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Abstract: We consider the proportional hazards model with time-dependent covari-

ates measured with error at informative observation times under shared random

effects models. Although various approaches have been proposed to deal with mea-

surement error for time-dependent covariates, very limited research has been done

when the observation times are informative. We propose a new corrected score esti-

mator that allows the observation times to depend on the survival time, the random

effects, or other covariates. Compared to existing conditional score and corrected

score approaches, it relaxes the requirement on non-informative observation times,

may substantially improve the efficiency, and is much more robust to deviations

from normality of the error. The performance of the estimator is evaluated via

simulation studies and by application to data from an HIV clinical trial.
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times, joint modeling, measurement error.

1. Introduction

In biomedical studies, information is often collected on a time-to-event (e.g.,

survival time or failure time) and some covariates. It is of interest to char-

acterize the relationship between the time-to-event and the covariates using a

survival model such as the proportional hazards model. Standard inference re-

quires knowing the values of the covariates at each event time. However, these

may not be available for time-dependent covariates as they are usually measured

intermittently. In addition, the observations may be subject to error. A fur-

ther complication is that the observation times may be informative in that they

are related to the previously observed covariates or even the survival time. For

example, patients with more severe disease status may appear more often for

hospital check-ups in observational studies or have more missing observations

during follow-ups in clinical trials.
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An example is AIDS Clinical Trial Group (ACTG) 175, a randomized clinical

trial to compare four antiretroviral therapies in HIV-infected subjects (Hammer

et al. (1996)). During the study, 2,467 subjects were recruited between December

1991 and October 1992 and followed until November 1994. CD4 count, as a

reflection of immune status, was scheduled to be measured for each participant

about every 12 weeks after randomization. Observations of CD4 count are subject

to substantial biological variation and measurement error. An objective was to

assess the effect of treatment and CD4 count on the time to AIDS or death. Some

patients had missing CD4 measurements during the follow-up before the event or

censoring time, with an average missing rate of 18% after week 12. We focused

on the data after week 12 for reasons explained in Section 6. The missing rate

seems to be significantly associated with the last observed log-10 transformed

CD4 count based on the logistic GEE model (p-value < 2e−16) — if the last

observed CD4 count increased by 10, the odds of missing decreased by a factor of

0.385. We also assessed whether missingness depends on the estimated intercept

and slope of the log-10 transformed CD4 count trajectory via the logistic GEE

model. Both were significant with p-values less than e−10. This indicates that

the observation times are informative.

To circumvent the complication of the intermittent error-prone measure-

ments on time-dependent covariates, early attempts imputed their values at each

event time through the “last value carried forward” and the “naive regression”.

These approaches could lead to biased estimation and erroneous inference (Pren-

tice (1982); Tsiatis and Davidian (2001)). A popular approach uses a shared

random effects joint model that assumes that the longitudinal observations fol-

low a mixed effects model and the survival time depends on the random effects

of the mixed effects model through a proportional hazards model.

Various approaches have been proposed under the joint model framework as-

suming non-informative observation times, including regression calibration (e.g.,

Pawitan and Self (1993); Tsiatis, DeGruttola and Wulfsohn (1995); Dafni and

Tsiatis (1998); Liao et al. (2011)) and likelihood-based approaches (Faucett and

Thomas (1996); Wulfsohn and Tsiatis (1997); Song, Davidian and Tsiatis (2002a);

Ding and Wang (2008); Xu, Baines and Wang (2014)). Regression calibration

can reduce bias compared to the naive methods, but is still inconsistent (Tsiatis

and Davidian (2001)). Hsieh, Tseng and Wang (2006) showed that the likelihood

methods are robust to misspecification of the random effect distribution when

there is rich enough longitudinal information. However, the likelihood based ap-

proaches are usually computationally intensive, and they generally assume that
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the censoring time is independent of survival time and the underlying random ef-

fects, which can be questionable in certain situations. Two appealing alternative

approaches are the conditional score (Tsiatis and Davidian (2001); Song, David-

ian and Tsiatis (2002b)) and the corrected score (Wang (2006)). Both methods

require no distributional assumptions on the random effects. But they require

the observation times to be independent of the survival time, the random effects

and other covariates, they make inefficient use of the longitudinal data – only the

longitudinal information by each event time is used to estimate the least square

substitutes of the true covariates, and they can be sensitive to the normality error

assumption.

Informative observation times have attracted considerable attention when

the focus is on estimation of the longitudinal trajectories (Lin, Scharfstein and

Rosenheck (2004); Liang, Lu and Ying (2009); Sun, Sun and Liu (2007); Sun et

al. (2012)). But very limited research has been done for shared random effects

models when the main interest is in assessing covariate effects on survival time —

to the best of our knowledge, only a likelihood approach was proposed by adding

a third model for the observation times (Liu, Huang and O’Quigley (2008)),

which poses additional challenges in implementation. There is a lack of flexible

and computationally efficient approaches.

To fill this gap, we develop an improved corrected score approach that allows

the observation times to depend on the survival time, the random effects, or other

covariates. Instead of globally correcting the overall bias of the naive estimating

function, we use local correction to correct each biased term separately. We

utilize the least square estimates based on all available longitudinal observations,

which may substantially improve the efficiency over the existing corrected score

and conditional score estimators, and can be more robust to deviations from

normality of the error. As there is no need to model the observation times, the

approach is much simpler to implement than the likelihood-based approaches.

The paper is organized as follows. In Section 2, we give the definition of the

model. In Section 3, the existing conditional score and corrected score estimators

are described and the inconsistency of the estimators is shown under informative

observation times. In Section 4, we propose the improved corrected score estima-

tor and derive its asymptotic properties. The finite sample performance of the

estimator is assessed by simulation studies in Section 5, and is illustrated by an

application to the ACTG 175 data in Section 6. We conclude with discussion in

Section 7.
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2. Model Definition

Let T denote the survival time and C the censoring time. The observed

survival data are V = min(T,C) and ∆ = I(T ≤ C), where I(·) is the indi-

cator function. Let Z denote p time-independent covariates. For simplicity, we

consider a single time-dependent covariate X(t); it is straightforward to extend

to multiple time-dependent covariates. The covariate process X(t) is not ob-

served directly; rather, longitudinal measurements of X(t) are taken at ordered

times u = (u1, . . . , um)T with the observed values W = (W1, . . . ,Wm). Usually,

um ≤ V .

Suppose that the longitudinal covariate process follows the linear mixed ef-

fects model

X(t) = fT (t)α, Wj = X(uj) + ej ,

where f(t) is a known q-dimensional function of t, α is a q-dimensional random

effect, and j = 1, . . . ,m. This allows flexibility in modeling the longitudinal tra-

jectory via polynomial or spline models. No distributional assumption is placed

on α, nor is one needed. The error ej is assumed to be normal with mean zero

and variance σ2, and independent of (T,C,Z, u) given α. For simplicity, we as-

sume that the errors e = (e1, . . . , em)T are independent across time; this can be

relaxed as discussed in Section 7.

Suppose that the hazard of failure depends on the covariates X(t) and Z

through the proportional hazards model

λ(t|X) = λ0(t) exp
{
β0X(t) + γT0 Z

}
, (2.1)

where λ0(t) is an unspecified baseline hazard function, and β0 and γ0 are re-

gression coefficients. We assume that the survival time T is independent of the

censoring time C given α and Z. Let {(Ti, Ci, Vi,∆i, ai, Zi, Wi, ei, ui,mi) : i =

1, . . . , n} be independent and identically distributed samples of (T,C, V,∆, a, Z,

W, e, u,m). Our interest focuses on estimation of the parameters θ0 = (β0, γ
T
0 )

T

using the observed data {(Vi,∆i, Zi, Wi, ui,mi) : i = 1, . . . , n}. Let β and γ de-

note elements in the parameter space of β0 and γ0, respectively, and θ = (β, ηT )T .

3. Existing Conditional Score and Corrected Score Estimators

For now, we assume the error variance σ2 is known. Both the conditional

score and corrected score approaches use the least square estimates X̂i(t) =

fT (t)α̂i(t) of Xi(t), where α̂i(t) is the least square estimator of αi based on the

longitudinal observations on the ith subject by time t, ui(t) = {uij : uij ≤ t}.
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This requires at least q observations by time t. Let mi(t) be the number of

observations in ui(t), Ni(t) = I(Vi ≤ t,∆i = 1,mi(t) ≥ q) be the counting

process for the events, Yi(t) = I(Vi ≥ t, mi(t) ≥ q) be the at-risk process, and

σ2
X(X̂i(t)) be the variance of X̂i(t) conditional on (αi, ui(t)).

3.1. Conditional score estimator

The conditional score approach (Tsiatis and Davidian (2001)) treats the

true covariate Xi(t) as a nuisance parameter and constructs a “sufficient statis-

tic” Si(t;β) = X̂i(t) + σ2
X(X̂i, t)βdNi(t) for Xi(t) based on the distribution of

(dNi(t), X̂i(t)) conditional on (αi, Zi, ui(t), Yi(t) = 1). The conditional hazard

given Si(t;β) is then used to derive the estimating equation

Û cd(θ;Y,N, X̂, Z) = n−1
n∑

i=1

∫ L

0

{(
Si(t, β), Z

T
i

)T−Ĝcd
1 (t, θ;Y, S, Z)

Ĝcd
0 (t, θ;Y, S, Z)

}
dNi(t) = 0,

(3.1)

at a given time L. Here for r = 0, 1, 2, Ĝcd
r (t, θ;Y, S, Z) = n−1

∑n
i=1H

cd
r,i(t, θ;Y,

S, Z), and

Hcd
r,i(t, θ;Y, S, Z) = Yi(t)

(
Si(t, β), Z

T
i

)T⊗r
exp

{
βSi(t, β)+γTZi−σ2

X(X̂i(t))
β2

2

}
,

(3.2)

where for a vector a, a⊗r = 1, a, aaT for r = 0, 1, 2, respectively. The conditional

independence of dNi(t) and X̂i(t) is essential to construct the “sufficient statis-

tic” based on their joint distribution (Tsiatis and Davidian (2001)); this would

not work if the least square estimates were calculated using all the longitudinal

observations.

3.2. Corrected score estimator

Wang (2006) proposed a corrected score estimating function by directly sub-

tracting the bias from the naive estimating function that replaces the unobserved

X(t) by X̂(t). A variation of the corrected score approach was considered in Song

and Wang (2008) with a slight modification on the estimating function to have a

form closer to the conditional score estimating function. The modified corrected

score estimating function can be written as

Û cr(θ;Y,N, X̂, Z)

= n−1
n∑

i=1

∫ L

0

{(
X̂i(t), Z

T
i

)T
− Ĝcr

1 (t, θ;Y, X̂, Z)

Ĝcr
0 (t, θ;Y, X̂, Z)

+ (σ2
X(X̂i(t))β, 0

T
p )

T

}
dNi(t)

= 0, (3.3)
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where for r = 0, 1, 2, Ĝcr
r (t, θ;Y, X̂, Z) = n−1

∑n
i=1H

cr
r,i(t, θ;Y, X̂, Z), and

Hcr
r,i(t, θ;Y, X̂, Z) = Yi(t)

(
X̂i(t), Z

T
i

)T⊗r
exp

{
βX̂i(t) + γTZi − σ2

X(X̂i(t))
β2

2

}
.

When the longitudinal covariates are observed at the same times for all subjects,

the modified corrected score estimator is the same as the original corrected score

estimator by Wang (2006). We refer to these estimators as simple corrected

score estimators, and they are asymptotically equivalent to the conditional score

estimator (Song and Wang (2008)).

3.3. Inconsistency under informative observation times

The simple corrected score approaches directly subtract the overall bias from

the naive estimating function (Wang (2006)) or with some adjustment (Song

and Wang (2008)). We refer to this type of correction as global correction. As

the overall bias depends on the unknown joint distribution of Vi, ∆i, Xi and

X̂i(t), which is not easy to evaluate in general, it is calculated under the simple

assumption of non-informative observation times. Consequently, the methods

do not work when the observation times are informative. We investigate the

inconsistency of the modified corrected score estimator based on (3.3), which is

similar to the original corrected score estimator (Wang (2006)).

With some algebra, the limit of Û cr(θ;Y,N, X̂, Z) in (3.3) can be written as

U cr(θ;Y,N, X̂, Z) = U I(θ;Y,N,X,Z) + b(t, θ;Y,N, X̂,X,Z), (3.4)

where

U I(θ;Y,N,X,Z) = E

[∫ L

0

{
(Xi(t), Zi)

T − G1(t, θ;Y,X,Z)

G0(t, θ;Y,X,Z)

}
dNi(t)

]
,

b(t, θ;Y,N, X̂,X,Z) = E

(∫ L

0

{
E
[
Yi(t)(σ

2
X(X̂i(t))β, 0

T
p )

T exp
{
βXi(t)+γTZi

}]
G0(t, θ;Y,X,Z)

−(σ2
X(X̂i(t))β, 0

T
p )

T

}
dNi(t)

)
,

and Gr(t, θ;Y,X,Z) = E(Yi(t)(Xi(t), Zi)
T⊗r exp

{
βXi(t) + γTZ

}
) for r = 0, 1, 2.

Here U I(θ;Y,N,X,Z) is the limit of the weighted partial likelihood function with

weight I(mi(t) ⩾ q), which equals zero when θ = θ0. If the observation times

do not depend on α, V , and Z, it is clear that σ2
X(X̂i(t))β is independent of

Yi(t) exp
{
βXi(t) + γTZi

}
and Ni(t). It follows that b(t, θ;Y,N, X̂,X,Z) = 0

and then the consistency of the estimator. However, if the observation times

depend on α, V , or Z, in general b(t, θ0;Y,N, X̂,X,Z) ̸= 0 and the estimator is
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not consistent.

4. Improved Corrected Score Estimator

Instead of globally correcting the overall bias of the naive estimating function,

we propose correcting the biased terms separately, which we refer to as local

correction.

The naive estimating function that substitutes X̂(t) for X(t) can be written

as

n−1
n∑

i=1

∫ L

0

(
X̂i(t), Z

T
i

)T
dNi(t)−

∫ L

0

ĜN
1 (t, θ;Y, X̂, Z)

ĜN
0 (t, θ;Y, X̂, Z)

dn−1
n∑

i=1

Ni(t), (4.1)

where for r = 0, 1, ĜN
r (t, θ;Y, X̂, Z) = n−1

∑n
i=1H

N
r,i(t, θ;Y, X̂, Z),

HN
r,i(t, θ;Y, X̂, Z) = Yi(t)

(
X̂i(t), Zi

)T⊗r
exp

{
βX̂i(t) + γTZi

}
.

It has the same form as the partial likelihood estimating function with weight

I(mi(t) ⩾ q). Bias arises from substituting X̂ for X. The function (4.1) contains

four empirical processes, three of which contain X̂. Among the three, with respect

to the corresponding processes using the true X, n−1
∑n

i=1

∫ L
0 (X̂i(t), Z

T
i )

TdNi(t)

is not biased, but ĜN
1 (t, θ;Y, X̂, Z) and ĜN

0 (t, θ;Y, X̂, Z) are. Instead of subtract-

ing the induced overall bias, we propose correcting each empirical process sepa-

rately. Specifically, for r = 0, 1, we replace ĜN
r (t, θ;Y, X̂, Z) by Ĝcr∗

r (t, θ;Y, X̂, Z)

= n−1
∑n

i=1H
cr∗
r,i (t, θ;Y, X̂, Z) with

Hcr∗
r,i (t, θ;Y, X̂, Z) = Yi(t)

{
X̂i(t)− σ2

X(X̂i(t))β, Z
T
i

}T⊗r

× exp

{
βT X̂i(t) + γTZi − σ2

X(X̂i(t))
β2

2

}
.

These can be shown to be unbiased regardless of whether the observation times

are informative or not. Note that Ĝcr∗
0 (t, θ;Y, X̂, Z) = Ĝcr

0 (t, θ;Y, X̂, Z). Using

the local correction technique, we obtain the estimating equation

Û cr∗(θ;Y,N, X̂, Z) = n−1
n∑

i=1

∫ L

0

{(
X̂i(t), Z

T
i

)T
− Ĝcr∗

1 (t, θ;Y, X̂, Z)

Ĝcr
0 (t, θ;Y, X̂, Z)

}
dNi(t)

= 0. (4.2)

Comparing to (3.3), the estimating function (4.2) does not have a separate

correction term for bias, but Ĝcr
1 (t, θ;Y,X,Z) is replaced by Ĝcr∗

1 (t, θ;Y, X̂, Z)

with Hcr
1,i(t, θ;Y,X,Z) replaced by Hcr∗

1,i (t, θ;Y, X̂, Z), where X̂i(t) is replaced by

X̂i(t) − σ2
X(X̂i(t))β in the linear term. This works even when the observation
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times are informative.

We wish to modify the corrected score approach so that it will be more ef-

ficient. Note that the least square estimates X̂i(t) in (3.3) are calculated using

the longitudinal observations by time t only, the observations after t are not

used. In addition, at any event time, subjects with less than q observations by

then are excluded in the calculation even though there are more observations

available later. One reason of using X̂(t) might be due to the intuition that

hazard may only depend on information by time t. However, although the haz-

ard model (2.1) depends on the time-dependent covariate Xi(t), it essentially

depends on the underlying random effects αi, which does not change over time

and can be estimated using all the longitudinal observations available for sub-

ject i, usually depending on Vi. The resulting least square estimator α̂∗
i of αi is

more efficient than α̂i. Thus, to improve the efficiency, it is tempting to replace

X̂i(t) by X̂∗
i (t) = fT (t)α̂∗

i , and correspondingly replace the variance σ2
X(X̂i(t))

by the variance σ2
X(X̂∗

i (t)) of X̂
∗
i (t) conditional on αi and ui, the counting pro-

cess Ni(t) by N∗
i (t) = I(Vi ≤ t,∆i = 1,mi ≥ q) and the at-risk process Yi(t)

by Y ∗
i (t) = I(Vi ≥ t, mi ≥ q). Thus all subjects with at least q observations

are included in the calculation regardless whether the observations are before

or after time t. However, this does not work with the simple corrected score

approaches as the resulting estimating functions are no longer consistent, even

under non-informative observation times. This can be easily seen from (3.4)

as the limit of Û cr(θ;Y ∗, N∗, X̂∗, Z) is in the same form and the corresponding

bias b(t, θ;Y ∗, N∗, X̂∗, X, Z) ̸= 0 in general as σ2
X(X̂∗

i (t)) depends on Vi. On

the contrary, we may apply the replacement to the estimating function (4.2).

Specifically, we propose the improved corrected score estimating equation using

X̂∗
i (t):

Û cr∗(θ;Y ∗, N∗, X̂∗, Z) = 0. (4.3)

The asymptotic properties of the improved estimator are summarized in the

following theorem, with the proof given in the Appendix.

Theorem 1. Under conditions C1–C5 in the Appendix, a solution θ̂∗ = (β̂∗, γ̂∗T )T

to (4.3) exists and converges to θ0 almost surely. In addition, n1/2(θ̂∗ − θ0) is

asymptotically normal with mean zero and variance

Ωcr∗ = {Γ∗−1(θ0;Y
∗, N∗, X̂∗, Z)}−1var{φ∗

i (θ0;Y
∗, N∗, X̂∗, Z)}

Γ∗−1(θ0;Y
∗, N∗, X̂∗, Z), (4.4)

where
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Γ∗(θ;Y ∗, N∗, X̂∗, Z)

=

∫ L

0

(
Gcr∗

2 (t, θ;Y ∗, X̂∗, Z)Gcr
0 (t, θ;Y ∗, X̂∗, Z)−Gcr∗⊗2

1 (t, θ;Y ∗, X̂∗, , Z)

Gcr2
0 (t, θ;Y ∗, X̂∗, Z)

−
E
[
Y ∗
i (t)diag(σ

2
X(X̂∗

i (t)), 0
T
p )

T exp
{
βX̂∗

i (t) + γTZi − σ2
X(X̂∗

i (t))β
2/2
}]

Gcr
0 (t, θ;Y ∗, N∗, X̂∗, Z)


dE {N∗

i (t)} ,

φ∗
i (θ;Y

∗, N∗, X̂∗, Z)

=

∫ L

0

{
(X̂∗

i (t), Z
T
i )

T − Gcr∗
1 (t, θ;Y ∗, X̂∗, Z)

Gcr
0 (t, θ;Y ∗, X̂∗, Z)

}
dN∗

i (t)

−
∫ L

0

{
Hcr∗

1,i (t, θ;Y
∗, X̂∗, Z)

Gcr
0 (t, θ;Y ∗, X̂∗, Z)

−
Hcr

0,i(t, θ;Y
∗, X̂∗, Z)Gcr∗

1 (t, θ;Y ∗, X̂∗, Z)

Gcr2
0 (t, θ;Y ∗, X̂∗, Z)

}
d {EN∗

i (t)} ,

Gcr∗
r (t, θ;Y ∗, N∗, X̂∗, Z) = E{Hcr∗

r (t, θ;Y ∗, X̂∗, Z)}, r = 0, 1, 2.

To compare the efficiency of the improved corrected score estimator with

the simple estimators, we consider the estimator θ̂ obtained from (4.2), which is

equivalent to the simple corrected score estimators when the time-dependent co-

variates are observed at the same times for all subjects. The asymptotic variance

of n1/2(θ̂ − θ0) is

Ωcr = {Γ∗−1(θ0;Y,N, X̂, Z)}−1var
{
φ∗
i (θ0;Y,N, X̂, Z)

}
Γ∗−1(θ0;Y,N, X̂, Z),

which just replaces X̂∗, Y ∗, N∗ by X̂, Y , N in (4.4), respectively. We show in

the Appendix that Ωcr − Ωcr∗ is nonnegative definite (Ωcr ≥pd Ωcr∗). Hence the

improved corrected score estimator is more efficient than the simple estimators.

Another significant gain from this improvement is that the improved cor-

rected score estimator does not require the observation times of the longitudinal

data to be independent of V , α, and Z, which is required by the conditional

score and simple corrected score estimators. In addition, the least square esti-

mate α̂∗
i needs to be calculated only once for each subject, while âi(t) needs to

be calculated separately at each failure time before Vi.

In practice, the error variance σ2 is usually unknown. It can be estimated

by the method of moment estimate σ̂2 (Tsiatis and Davidian (2001)). The im-

proved estimators can be obtained by replacing σ2 by σ̂2 in (4.3). The estimators

are still consistent and normal. The asymptotic distribution can be derived by
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stacking the estimating functions for σ2 and the estimating functions in (4.3).

The variances can be estimated by replacing the unknown parameters (β, γ, σ2)

by (β̂, γ̂, σ̂2) and the expectations by empirical averages.

In some situations, X(t) may follow the same longitudinal trajectory after

the event time and may be measured intermittently until being censored. This

can happen when the event is not terminal (death) and X(t) is endogenous.

We can calculate X̂∗
i using all the longitudinal observations and the improved

corrected score estimator still works.

5. Simulation Studies

We conducted simulation studies to evaluate the performance of the improved

corrected score estimator under various scenarios. We first considered the case

when the observation times were independent of the survival time and the co-

variates. Here, the survival time depended on a single covariate X(t) = α0 +α1t

through the proportional hazards model, with λ0(t) = I(t ≥ 2) and β0 = −1.

The random effects (α0, α1) were generated from a normal distribution with mean

(4.173,−0.0103), variance (1.24, 0.003) and covariance −0.0114. The censoring

time was generated from an exponential distribution with mean 300 and trun-

cated at 80, leading to a censoring rate of 37%. The covariate X(t) was observed

at times u∗ = 0, 2, 8, 16, 24, . . . , 80 before the survival time and the censoring

time. On average there were 6.00 observations per subject. The measurement

error was generated from a normal distribution with mean 0 and variance σ2.

We generated 1,000 simulated data sets with sample size n = 500 or 1, 000

and σ2 = 0.15 or 0.30. For each data set, the regression coefficient β0 was

estimated in five ways: (i) using the “ideal” approach where the true values of

X(t) were used; (ii) using the conditional score approach; (iii) using the simple

corrected score approach based on (3.3); (iv) using the improved corrected score

approach; (v) using the conditional score approach with X̂(t) replaced by X̂∗(t);

(vi) using the simple corrected score approach with X̂(t) replaced by X̂∗(t). For

all methods, we calculated the estimate and standard error and constructed the

95% Wald confidence interval.

The results are shown in Table 1. The simple corrected score approach does

not converge or has outlier estimates for some simulated data sets when the error

variance is relatively large (σ2 = 0.30). Its performance is close to that of the

conditional score estimator when the error variance is relatively small (σ2 = 0.15),

but the standard deviation is still larger. The conditional score and the improved
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Table 1. Simulation results in the case of a single covariate.

n = 500 n = 1, 000
Bias BiasM SD SE CP Bias BiasM SD SE CP

ideal −0.002 −0.001 0.052 0.052 0.953 −0.001 −0.000 0.038 0.037 0.948

σ2 = 0.15 CDS −0.007 −0.006 0.080 0.076 0.938 −0.004 −0.003 0.061 0.056 0.928
CRS −0.029 −0.024 0.093 0.087 0.956 −0.016 −0.014 0.067 0.061 0.923
ICRS −0.008 −0.006 0.065 0.065 0.956 −0.005 −0.003 0.048 0.046 0.943
CDSA −0.426 −0.413 0.152 0.128 0.056 −0.428 −0.425 0.114 0.099 0.012
CRSA 1.542 −0.489 4.802 0.461 0.269 0.005 −0.538 2.745 0.244 0.048

σ2 = 0.30 CDS −0.013 −0.015 0.112 0.094 0.900 −0.006 −0.009 0.090 0.073 0.885
CRS 0.671 −0.059 2.346 0.255 0.874 0.051 −0.066 1.026 0.157 0.951
ICRS −0.019 −0.016 0.083 0.080 0.949 −0.011 −0.010 0.060 0.056 0.940
CDSA −0.742 −0.726 0.230 0.167 0.017 −0.751 −0.746 0.184 0.132 0.006
CRSA 6.989 6.962 1.041 0.618 0.007 7.366 7.349 0.909 0.464 0.005

CDS, conditional score; CRS, corrected score; ICRS, improved corrected score; CDSA,
conditional score with X̂(t) replaced by X̂∗(t); CRSA, corrected score with X̂(t)

replaced by X̂∗(t); BiasM, empirical median bias; SD, empirical standard deviation;
SE, average of estimated standard errors; CP, coverage probability of the 95% Wald
confidence interval.

corrected score estimators show negligible bias close to the “ideal” estimator. The

improved corrected score estimator has better coverage probabilities and smaller

standard deviations than the conditional score estimator, with relative efficiencies

ranging between 1.53 to 2.24. The conditional score and simple corrected score

estimators with X̂(t) replaced by X̂∗(t) are biased.

We also conducted simulations with an additional time-independent covari-

ate Z in the proportional hazards model. The covariate Z was generated from a

Bernoulli distribution with probability 0.5. The corresponding regression coeffi-

cient was γ0 = −1. The censoring rate was about 57%. Table 2 shows the results

from methods (i)-(iv) for σ2 = 0.15, which indicates that the improved corrected

score approach also improves the efficiency of estimation of γ0.

We modified the scenario so that the observation times depended on the sur-

vival time or the underlying random effects. We considered two cases with a sin-

gle covariate X(t) where the observations may be missing after baseline with the

missing probability (1) {1+exp(1+0.5α0+30α1)}−1 or (2){1+exp(1+0.05V )}−1.

The regression parameter β0 was estimated using methods (i)-(iv). The average

numbers of observations per subject were 5.62 and 5.77, respectively. The re-

sults for σ2 = 0.15 are presented in Table 3. In both cases the conditional score

and the simple corrected score estimators show obvious bias and poor coverage
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Table 2. Simulation results in the case of two covariates.

n = 500 n = 1, 000
Bias SD SE CP Bias SD SE CP

β ideal −0.009 0.062 0.059 0.946 −0.005 0.044 0.042 0.940
CDS −0.018 0.091 0.081 0.924 −0.011 0.064 0.059 0.934
CRS −0.044 0.109 0.093 0.948 −0.024 0.069 0.064 0.931
ICRS −0.017 0.076 0.072 0.942 −0.010 0.053 0.051 0.945

γ ideal −0.001 0.153 0.155 0.958 −0.001 0.117 0.109 0.930
CDS −0.004 0.167 0.166 0.957 −0.002 0.123 0.117 0.933
CRS −0.010 0.171 0.169 0.954 −0.005 0.124 0.118 0.934
ICRS −0.004 0.157 0.159 0.965 −0.004 0.119 0.112 0.931

CDS, conditional score; CRS, corrected score; ICRS, improved corrected score;
SD, empirical standard deviation; SE, average of estimated standard errors; CP,
coverage probability of the 95% Wald confidence interval.

Table 3. Simulation results with observation times depending on V or α.

n = 500 n = 1, 000
Bias BiasM SD SE CP Bias BiasM SD SE CP

case 1
ideal −0.001 0.002 0.053 0.055 0.951 −0.001 −0.001 0.037 0.039 0.957
CDS −0.140 −0.131 0.106 0.093 0.657 −0.161 −0.156 0.076 0.071 0.394
CRS 6.506 6.783 2.184 1.193 0.061 7.218 7.252 1.499 0.981 0.018
ICRS −0.042 −0.039 0.091 0.088 0.950 −0.038 −0.033 0.061 0.061 0.930

case 2
ideal −0.001 0.003 0.054 0.054 0.950 0.000 0.001 0.037 0.038 0.954
CDS −0.180 −0.179 0.097 0.089 0.482 −0.201 −0.197 0.071 0.068 0.143
CRS 6.389 7.900 3.888 1.129 0.229 6.617 8.384 4.096 0.878 0.224
ICRS −0.033 −0.030 0.079 0.077 0.952 −0.031 −0.029 0.053 0.054 0.933
CDS, conditional score; CRS, corrected score; ICRS, improved corrected score; Bi-
asM, empirical median bias; SD, empirical standard deviation; SE, average of esti-
mated standard errors; CP, coverage probability of the 95%Wald confidence interval.

probabilities, while the improved corrected score estimator still works well.

We also conducted simulations to evaluate the sensitivity of the approaches

on deviations from normality of the error. The scenario was the same as that for

Table 1 except that the error was generated from non-normal distributions with

mean zero and variance σ2 = 0.15 by mixing two normal distributions N(µ1, σ
2
N )

and N(µ2, σ
2
N ) with µ1 = (1−p)sσN , µ2 = −psσN and σ2

N = σ2/(1+p(1−p)s2),

where p is the mixing proportion and the distance between the means of the

two normal distributions is sσN . We considered two cases, (a) a skewed bimodal
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Table 4. Simulation results with mixture of normal error.

n = 500 n = 1, 000
Bias SD SE CP Bias SD SE CP

ideal −0.006 0.053 0.052 0.948 0.000 0.037 0.037 0.949

case (a)
CDS −0.067 0.089 0.080 0.860 −0.062 0.061 0.060 0.837
CRS −0.105 0.115 0.101 0.881 −0.081 0.069 0.067 0.819
ICRS −0.026 0.070 0.067 0.942 −0.014 0.048 0.047 0.950

case (b)
CDS −0.079 0.083 0.080 0.841 −0.079 0.062 0.059 0.752
CRS −0.125 0.113 0.105 0.866 −0.105 0.073 0.069 0.726
ICRS −0.023 0.069 0.066 0.936 −0.013 0.048 0.046 0.948
CDS, conditional score; CRS, corrected score; ICRS, improved corrected score;
SD, empirical standard deviation; SE, average of estimated standard errors; CP,
coverage probability of the 95% Wald confidence interval.

mixture of two normals with p = 0.3 and s = 3, and b) a symmetric bimodal

mixture of two normals with p = 0.5 and s = 10. The densities of the two

distributions are shown in Figure 3. Table 4 shows the results from methods

(i)-(iv). The conditional score and the simple corrected score estimators both

show some bias and have coverage probabilities obviously below the nominal

level, while the improved corrected score estimator seems more robust to the

deviations from normality. One possible explanation is that X̂∗(t) is closer to

normal than X̂(t).

Simulation studies were also conducted under other scenarios: When the

random effects followed a skewed mixture of normal distribution, the results

were similar; When the longitudinal covariate was observed following the same

trend after the event time, the improved corrected score estimator gained more

efficiency by using all the longitudinal observations in calculating X̂∗(t). Over-

all, the simulation evidence suggests that the improved corrected score estimator

outperforms the conditional score and the simple corrected score estimators. The

computation times for the three approaches were comparable in our simulation

studies. Although the improved corrected score approach only requires calculat-

ing the least square estimate once for each subject, it involves additional com-

putation induced by the extra term in Ĝcr∗
1 versus Ĝcr

1 , especially in computing

the variance.

6. Application

We applied the proposed approach to the ACTG 175 data. Interest is in
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Figure 1. Trajectories of log CD4 for 10 randomly selected subjects.

Table 5. Results for ACTG 175 data.

β γ
Est SE Est SE

CDS −2.208 0.202 0.141 0.258
CRS −2.342 0.262 0.230 0.306
ICRS −2.378 0.176 −0.091 0.178
CDS, conditional score; CRS, corrected score; ICRS, im-
proved corrected score; Est, estimate; SE, standard error.

assessing the effect of CD4 count and treatment on time to AIDS or death.

There were 308 events observed during the study with an average of 8.2 CD4

measurements per subject. Figure 1 presents log 10-transformed CD4 profiles

for 10 randomly selected subjects and shows an apparent initial increase, with

a peak at week 12, followed by an approximate linear decline. The logarithmic

transformation is usually used for CD4 count to achieve approximate within-

subject normality and constant variance. Because only nine events occurred

by week 12, for simplicity, we considered the data after week 12 and assumed

X (u) = α0 + α1u represents the inherent log10 CD4 count at time u. Figure 2

shows the residual plots from the least square estimates and the corresponding

Q-Q plot. It seems reasonable to assume constant error variance, and the error

distribution may be short-tailed relative to the normal but symmetric.

The primary analysis found zidovudine alone to be inferior to the other

three therapies; thus, further investigations focused on two treatment groups,

zidovudine alone and the combination of the other three. Let Z(u) = I(treatment

̸= zidovudine alone) be the treatment indicator. The hazard model includes the
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Figure 2. Left: residual plot; Right, Q-Q plot of the residuals.
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Figure 3. Densities of non-normal errors. Left: (a) p = 0.3, s = 3; Right: (b) p = 0.5,
s = 10.

two covariate X(u) and Z(u).

We estimated the regression coefficients using the conditional score, simple

corrected score (3.3), and improved corrected score approaches. The results are

shown in Table 5. The estimates of β are similar for all three methods. The

improved corrected score estimate of γ is negative while the conditional score and

simple corrected score estimates are positive, although none is significant. This

may be related to the informative observation times. The improved corrected

score estimates of β and γ have smaller standard errors, which reflects efficiency

gain over the conditional score and the simple corrected score estimates.
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7. Discussion

We have proposed an improved corrected score estimator for the proportional

hazards model with time-dependent covariates intermittently measured with er-

ror. The estimator may substantially improve the efficiency over the conditional

score and the simple corrected score estimators, and is more robust to deviations

from the normality of the error. In addition, it does not require the observation

times to be non-informative.

We have focused on improving the estimation of the regression coefficients.

The same technique may be applied to improve the Breslow-type estimator of

the cumulative baseline hazard (Song and Wang (2008)) by substituting X̂∗
i (u)

for X̂i(u).

The improved corrected score approach can be easily extended to multi-

ple error-contaminated time-independent covariates with informative number of

replicates or time-dependent covariates with informative observation times (Song,

Davidian and Tsiatis (2002b); Song and Wang (2008)), or more flexible mod-

els such as the varying coefficient proportional hazards model (Song and Wang

(2008)) and longitudinal models with subject-specific changepoints (Tapsoba, Lee

and Wang (2011)). For simplicity, we have focused on the case when the errors

are independent across time. This can be generalized to other error correlation

structures, such as the exponential correlation ((Diggle et al., 2002, p.56)). In ad-

dition, the survival model can be generalized to include functions of the random

effects (Song, Davidian and Tsiatis (2002b)).
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Appendix

A.1. Regularity conditions

To derive the asymptotic properties of the improved estimator, we need some

regularity conditions.

C1. Λ0(t) =
∫ t
0 λ0(u)du is continuous in [0, L], and Λ0(L) < ∞;

C2. P (V ≥ L,m ≥ q) > 0;

C3. supt∈[0,L]E
{
X2(t)

}
< ∞, E(ZTZ) < ∞. For a compact neighborhood
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N (θ0) of θ0,

sup
t∈[0,L],θ∈N (θ0)

E
[(
X2(t) + ZTZ

) {
exp

(
2βX(t) + 2γTZ

)}]
< ∞.

C4. supt∈[0,L]E
{
σ2
X(X̂∗

i (t))
}
< ∞.

C5. The matrix

Γ(θ;Y ∗, N∗, X, Z) =

∫ L

0

{
G2(t, θ;Y

∗, N∗, X, Z)

G0(t, θ;Y ∗, N∗, X, Z)

−G⊗2
1 (t, θ;Y ∗, N∗, X, Z)

G2
0(t, θ;Y

∗, N∗, X, Z)

}
dE {N∗(t)}

is positive definite.

A.2. Proof of Theorem 1

First consider existence and consistency. Note that Û cr∗(θ;Y ∗, N∗, X̂∗, Z)

can be rewritten as

Û cr∗(θ;Y ∗, N∗, X̂∗, Z) = Ê

[∫ L

0
(X̂∗(t), ZT )TdN∗(t)

]
−
∫

Ĝcr∗
1 (t, θ;Y ∗, X̂∗, Z)

Ĝcr
0 (t, θ;Y ∗, X̂∗, Z)

dÊ {N∗(t)} , (A.1)

where Ê is the operator for empirical average such that Ê(a) = n−1
∑n

i=1 ai.

By the extended strong law of large number (Appendix III, Andersen and Gill

(1982)), under conditions C2-C4, the empirical processes in (A.1) converge almost

surely to their limits uniformly for t ∈ [0, L], θ ∈ N (θ0). By the chain law,

Û cr∗(θ;Y ∗, N∗, X̂∗, Z) converges uniformly almost surely for θ ∈ N (θ0) to

U cr∗(θ;Y ∗, N∗, X̂∗, Z) = E

[∫ L

0
(X̂∗(t), ZT )TdN∗(t)

]
−
∫ L

0

[
Gcr∗

1 (t, θ;Y ∗, X̂∗, Z)

Gcr
0 (t, θ;Y ∗, X̂∗, Z)

dE {N∗(t)}

]
.

By iterated expectations, it can be shown that

E

{∫ L

0
(X̂∗(t), ZT

i )
TdN∗(t)

}
= E

[∫ L

0
(X(t), ZT

i )
TdN∗

i (t)

]
,

Gcr∗
r (t, θ;Y ∗, N∗, X̂∗, Z) = Gr(t, θ;Y

∗, N∗, X, Z) (A.2)

for r = 0, 1. Note that Gcr∗
0 (t, θ;Y ∗, N∗, X̂∗, Z) = Gcr

0 (t, θ;Y ∗, N∗, X̂∗, Z) is
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bounded away from zero. By counting process theory, under condition C1,

E

[∫ L

0
(X(t), ZT

i )
TrdN∗

i (t)

]
=

∫ L

0
Gcr∗

r (t, θ0;Y
∗, X̂∗, Z)dΛ0(t)

for r = 0, 1. It follows that U cr∗(θ0;V,∆, X̂∗) = 0. With similar arguments, it can

be shown that ∂Û cr∗(θ;Y ∗, N∗, X̂∗, Z)/∂θT converges uniformly almost surely to

−Γ∗(θ;Y ∗, N∗, X̂∗, Z).With some algebra, it can be shown that Γ∗(θ;Y ∗, N∗, X̂∗,

Z) = Γ(θ; Y ∗, N∗, X, Z). Under condition C5, θ0 is the unique zero crossing of

U cr∗(θ;Y ∗, N∗, X̂∗, Z) in a neighborhood of θ0. The existence and consistency of

θ̂∗ then follows.

Next, we show the asymptotic normality. By a Taylor expansion of U cr∗(θ;Y ∗,

N∗, X̂∗, Z) at θ0,

0 = U cr∗(θ;Y ∗, N∗, X̂∗, Z)

= Û cr∗(θ0;Y
∗, N∗, X̂∗, Z) +

∂Û cr∗(θ̃;Y ∗, N∗, X̂∗, X)

∂θT

(
θ̂∗ − θ0

)
,

where θ̃ lies between θ0 and θ̃∗. Thus

n1/2
(
θ̃∗ − θ0

)
=

{
−∂Û cr∗(θ̃;Y ∗, N∗, X̂∗, X)

∂θT

}−1

n1/2Û cr∗(θ0;Y
∗, N∗, X̂∗, Z).

With a functional Taylor expansion, it can be shown that

n1/2Û cr∗(θ0;Y
∗, N∗, X̂∗, Z) = n−1/2

n∑
i=1

φ∗
i (θ0;Y

∗, N∗, X̂∗, Z) + op(1).

By the uniform almost sure convergence of ∂Û cr∗(θ;Y ∗, N∗, X̂∗, Z)/∂θT , we have

n1/2
(
θ̂∗ − θ0

)
= {Γ(θ0;Y ∗, N∗, X)}−1 n−1/2

n∑
i=1

φ∗
i (θ0;Y

∗, N∗, X̂∗, Z) + op(1).

(A.3)

The asymptotic normality then follows from the Central Limit Theorem and

Slutsky’s Theorem.

A.3. Proof of Ωcr ≥pd Ωcr∗

For simplicity, we assume that I(m ≥ q) and I(m(t) ≥ q) are independent

of V,∆, α, and Z. In parallel to (A.3), we can show

n1/2
(
θ̂ − β0

)
= {Γ(θ0;Y,N,X)}−1 n−1/2

n∑
i=1

φ∗
i (θ0;Y,N, X̂, Z) + op(1).

From (A.2), it can be seen that, for r = 0, 1, 2,
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Gcr∗
r (t, θ;Y ∗, X̂∗, Z) = Gr(t, θ;Y

I , X)E{I(mi ≥ q)},
Gcr∗

r (t, θ;Y, X̂∗, Z) = Gr(t, θ;Y
I , X)E{I(mi(t) ≥ q)},

where Y I(t) = I(V ≥ t). This, together with N∗
i (t) ≥ Ni(t), implies

Γ(θ;Y ∗, N∗, X̂∗, Z) ≥pd Γ(θ;Y,N,X,Z). (A.4)

Note that, conditional on αi, ui, Vi,∆i, (X̂i(t), X̂
∗
i (t)) has a joint normal distri-

bution with mean (X(t), X(t)) and cov(X̂i(t), X̂
∗
i (t)) = σ2

X(X̂∗
i (t)). It follows

that

X̂i(t)|X̂∗
i (t), αi, ui, Vi,∆i ∼ N

(
X̂∗

i (t), σ
2
X(X̂i(t))− σ2

X(X̂i(t))
)
.

Thus, with some algebra, we have

E
[
Hcr∗

r,i (t, θ;Y, X̂, Z)|X̂i(t), αi, ui, Vi,∆i

]
= E

[
Hcr∗

r,i (t, θ;Y, X̂
∗, Z)

]
for r = 0, 1. It follows that E{φ∗

i (θ;Y,N, X̂, Z)|Vi,∆i, αi, ui, α̂
∗
i } = φ∗

i (θ;Y,N,

X̂∗, Z). This implies

cov
{
φ∗
i (θ;Y,N, X̂, Z), φ∗

i (θ;Y,N, X̂, Z)− φ∗
i (θ;Y,N, X̂∗, Z)

}
= 0.

Hence

var
{
φ∗
i (θ;Y,N, X̂, Z)

}
= var

{
φ∗
i (θ;Y,N, X̂∗, Z)

}
+ var

{
φ∗
i (θ;Y,N, X̂, Z)− φ∗

i (θ;Y,N, X̂∗, Z)
}

≥ pdvar
{
φ∗
i (θ;Y,N, X̂∗, Z)

}
.

In addition, it can be easily seen that

φ∗
i (θ;Y,N, X̂∗, Z)

[
φ∗
i (θ;Y,N, X̂∗, Z)− φ∗

i (θ;Y
∗, N∗, X̂∗, Z)

]
= 0

as φ∗
i (θ;Y,N, X̂∗, Z) = 0 if I(mi(t) ≥ q) = 0 and φ∗

i (θ;Y,N, X̂∗, Z) = φ∗
i (θ; Y

∗,

N∗, X̂∗, Z) otherwise. Thus

cov
{
φ∗
i (θ;Y,N, X̂∗, Z), φ∗

i (θ;Y,N, X̂∗, Z)− φ∗
i (θ;Y

∗, N∗, X̂∗, Z
}
= 0.

It follows that var
{
φ∗
i (θ;Y,N, X̂∗, Z)

}
≥pd var

{
φ∗
i (θ;Y

∗, N∗, X̂∗, Z)
}
. Thus

var
{
φ∗
i (θ;Y,N, X̂, Z)

}
≥pd var

{
φ∗
i (θ;Y

∗, N∗, X̂∗, Z)
}
. (A.5)

Combining (A.4) and (A.5), we have Ωcr ≥pd Ωcr∗.
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