as a mixture of

two groups of subjects following different paths. The path status for a subject at

some stage is unknown until the “relapse” or “death” event occurs. All subjects

are subject to independent censoring, and the stage-specific path status for a

subject is unknown if censoring occurs. According to (2.1), (2.2) and (2.3), the

cause-specific hazard function for NR
ik(t) is

Yik(t)Θik(t−; Ω) exp(β′
rZik + αrGi,k−1)λr(t),Θik(t; Ω) =

pik(βp) exp[−µik(αr)ηik(βr)Λr(t)]

pik(βp) exp[−µik(αr)ηik(βr)Λr(t)] + p̄ik(βp) exp[−µik(αd)ηik(βd)Λd(t)]
,
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where Ω = (α,β, dΛ), α = (αr, αd), β = (βp, βr, βd), and dΛ = (dΛr, dΛd). Here

pik(βp) is the conditional probability of (ζik = 1) given in (2.1) with Wk replaced

byWik, p̄ik(βp) = 1−pik(βp), ηik(β) = exp(β′Zik), µik(α) = exp(αGi,k−1), and λr

and λd are, respectively, the derivatives of Λr and Λd. The Θik are interpreted as

the conditional probability of observing NR
ik(t) = 1 at time t conditional on past

event information and that the subject i is at risk at time t. Similarly, the cause-

specific hazard function for ND
ik (t) is Yik(t)Θ̄ik(t−; Ω) exp(β′

dZik+αdGi,k−1)λd(t),

and Θ̄ik = 1−Θik is interpreted analogously to Θik.

Let dMR
ik(t) = dNR

ik(t) − Yik(t)Θik(t−; Ω) exp(β′
rZik + αrGi,k−1)dΛr(t),

dMD
ik (t) = dND

ik (t)− Yik(t)Θ̄ik(t−; Ω) exp(β′
dZik + αdGi,k−1)dΛd(t). Let K be a

sufficiently large number denoting the maximum number of the observed events

among subjects. Then the loglikelihood function for the observed data is given

by

ℓ(Ω) =

n∑
i=1

K∑
k=1

∫ τ

0

[
logΘik(t−; Ω) + β′

rZik + αrGi,k−1 + log dΛr(t)
]
dNR

ik(t)

−
n∑

i=1

K∑
k=1

∫ τ

0
Yik(t)Θik(t−; Ω) exp(β′

rZik + αrGi,k−1)dΛr(t)

+

n∑
i=1

K∑
k=1

∫ τ

0

[
log Θ̄ik(t−; Ω) + β′

dZik + αdGi,k−1 + log dΛd(t)
]
dND

ik (t)

−
n∑

i=1

K∑
k=1

∫ τ

0
Yik(t)Θ̄ik(t−; Ω) exp(β′

dZik + αdGi,k−1)dΛd(t). (3.1)

Remark 3. In (2.1), (2.2) and (2.3), we have assumed common baseline hazards

and regression parameters Ω = (α,β, dΛ) across stages. The models can be

modified to allow for stage-specific parameters. A practical issue regarding such

modeling is that estimation instability can arise if only sparse data are available

for certain gap times.

Remark 4. When only the data from the first stage are available, the loglikeli-

hood function (3.1) reduces to
n∑

i=1

∫ τ

0

[
logΘi(t−; Ω) + β′

rZi + log dΛr(t)
]
dNR

i (t)

+
[
log Θ̄i(t−; Ω) + β′

dZi + log dΛd(t)
]
dND

i (t)

−
n∑

i=1

∫ τ

0
Yi(t)

[
Θi(t−; Ω) exp(β′

rZi)dΛr(t) + Θ̄i(t−; Ω) exp(β′
dZi)dΛd(t)

]
.
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This loglikelihood function is equivalent to that in Chang et al. (2007), as de-

veloped for competing risks data. As pointed out in Chang et al. (2007), (2.1),

(2.2) and (2.3) are not identifiable when βp = βr = βd = 0.

Remark 5. Fixing the number of stages as two, and setting p2(βp) = 0 and

hence the non-terminal event can occur at most once in a subject, the proposed

models can be applied to the “semicompeting risks” data. In this case, (3.1) is
n∑

i=1

∫ τ

0

{[
logΘi1(t−; Ω) + β′

rZi1 + log dΛr(t)
]
dNR

i1(t)

− Yi1(t)Θi1(t−; Ω) exp(β′
rZi1)dΛr(t)

}
+

n∑
i=1

∫ τ

0

{[
log Θ̄i1(t−; Ω) + β′

dZi1 + log dΛd(t)
]
dND

i1 (t)

− Yi1(t)Θ̄i1(t−; Ω) exp(β′
dZi1)dΛd(t)

}
+

n∑
i=1

∫ τ

0

{[
β′
dZi2 + αdGi1 + log dΛd(t)

]
dND

i2 (t)

− Yi2(t) exp(β
′
dZi2 + αdGi1)dΛd(t)

}
,

where the first two terms correspond to the first-occurring event, either a relapse,

death or censoring event, and the last term correspond to the death or censoring

event that is observed subsequent to the relapse event observed at stage 1.

Remark 6. The proposed models (2.2) and (2.3) for gap times condition on

the past event history. This avoids the complication of “induced dependent

censoring” for gap time analysis (Wang and Wells (1998); Lin, Sun and Ying

(1999)) due to the dependence of the current and previous gap times.

We propose nonparametric maximum likelihood estimation for the regres-

sion parameters α, β and the baseline hazard functions Λ. As in Zeng and Lin

(2006), Zeng and Lin (2007), and Chen (2009), the baseline hazard functions

are treated as non-decreasing step functions with jumps only at the observed

event times, and dΛ denotes the collection of jump sizes of Λ. It is assumed

that the counting processes NR
ik(t) and ND

ik (t) cannot jump simultaneously. We

give explicit expressions for the score and information matrix for (α,β, dΛ) in

the Supplementary Material. In the computation, the jump sizes dΛr∗ and dΛd∗

and the regression parameters α and β are solved simultaneously from the cor-

responding score equations. As in Zeng and Lin (2006, 2007), and (Chen (2009,

2010)), we implement the computation via the Matlab function fminunc to solve
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the system of nonlinear estimating equations. Since we have explicit expressions

for the information (Hessain) matrix, such implementation is quite stable and

fast.

4. Asymptotic Results

Let α̂, β̂, and dΛ̂ be the nonparametric maximum likelihood estimators of

(α,β, dΛ), Ω̂ = (α̂, β̂, dΛ̂), and Ω0 = (α0,β0, dΛ0) the true value of Ω. As can

be seen from the Supplement Material, the estimating functions for Ω and the

cumulative hazard functions Λr(t) and Λd(t) at Ω0 are all martingales. Hence

we can apply the martingale central limit theorem to establish the large sample

properties of Ω̂. The following regularity conditions are required, and the proofs

of the theorems are sketched in the Supplement Material.

(A1) The true Λr and Λd are strictly increasing and differentiable; α0 and β0 are

in the interior of a compact parameter space.

(A2) With probability one, P (Sk ≥ τ |Hk, Xk) > 0, and P (δRk = δDk = 0, Sk =

τ |Hk, Xk) > 0, k = 1, 2.

(A3) The covariates Xk (k ≥ 1) are bounded in [0, τ ], and linearly independent.

(A4) The information matrix I is positive definite and n−1I converges in prob-

ability to a deterministic and positive definite matrix I0.

Theorem 1. If (A1)-(A4) hold, then α̂, β̂ converges to α0,β0 with probability

one, and Λ̂r, Λ̂d converge to Λ0
r, Λ

0
d uniformly in the interval [0, τ ] with proba-

bility one, where Λ̂s(t) =
∫ t
0 dΛ̂s(u) for s ∈ {r, d}, t ∈ [0, τ ].

Following Chen (2010, 2012), and Hu and Tsodikov (2014), consider the

linear functional
√
n

{∫ τ

0
a′ (α̂−α0

)
+ b′

(
β̂ − β0

)
+ γ(t)′

(
dΛ̂(t)− dΛ0(t)

)}
, (4.1)

where a, b are vectors and γ(t) is a function with bounded total variation in [0, τ ].

Let Γ be the vector consisting of the values of γ(t) evaluated at the observed

event times corresponding to the jumps {dΛ}. Let E ′ = (a′, b′,Γ′).

Theorem 2. If (A1)-(A4) hold,
√
n{α̂ − α0, β̂ − β0, Λ̂(·) − Λ0(·)} converges

weakly to a zero-mean Gaussian process, the linear functional (4.1) is asymptoti-

cally normal with mean zero and variance-covariance matrix E ′(I0)−1E, and the

information matrix I0 can be consistently estimated by n−1Î.
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The explicit expression for the negative Hessian matrix of the loglikelihood

function is provided in the Supplement Material.

5. Simulation Studies

Simulation studies were performed to demonstrate the finite sample per-

formances of the proposed inference procedure. First we considered covari-

ates X = (X1, X2) constant over stages, with X1 a bernoulli trial with success

probability 0.5, X2 a standard normal distribution truncated at ±3. We took

Wk = (1, X1), and βp = (0, 0) or (−0.5, 1) in (2.1) so that the probabilities of tran-

sition to the “relapse” state and to the “death” state were equal. We generated

{(TR
k , TD

k ) : k = 1, 2, · · · } from (2.2)-(2.3) with Zk = (X1, X2), βr = (−0.3, 0.7),

βd = (−0.5, 0.5), and (αr, αd) = (0, 0) or (0.1,−0.1). The censoring variable V ∗

was uniform distribution on [0, 20] and the maximum follow-up time τ = 10.

The proposed method was applied to the setting of competing risks data:

observation stopped when a “relapse”, “death”, or censoring event was first ob-

served. Here the baseline function λr(t) = 0.05t and λd(t) = 0.1, led to roughly

30% of the events being “relapse” and 22% of events being “death” for the two

sets of βp. The simulation results are shown in Table 1 for the sample sizes

n = 150 and 300. For each parameter, the bias, simulation standard deviation

(SD) and mean of the estimated standard standard errors (SE) are summarized

to illustrate the finite sample properties of the nonparametric maximum likeli-

hood estimate. We see that the proposed estimates of regression parameters β

are nearly unbiased and the estimated standard errors found by the observed

information matrix are close to the simulation standard deviations. The estima-

tion for Λ under the smaller sample size of n = 150 yields a relatively larger

bias; however, that bias was negligible when n = 300. The 95% confidence in-

tervals give coverage probabilities at the desired level, and the results improve

with increased sample size. Some of the coverage rates being lower than 90%

may be due to the low event rates. To check this, we did a simulation study

with data generated by the same values of regression coefficients as in Table 1,

but the baseline hazard rates λr(t) and λd(t) were enhanced to be (0.25t, 0.5).

The results are tabulated in the Supplement Material, showing that the coverage

rates are closer to the nominal level of 95%.

Under the same setups we applied our method to the semicompeting risks

setting with αd = 0. The simulation results are reported in Table 2. Here,

for estimation of βd and Λd, there is extra information from subjects whose first-
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Table 1. Simulation results for the competing risks data, K = 1, where the statistics
are based on the 1,000 replications, and sample sizes n = 150 or 300 in each replication.
Here λr(t) = 0.05t, λd(t) = 0.1, and about 30% (22%) of the first-occurring event was
“relapse” (“death”).

Scenario 1: βp = (0, 0) Scenario 2: βp = (−0.5, 1)
n Parameter Bias SD SE CP (%) Bias SD SE CP (%)
150 βp : 1 0.057 0.372 0.381 95.4 0.077 0.382 0.386 94.9

βp : X1 0.023 0.537 0.512 94.6 0.023 0.577 0.535 92.6
βr : X1 = −0.3 −0.010 0.446 0.407 92.4 0.018 0.460 0.422 92.2
βr : X2 = 0.7 0.039 0.173 0.156 94.0 0.046 0.166 0.156 93.5
βd : X1 = −0.5 −0.041 0.481 0.454 94.1 −0.007 0.527 0.488 93.3
βd : X2 = 0.5 0.036 0.165 0.160 95.2 0.035 0.165 0.156 95.3
Λr(τ/4) = 0.156 −0.005 0.062 0.059 88.5 −0.005 0.071 0.066 86.3
Λr(τ/2) = 0.625 0.002 0.218 0.208 90.1 −0.006 0.250 0.237 89.0
Λr(3τ/4) = 1.406 0.041 0.565 0.538 91.0 0.071 0.658 0.622 89.7
Λd(τ/4) = 0.25 0.023 0.116 0.104 93.6 0.012 0.103 0.090 92.3
Λd(τ/2) = 0.5 0.059 0.234 0.201 93.9 0.043 0.204 0.172 95.1
Λd(3τ/4) = 0.75 0.114 0.387 0.324 95.9 0.100 0.359 0.281 95.1

300 βp : 1 0.034 0.276 0.259 93.1 0.022 0.265 0.259 95.2
βp : X1 0.031 0.382 0.356 94.2 0.032 0.394 0.372 93.6
βr : X1 = −0.3 −0.027 0.305 0.283 93.2 −0.018 0.302 0.292 94.0
βr : X2 = 0.7 0.026 0.112 0.106 92.7 0.025 0.113 0.106 94.2
βd : X1 = −0.5 −0.016 0.324 0.304 94.6 0.037 0.346 0.326 94.1
βd : X2 = 0.5 0.007 0.107 0.107 95.7 0.017 0.112 0.104 94.5
Λr(τ/4) = 0.156 −0.002 0.043 0.042 90.8 −0.002 0.047 0.046 91.6
Λr(τ/2) = 0.625 0.001 0.146 0.141 92.0 0.009 0.167 0.163 92.5
Λr(3τ/4) = 1.406 0.042 0.375 0.358 92.1 0.067 0.432 0.410 93.0
Λd(τ/4) = 0.25 0.011 0.069 0.067 95.2 0.001 0.061 0.058 93.9
Λd(τ/2) = 0.5 0.032 0.135 0.126 95.4 0.012 0.111 0.106 95.1
Λd(3τ/4) = 0.75 0.063 0.223 0.196 95.9 0.027 0.169 0.160 95.3

occurring event is “relapse”, so the standard deviations are expected to be smaller

than the comparable competing risks setting considered in Table 1. Results in

Table 2 suggest that the proposed inference method still performs well in this

setting.

The last setting considered had the nonterminal event recurrent and the

number of occurrences of this event in each subject ranging from zero to three.

The setups were similar to those in the previous simulations, but we set the

covariates Wk = (1, X1, T
R
k−1) as (2.1) for the transition probability at stage k to

depend on the previous gap time. The baseline functions were λr(t) = 0.05t and

λd(t) = 0.1, so that at stages 1 to 3 the proportions of “relapse” among the events

observed at those stages were 30%, 8% and 2%, respectively, and the proportions
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Table 2. Simulation results for semicompeting risks data, K = 2, λr(t) = 0.05t and
λd(t) = 0.1. About 30% (22%) of the first-occurring event is “relapse” (“death”) and
11% of subjects have both.

Scenario 1: βp = (0, 0) Scenario 2: βp = (−0.5, 1)
n Parameter Bias SD SE CP (%) Bias SD SE CP (%)
150 αd = 0 −0.021 0.091 0.088 95.1 −0.022 0.096 0.089 94.8

βp : 1 0.054 0.363 0.403 96.1 0.075 0.369 0.409 96.7
βp : X1 0.012 0.514 0.481 93.6 0.040 0.524 0.504 95.1
βr : X1 = −0.3 −0.014 0.461 0.397 90.7 0.003 0.456 0.416 91.7
βr : X2 = 0.7 0.028 0.170 0.157 93.2 0.038 0.173 0.156 93.5
βd : X1 = −0.5 −0.045 0.350 0.341 93.9 −0.006 0.358 0.343 94.6
βd : X2 = 0.5 0.027 0.132 0.140 96.0 0.021 0.135 0.137 95.9
Λr(τ/4) = 0.156 −0.004 0.062 0.060 90.5 −0.003 0.072 0.067 86.1
Λr(τ/2) = 0.625 0.005 0.230 0.211 91.3 0.005 0.258 0.242 89.2
Λr(3τ/4) = 1.406 0.092 0.625 0.575 91.1 0.081 0.673 0.633 90.8
Λd(τ/4) = 0.25 0.022 0.089 0.097 96.2 0.015 0.089 0.087 95.2
Λd(τ/2) = 0.5 0.051 0.180 0.188 95.8 0.038 0.168 0.165 95.8
Λd(3τ/4) = 0.75 0.098 0.305 0.296 97.0 0.080 0.291 0.263 96.4

300 αd = 0 −0.012 0.060 0.060 95.9 −0.006 0.061 0.060 95.6
βp : 1 0.043 0.257 0.286 95.4 0.015 0.260 0.276 96.9
βp : X1 −0.006 0.359 0.336 93.4 0.019 0.353 0.349 95.2
βr : X1 = −0.3 −0.008 0.285 0.277 94.9 −0.013 0.310 0.288 92.9
βr : X2 = 0.7 0.025 0.110 0.110 94.9 0.017 0.112 0.106 94.0
βd : X1 = −0.5 −0.003 0.230 0.231 96.1 0.002 0.229 0.229 94.5
βd : X2 = 0.5 0.010 0.087 0.098 97.3 0.008 0.087 0.093 96.2
Λr(τ/4) = 0.156 −0.004 0.042 0.043 92.5 0.000 0.047 0.047 93.3
Λr(τ/2) = 0.625 −0.001 0.141 0.147 93.3 0.010 0.169 0.166 94.1
Λr(3τ/4) = 1.406 0.038 0.382 0.379 95.3 0.058 0.438 0.418 93.6
Λd(τ/4) = 0.25 0.008 0.058 0.065 95.6 0.004 0.052 0.055 94.9
Λd(τ/2) = 0.5 0.017 0.109 0.123 96.6 0.011 0.095 0.103 96.0
Λd(3τ/4) = 0.75 0.034 0.170 0.189 96.9 0.026 0.149 0.156 96.3

of “death” in the events observed at the three stages were 22%, 5% and 1%.

Table 3 summarizes the results for the four cases with sample size n = 300.

We see these the proposed estimators work well and, as expected, the bias and

the standard deviations of (βr, βd) and (Λr,Λd) are smaller in this setting with

recurrent events, compared to the settings without recurrence.

6. Data Applications

The proposed analysis is applied to two clinical trial studies. The first one is

the non-gram-positive organisms study for kidney patients taking the peritoneal

dialysis (PD) treatment, where data from 575 subjects were collected at Taichung
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Table 3. Simulation results for recurrent event data with K = 3, λr(t) = 0.05t, and
λd(t) = 0.1. The proportions of “relapse” events are 30%, 8%, 2% from stages 1 to 3; the
proportions of “death” events are 22%, 5%, 1% from stages 1 to 3.

Scenario 1: Scenario 2:
(αr, αd) = (0, 0); (αr, αd) = (0, 0);
βp = (0, 0, 0.1) βp = (−0.5, 1, 0.1)

Parameter Bias SD SE CP (%) Bias SD SE CP (%)
αr 0.026 0.089 0.093 93.7 0.022 0.085 0.088 95.0
αd −0.031 0.104 0.117 95.7 −0.024 0.105 0.116 95.7
βp : 1 0.036 0.235 0.238 95.6 0.033 0.233 0.241 95.5
βp : X1 0.009 0.333 0.319 94.1 0.043 0.354 0.332 94.2
βp : previous gap −0.034 0.132 0.139 92.2 −0.028 0.133 0.140 93.6
βr : X1 = −0.3 −0.025 0.253 0.250 94.7 −0.026 0.259 0.255 94.2
βr : X2 = 0.7 0.021 0.096 0.093 94.5 0.024 0.091 0.092 94.8
βd : X1 = −0.5 −0.003 0.277 0.268 95.6 0.034 0.325 0.290 93.6
βd : X2 = 0.5 0.015 0.096 0.095 95.1 0.006 0.092 0.093 95.8
Λr(τ/4) = 0.156 −0.006 0.037 0.037 91.3 −0.004 0.040 0.041 92.6
Λr(τ/2) = 0.625 0.000 0.127 0.129 93.4 0.006 0.141 0.147 94.3
Λr(3τ/4) = 1.406 0.059 0.359 0.335 95.4 0.054 0.360 0.370 95.1
Λd(τ/4) = 0.25 0.009 0.063 0.061 94.1 0.009 0.055 0.056 95.7
Λd(τ/2) = 0.5 0.031 0.118 0.116 95.5 0.025 0.105 0.102 95.2
Λd(3τ/4) = 0.75 0.052 0.188 0.176 96.1 0.040 0.162 0.152 95.9

Scenario 3: Scenario 4:
(αr, αd) = (0.1,−0.1); (αr, αd) = (0.1,−0.1);
βp = (0, 0, 0.1) βp = (−0.5, 1, 0.1)

αr 0.009 0.082 0.081 94.6 0.002 0.070 0.078 95.5
αd −0.008 0.115 0.122 97.4 −0.008 0.120 0.125 96.1
βp : 1 0.019 0.242 0.238 94.5 0.038 0.235 0.242 96.1
βp : X1 0.030 0.309 0.313 96.2 0.025 0.337 0.330 94.8
βp : previous gap 0.007 0.133 0.130 93.4 0.016 0.133 0.136 95.3
βr : X1 = −0.3 −0.026 0.253 0.243 94.0 −0.005 0.265 0.251 93.2
βr : X2 = 0.7 0.015 0.098 0.091 94.5 0.018 0.095 0.090 93.2
βd : X1 = −0.5 0.013 0.276 0.266 95.3 0.048 0.321 0.290 93.7
βd : X2 = 0.5 0.013 0.097 0.097 95.4 0.010 0.099 0.095 94.4
Λr(τ/4) = 0.156 −0.001 0.038 0.037 92.9 −0.004 0.042 0.040 91.2
Λr(τ/2) = 0.625 0.009 0.130 0.130 94.1 0.001 0.150 0.145 92.6
Λr(3τ/4) = 1.406 0.048 0.355 0.333 93.6 0.022 0.375 0.362 93.3
Λd(τ/4) = 0.25 0.004 0.062 0.060 94.0 0.004 0.055 0.055 95.1
Λd(τ/2) = 0.5 0.016 0.121 0.114 95.5 0.013 0.108 0.100 94.9
Λd(3τ/4) = 0.75 0.036 0.190 0.174 96.2 0.027 0.165 0.151 94.5

Veterans General Hospital in Taiwan from 1996 to 2011 (Chen, Chuang and Shen

(2015)). The other study, with a sample size of 1977, focused on chronic myeloid

leukemia and was conducted by the European Society for Blood and Marrow

Transplantation (EBMT).
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Table 4. Analysis of peritoneal dialysis study. ∗: p-value is less than 5%.

Path indicator Relapse state Death state
Variable Estimated SE Estimated SE Estimated SE
Intercept −0.200 0.081∗ - - - -
Previous gap 0.047 0.293 0.639 0.247∗ 1.379 0.244∗

Diabetes - - 0.228 0.246 0.291 0.147∗

Cardiovascular - - −0.061 0.215 0.134 0.163

Table 5. Analysis of EBMT data. ∗: p-value is less than 5%.

Path indicator Relapse state Death state
Variable Estimated SE Estimated SE Estimated SE
Intercept −0.038 0.269 - - - -
Previous gap - - - - −0.460 0.108∗

Medium −0.742 0.218∗ 1.101 0.213∗ 0.307 0.093∗

High −0.491 0.295 1.471 0.338∗ 1.073 0.129*

6.1. Analysis of PD data

In the PD study, the terminal event was death or taking the alternative

treatment, hemodialysis. The nonterminal event was infection caused by the non-

gram-positive organisms. A total of 265 (46%) subjects experienced the terminal

event and 126 (22%) subjects had infection as the first-occurring event. The

maximum number of observed stages was 6. We applied the proposed method

to these data with covariates that included diabetes, cardiovascular disease, and

previous gap time (rescaled to have a range between 0 and 1). From Table

4, subjects were more likely to reach the death state than the relapse state

at each stage during the process of PD treatment. For the gap times to the

nonterminal and terminal events, the parameters αr and αd in models (2.2) and

(2.3) were estimated to be positive. Thus the previous gap time significantly

accelerated the subsequent gap time regardless of whether the subsequent event

was a nonterminal or terminal event.

The results in Table 4 reveal that diabetes could increase the risks for both

non-gram-positive infection and death in each stage of the PD process, although

only its effects on death attained statistically significance. The estimated cu-

mulative hazard functions for the occurrence of infection and death for subjects

with/without diabetes are shown in Figure 2, together with the associated point-

wise 95% confidence intervals. The right panel of Figure 2 suggests that subjects

with diabetes are associated with higher risks (cumulative hazards) of the death

event than subjects without diabetes. A similar pattern is also observed for the

risks of infection between diabetes and non-diabetes patients as shown in the left
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−

Figure 2. The estimated cumulative hazard functions for recurrent infection and terminal
event time with 95% confidence intervals.

panel of Figure 2, although the difference between the two groups of patients

is insignificant over time. The cardiovascular disease status does not affect the

occurrences of infection and death at each stage of the PD process.

To access the adequacy of the proposed mixture model, the martingale resid-

ual plot based on the estimated martingale residuals {(M̂R
ik(τ), M̂

D
ik (τ))} is de-

picted in the Supplementary Material for both the nonterminal and the terminal

events. The martingale residuals show no systematic patterns and hence suggest

that the specified models are adequate.

6.2. Analysis of EMBT data

In the EBMT data, about 23% (35%) of subjects had relapse (death) as the

first-occurring event, and 9% of subjects experienced both events. We considered

semicompeting risks analysis, where relapse is the nonterminal event and death

is the terminal event, and three gratwohl score groups, the “low risk” (the refer-

ence), “medium risk” and “high risk” groups, were included as the covariates in

each state. The time to relapse, if observed, was also included as a covariate to

access its effects on the time to death after relapse. Since this is semicompeting

risks data, we only fit the path indicator model (2.1) to the data at stage 1 and

the probability of relapse at the second stage was set to zero (see Remark 3).

The estimates for the regression coefficients of the path indicator model (2.1),

and the regression coefficients of gap time models (2.2) and (2.3) are reported in

Table 5. We see that, compared to the low and high risk groups, the medium risk

group has a significantly lower chance to experience relapse than to experience

death as the first-occurring event. In analysis of time to relapse, we see that
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Figure 3. The estimated survival curves for the relapse and death times.

medium and high risk groups have significantly higher rates of relapse than the

low risk group, and the same phenomenon is observed for time to death. The

estimate of αd in model (2.3) is negative and significant, implying significant

decelerating effects on death by the relapse time. In the top-left panel of Fig-

ure 3, we see the estimated survival functions for relapse as the first-occurring

event (stage 1) among the three risk groups, and the top-right panel shows the

corresponding estimated survival functions for death. In the bottom panel of

Figure 3, the estimated survival functions for death after relapse (stage 2) are

shown for the three risk groups with the previous duration time to relapse given

by the respective group-specific sample medians. We see that the medium and

high risk groups have significantly lower survival rates for the relapse event. The

survival function for death at stage 1 in the medium risk group is close to that

in the low risk group. The survival functions for death after relapse (stage 2),

after adjusting for the previous duration time to relapse, seem to exhibit quite
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Figure 4. The estimated cumulative incidence functions for relapse (left) and death state
(right) at stage 1.

different patterns than the survival functions for death at stage 1.

The estimated CIF of “relapse” and “death” events at stage 1 are depicted in

Figure 4 for subjects in the high, medium, and low risk groups. In the left panel,

we see that the CIF curves for the relapse event have no significant difference

among the three groups of patients. On the other hand, high risk group tends

to have higher cumulative incidence rates of death than the medium group, and

the medium group also have higher cumulative incidence rates than the low risk

group. The model checking of the proposed model is provided in the Supple-

mentary Material, showing the models specified do not severely deviate from the

observed data.

7. Conclusions

Our proposal facilitates joint analysis of recurrent events and dependent com-

peting risks, with the analysis focus on gap times. In addition to the covariate

effects on the gap times between events, the proposed analysis also examines

effects from previous event or gap times on the current gap time directly through

event time regression models, rather than indirectly through unobserved frailty

or random effects. One limitation for this approach may be that a specific associ-

ation pattern for the relationship between the previous and the current gap times

needs to be assumed in the analysis. However, our simulation results suggest that

the analysis is robust to moderate model misspecification (see the Supplementary

Material).

Although we restricted our attention to the case where there is one nonter-
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minal, possibly recurrent event and one terminal event, the proposed framework

can be readily extended to allow for multiple terminal and nonterminal events by

generalizing the logistic model component in the mixture regression modeling to

a multinomial logistic regression model for multiple transition paths. The event

time regression models for predicting gap times can also be made even more

flexible by generalizing the semiparametric proportional hazards models to the

semiparametric transformation models (Chen (2010, 2012)), which include the

proportional hazards and proportional odds models as special cases.

Supplementary Materials

Supplementary material include the loglikelihood function (3.1), score equa-

tions of parameters, information matrix, the proof of Theorems 1 and 2 and

additional results from Sections 5, 6 and 7.
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