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Abstract: Two-level factorial designs are considered under a conditional model with

a pair of conditional and conditioning factors. Such a pair can arise in many practi-

cal situations. With properly defined main effects and interactions, an appropriate

effect hierarchy is introduced under the conditional model. A complementary set

theory as well as an efficient computational procedure, supported by a powerful re-

cursion relation, are developed to implement the resulting design strategy, leading

to minimum aberration designs. This calls for careful handling of many new and

subtle features of the conditional model as compared to the traditional one.
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1. Introduction

Fractional factorial designs are of significant interest due to their wide ap-

plicability to diverse fields. Exploration of these designs under the minimum

aberration (MA) and related model robustness criteria has received much at-

tention and the two-level case has been particularly focused on because of its

popularity among practitioners. We refer to Mukerjee and Wu (2006), Wu and

Hamada (2009), Xu, Phoa and Wong (2009), and Cheng (2014) for surveys and

further references.

In this paper, we consider two-level factorials but the setting is different from

the traditional one. Among the factors, there is a pair, F1 and F2 , such that

the main and interaction effects involving F1 are defined conditionally on each

fixed level of F2. To motivate the ideas, suppose there are only two factors F1

and F2, each at levels 0 and 1. With the treatment effects denoted by τ(00),

τ(01), τ(10) and τ(11), main effect of F1 is traditionally defined in terms of the

arithmetic mean of the simple effects τ(00)− τ(10) and τ(01)− τ(11). One can

view (Wu and Hamada, 2009, p. 164) these simple effects as conditional main
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effects of F1, for F2 held fixed at levels 0 and 1, respectively. There are practical

situations, however, where these conditional effects, which compare the levels of

F1 separately at each fixed level of F2, are themselves of interest rather than

the traditional main effect of F1. A conditional model, with F1 and F2 as the

conditional and conditioning factors, respectively, is appropriate in situations of

this kind.

The interests in a given context determine a choice between the traditional

and conditional models as well as the specification in advance of the conditional

and conditioning factors in the latter model. For example, if motor and speed

are two factors in an industrial experiment on fuel consumption, there being

two motors each of which can be run at two speeds, say 1,500 rpm and 2,500

rpm, and interest lies in comparing the speeds separately for each motor, then

the conditional model is relevant, with speed and motor as the conditional and

conditioning factors respectively. Their roles get reversed if, on the other hand,

comparison of the motors separately at each speed is of interest. Any other

factor can be handled in the traditional way and termed a traditional factor if

there is no particular interest in comparing its levels separately at each fixed level

of another factor. We refer to the Fisher lecture paper of Wu (2015) for further

examples of situations from social sciences or on comparison of genotypes within

environmental conditions where the conditional model is appropriate.

Some work has been reported in the literature on the analysis aspects of the

conditional model. Wu (2015) initiated work in this direction and the ideas were

developed to a much fuller extent in Su and Wu (2017). But the design issues

under this model, taking due cognizance of the objects of interest, have not so far

been attended to. The present paper initiates a systematic study of the design

problem with one pair of conditional and conditioning factors, the other factors

being traditional. This is the case in many practical situations which warrant the

use of the conditional model. We begin by rigorously defining the main effects

and interactions under this model and observe that even with a single pair of

conditional and conditioning factors, as many as half of these effects differ from

the traditional ones. Thus a new effect hierarchy is called for, which is introduced

through a prior specification on treatment effects and found to match our intu-

ition. This paves the way for a sensible design strategy along with a minimum

aberration criterion which aims at sequentially minimizing the bias caused in the

estimation of the main effects by successive interactions in the effect hierarchy. A

complementary set theory as well as an efficient computational procedure, sup-

ported by a powerful recursion relation, are developed to implement the design
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strategy. In the process, many new features and complexities of the conditional

model, compared to the traditional one, come to the fore. For example, not all

main effects are seen to enjoy the same status, successive terms in the wordlength

pattern (WLP) do not always involve words of progressively higher lengths, and

new identities emerge in the complementary set theory.

2. Parametrization and Effect Hierarchy

2.1. Parametrization

Consider a 2n factorial with n(≥ 3) factors, each at levels 0 and 1. Define

Ω as the set of the ν = 2n binary n-tuples. For i1 . . . in ∈ Ω, let τ(i1 . . . in) be

the treatment effect of treatment combination i1 . . . in. Similarly, in a traditional

factorial setup, for j1 . . . jn ∈ Ω, we write θ(j1 . . . jn) to denote the parameter

representing factorial effect F j1
1 . . . F jn

n when j1 . . . jn is nonnull, and θ(0 . . . 0) to

denote the general mean. Let τ and θ be ν × 1 vectors with elements τ(i1 . . . in)

and θ(j1 . . . jn), respectively, arranged in the lexicographic order; e.g., if n = 3,

then

θ = (θ(000), θ(001), θ(010), θ(011), θ(100), θ(101), θ(110), θ(111))′,

where the prime indicates transpose. Then the traditional full factorial model is

τ = H⊗nθ, (2.1)

where ⊗ represents Kronecker product and H⊗n denotes the n-fold Kronecker

product of

H =

(
1 1

1 −1

)
, (2.2)

a Hadamard matrix of order two. Let H(0) = (1 1) and H(1) = (1 −1) stand

for the top and bottom rows of H, respectively.

Continuing with n two-level factors F1, . . . , Fn, now consider a conditional

model with a pair of conditional and conditioning factors, say F1 and F2, re-

spectively. The other factors remain traditional. Then the ν/2 parameters

θ(0j2 . . . jn) not involving F1 stay unchanged but are now denoted by β(0j2 . . . jn);

in particular, β(0 . . . 0), which equals θ(0 . . . 0), continues to represent the gen-

eral mean. If we write β− for the (ν/2)× 1 vector of these parameters, arranged

lexicographically, then

β− = ν−1{H(0)⊗H⊗(n−1)}τ, (2.3)

because θ = ν−1(H⊗n)τ by (2.1) and (2.2), and β− consists of the top ν/2
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elements of θ.

The remaining ν/2 factorial effect parameters θ(1j2 . . . jn) which involve F1

are, however, replaced in the conditional model by their conditional counterparts,

namely,

β(1j2 . . . jn) = ν−121/2{H(1)⊗ e(j2)⊗H(j3)⊗ . . .⊗H(jn)}τ, (2.4)

where e(0) = (1 0) and e(1) = (0 1). Any such β(1j2 . . . jn) represents a

conditional main effect of F1, if j3 . . . jn = 0 . . . 0, and a conditional interaction

involving F1 and one or more of F3, . . . , Fn, otherwise. From (2.4), observe

that each β(1j2 . . . jn) is a contrast of the treatment effects with the level of the

conditioning factor F2 held fixed at j2; e.g., with n = 3,

β(1j20) = 2−5/2{τ(0j20) + τ(0j21)− τ(1j20)− τ(1j21)},
β(1j21) = 2−5/2{τ(0j20)− τ(0j21)− τ(1j20) + τ(1j21)}.

This justifies their description as conditional main effects or interactions, con-

ditioning on the level at which F2 is held fixed. Moreover, by (2.4), in each

β(1j2 . . . jn), the coefficient vector of τ has norm ν−1/2, which is precisely the

same as what happens with the β(0j2 . . . jn) in view of (2.3). Let β+ denote the

(ν/2)× 1 vector of parameters β(1j2 . . . jn), arranged lexicographically. Then by

(2.4),

β+ = ν−1{H(1)⊗ (21/2I2)⊗H⊗(n−2)}τ,

where Il is the identity matrix of order l. This, in conjunction with (2.3), yields

β = ν−1{W ⊗H⊗(n−2)}τ, (2.5)

where β = (β′−, β
′
+)

′ is the ν × 1 vector of all the β-parameters and by (2.2),

W =

(
H(0)⊗H

H(1)⊗ 21/2I2

)
=

(
H H

21/2I2 −21/2I2

)
. (2.6)

It will be useful to cluster the β(j1 . . . jn), j1 . . . jn ̸= 0 . . . 0, into paramet-

ric vectors representing unconditional and conditional factorial effects of various

orders. For s = 0, 1, and 1 ≤ l ≤ n − 1, let βsl be the vector with elements

β(j1 . . . jn), j1 . . . jn ∈ Ωsl(⊂ Ω), where

Ω0l = {j1 . . . jn : j1 = 0 and l of j2, . . . , jn equal 1}, 1 ≤ l ≤ n− 1,

Ω1l = {j1 . . . jn : j1 = 1, j2 = 0 or 1 and l − 1 of j3, . . . , jn equal 1},
1 ≤ l ≤ n− 1. (2.7)

By (2.7), β01 consists of the (unconditional) main effects of F2, . . . , Fn, while β11
incorporates the conditional main effects of F1. Similarly, for 2 ≤ l ≤ n − 1,



MINIMUM ABERRATION DESIGNS UNDER A CONDITIONAL MODEL 1001

β0l and β1l account for the unconditional and conditional l-factor interactions,

respectively.

2.2. Effect hierarchy

Equation (2.5) helps us to define effect hierarchy under the β-parametrization

via a prior specification on τ in terms of a Gaussian random function such that

cov(τ) = σ2R⊗n, where σ2 > 0 and

R =

(
1 ρ

ρ 1

)
,

with 0 < ρ < 1. This covariance structure is equivalent to the one considered

by Joseph (2006) for two-level factorials in his equation (4), with ρ = ψ0(2) in

his notation; see Joseph (2006) for earlier references in this connection. The

above correlation structure induces a correlation ρl between the effects of any

two treatment combinations which differ from each other in the levels of l out of

the n factors, 0 ≤ l ≤ n. By (2.5), then the prior covariance matrix of β is given

by

cov(β) = σ2ν−2(WR⊗2W ′)⊗ (HRH ′)⊗(n−2).

Since by (2.2) and (2.6), WR⊗2W ′ = 4diag{(1/2)(1 + ρ)HRH ′, (1 − ρ)R} and

HRH ′ = 2diag{1+ ρ, 1− ρ}, from (2.7) one can now check that each β(j1 . . . jn)

in βsl has prior variance Vsl, where

V0l = σ2ν−1(1 + ρ)n−l(1− ρ)l, V1l = σ2ν−1(1 + ρ)n−l−1(1− ρ)l, 1 ≤ l ≤ n− 1.

Clearly, for every ρ ∈ (0, 1),

V01 > V11 > V02 > V12 > . . . > V0n−1 > V1n−1. (2.8)

In view of (2.8), defining effect hierarchy in order of prior variance, the uncon-

ditional main effects of F2, . . . , Fn appear at the top, while the conditional main

effects of F1 are positioned next; then come the unconditional two-factor inter-

actions (2fis), followed by the conditional 2fis, and so on. Obviously, the β’s in

the same βsl enjoy the same status.

The effect hierarchy obtained above perfectly matches our intuition and can

be viewed as a translation of that in the traditional model to our setup. Thus

here too, it turns out that lower order factorial effects are positioned above higher

order ones. Furthermore, unconditional factorial effects are positioned above

conditional factorial effects of the same order which is again natural, because by

(2.3) and (2.4), the former is the same as the corresponding traditional factorial

effect whereas the latter is a linear combination of two traditional factorial effects,
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one of the same order and the other of the next higher order; cf. (3.1) below.

In conformity with traditional factorials (see e.g., Tang and Deng (1999)), the

current effect hierarchy suggests a sensible design strategy under the conditional

model. We first identify a class of designs which ensure optimal inference on β01
and β11, i.e., the unconditional and conditional main effects representing the two

highest placed classes of factorial effects, in the absence of all interactions. Then

from consideration of model robustness, among these designs we find one which

sequentially minimizes a suitably defined measure of bias in the estimation of β01
and β11, caused by successive interactions in the effect hierarchy, i.e., interactions

in β02, β12, β03, β13,. . . , in that order, with precedence given at each stage on

the bias in the estimation of β01 over that in estimating β11 which comes next to

it.

A comparison of prior variances as in (2.8), which forms the basis of effect

hierarchy, is meaningful only when the coefficient vectors of τ in all the β(j1 . . . jn)

have the same norm, as achieved by the scaling in (2.4). This scaling will play

no further role in the rest of the paper. Indeed, changing the multiplier ν−121/2

in (2.4) to some other constant would amount to replacing β11, β12, β13 etc. by

some scalar multiples thereof. One can readily check that the optimality result

on β11 in Theorem 1 below will continue to hold even for inference on such a

scalar multiple of β11. Also, the bias terms indicated above and summarized

later in equation (4.2) will each get multiplied by a positive constant, without

any impact on their sequential minimization.

3. Universally Optimal Designs in the Absence of Interactions

3.1. Linking the traditional and conditional models

A linkage with the traditional model facilitates the study of designs under

the conditional model. We begin by connecting the θ-parameters in the former

with the β-parameters in the latter. By (2.2) and (2.6), HH = 2I2 andWH⊗2 =

diag(4I2, 2
3/2H). Hence from (2.1) and (2.5),

β = ν−1{WH⊗2 ⊗ (HH)⊗(n−2)}θ = diag(I
⊗(n−1)
2 , 2−1/2H ⊗ I

⊗(n−2)
2 )θ.

Since the block diagonal matrix in the extreme right is symmetric and orthogonal,

the roles of β and θ can be interchanged in the above. Recalling (2.2), this yields

θ(0j2 . . . jn) = β(0j2 . . . jn), θ(10j3 . . . jn) = 2−1/2{β(10j3 . . . jn) + β(11j3 . . . jn)},
θ(11j3 . . . jn) = 2−1/2{β(10j3 . . . jn)− β(11j3 . . . jn)}, (3.1)

for each j2, . . . , jn. The first identity in (3.1) is in agreement with the definition
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of β(0j2 . . . jn).

Consider now an N -run design which may be represented by an N ×n array

D = (dui) where dui equals 1 if factor Fi is at level 0 in the uth run, and −1

otherwise, 1 ≤ u ≤ N , 1 ≤ i ≤ n. If Y denotes the N × 1 observational

vector arising from the design D, then by (2.1) and (2.2), the traditional model

retaining all factorial effects is given by E(Y ) =
∑

Ω x(j1 . . . jn)θ(j1 . . . jn), where∑
Ω denotes sum over all binary n-tuples and, for any j1 . . . jn ∈ Ω, the N × 1

vector x(j1 . . . jn) has elements

x(u; j1 . . . jn) = dj1u1 . . . d
jn
un, 1 ≤ u ≤ N. (3.2)

Hence by (3.1), under the conditional model, E(Y ) =
∑

Ω z(j1 . . . jn)β(j1 . . . jn),

or equivalently,

E(Y ) = z(0 . . . 0)β(0 . . . 0) +

1∑
s=0

n−1∑
l=1

Zslβsl, (3.3)

where for each j2 . . . jn,

z(0j2 . . . jn) = x(0j2 . . . jn), z(10j3 . . . jn) = 2−1/2{x(10j3 . . . jn) + x(11j3 . . . jn)},
z(11j3 . . . jn) = 2−1/2{x(10j3 . . . jn)− x(11j3 . . . jn)}, (3.4)

and, in conformity with βsl, the matrix Zsl consists of columns z(j1 . . . jn),

j1 . . . jn ∈ Ωsl. As usual, it is assumed that the random observational errors

have the same variance and are uncorrelated.

3.2. Universally optimal designs

If all interactions are assumed to be absent, then the model (3.3) reduces to

E(Y ) = z(0 . . . 0)β(0 . . . 0) + Z01β01 + Z11β11, (3.5)

where β01 and β11 are the vectors of the unconditional and conditional main effect

parameters and accordingly the matrices Z01 and Z11, of orders N × (n− 1) and

N × 2, are given by

Z01 = [z(010 . . . 0) . . . z(000 . . . 1)], Z11 = [z(100 . . . 0) . . . z(110 . . . 0)]. (3.6)

We are now in a position to present Theorem 1. Requirement (i) of this theorem

makes D an orthogonal array of strength two with symbols ±1 and is commonly

imposed also in traditional factorials. On the other hand, requirement (ii) caters

to the conditional model where the first two factors play a special role. We refer

to Kiefer (1975) for more details on universal optimality as considered in Theorem

1 but note that it implies, in particular, the well-known D-, A- and E-optimality,

which entail maximization of det(J), −tr(J−1) and µmin(J), respectively, where
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J denotes the information matrix of the parametric vector of interest and µmin(J)

is its smallest eigenvalue.

Theorem 1. An N -run design D where (i) all four pairs of symbols occur equally

often as rows in every two-column subarray of D, and (ii) all eight triplets of

symbols occur equally often as rows in every three-column subarray of D which

includes the first two columns, is universally optimal among all N -run designs

for inference on both β01 and β11 under the absence of all unconditional and

conditional interactions.

Proof. For h = 0, 1, let Jh denote the information matrix for βh1 under model

(3.5). As Z ′
h1Zh1 − Jh is nonnegative definite, we obtain for every N -run design,

tr(J0) ≤ tr(Z ′
01Z01) = N(n− 1), tr(J1) ≤ tr(Z ′

11Z11) = 2N. (3.7)

The identities in (3.7) hold because by (3.2), every x(j1 . . . jn) has squared norm

N and hence by (3.4), each column of Z01 in (3.6) has squared norm N , whereas

the squared norms of the two columns of Z11 in (3.6) add up to 2N . For any

design meeting (i) and (ii), from (3.2) now observe that the vectors x(j1 . . . jn)

with at most one of j1, . . . , jn equal to 1 are mutually orthogonal and that all

these vectors are orthogonal to x(110 . . . 0) as well; so, by (3.2), (3.4) and (3.6),

Z ′
h1z(0 . . . 0) = 0(h = 0, 1), Z ′

01Z11 = 0, Z ′
01Z01 = NIn−1, Z

′
11Z11 = NI2. (3.8)

Thus by (3.5), for any such design, J0 = NIn−1 and J1 = NI2, and tr(J0) and

tr(J1) attain the upper bounds in (3.7). The result now follows from Kiefer

(1975).

In a design D meeting (i) and (ii) of Theorem 1, factors F1 and F2 can be

replaced by a four level factor to yield a mixed level orthogonal array; see Wu

(1989). However, the effect hierarchy in such mixed factorials (Wu and Zhang ,

1993) is different from ours due to the distinction between the unconditional and

conditional factorial effects here. Consequently, neither the model robustness

criteria nor the associated results there apply to our setup. Only a technical tool

from there is of possible use in Section 5 while developing our complementary

set theory.

4. Minimum Aberration Criterion

Hereafter, to avoid trivialities, let n ≥ 4. We consider designs meeting (i)

and (ii) of Theorem 1 and proceed to discriminate among these with regard to

model robustness. For h = 0, 1, by (3.5) and (3.8), β̂h1 = N−1Z ′
h1Y is the best

linear unbiased estimator of βh1 in any such design under the reduced model
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(3.5). To assess the impact of possible presence of interactions on β̂h1, we revert

back to the full model (3.3). Then by (3.8), β̂h1 no longer remains unbiased but

is seen to have bias N−1
∑1

s=0

∑n−1
l=2 Z

′
h1Zslβsl. So, as in traditional factorials

(Tang and Deng, 1999), a very reasonable measure of the bias in β̂h1 caused by

the interaction parameters in βsl emerges as

Ksl(h) = N−2tr(Z ′
h1ZslZ

′
slZh1) = N−2tr(X ′

h1XslX
′
slXh1), (4.1)

where Xsl, like Zsl, is a matrix with columns x(j1 . . . jn), j1 . . . jn ∈ Ωsl. The last

step in (4.1) follows because by (2.7) and (3.4), Z0l = X0l and Z1l = X1lΓl, the

matrix Γl being orthogonal, 1 ≤ l ≤ n− 1.

Recalling the effect hierarchy introduced in Section 2, the biases caused by

the interactions in β02, β12, β03, β13, . . . , are successively positioned in order of

priority. At the same time, the bias due to any such βsl in β̂01 gets precedence

over that in β̂11. From this perspective, we will explore an MA design minimizing

K = {K02(0),K02(1),K12(0),K12(1),K03(0),K03(1),K13(0),K13(1), . . .} (4.2)

in a sequential manner from left to right. Such a design is also known as a

minimum contamination design in the sense of sequentially minimizing the con-

tamination or bias due to successive interactions in the effect hierarchy, with the

bias in β̂01 getting priority over that in β̂11 at each stage.

5. Regular Designs: Complementary Set Theory

We now focus attention on regular designs under the conditional model. This

is motivated by several reasons, in addition to their popularity among practition-

ers. First, as seen below, requirements (i) and (ii) of Theorem 1 can be readily

met with these designs. Second, the rich literature on regular traditional designs

is useful in our setup. Third, regular designs are very promising; for run size 16,

nonregular designs will be seen to entail no further gain. Finally, the findings on

regular designs provide an important benchmark for assessing any future work

on nonregular designs.

In what follows, all operations with binary vectors are over the finite field

GF(2). Let ∆r be the set of nonnull r×1 binary vectors. A regular 2n traditional

factorial design in N = 2r(r < n) runs is given by n distinct vectors b1, . . . , bn
from ∆r such that the matrix B = [b1 . . . bn] has full row rank. The design

consists of the N treatment combinations a′B, where a ∈ ∆r∪{0}. Clearly, such
a design meets (i) of Theorem 1. Similarly, (ii) is also met if

b1 + b2 ̸= bs, 3 ≤ s ≤ n. (5.1)
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Here b1 and b2 correspond to the conditional and conditioning factors, F1 and

F2, respectively, and b3, . . . , bn to the traditional factors F3, . . . , Fn. Because of

(5.1), we get n ≤ 2r − 2, as b3, . . . , bn are different from b1, b2 and b1 + b2.

All regular designs as above enjoy the universal optimality property of The-

orem 1. To discriminate among them under the MA criterion given by (4.2),

we first convert (4.2) to a WLP appropriate for the conditional model. For

1 ≤ l ≤ n − 1, define A
(0)
l as the number of ways of choosing l out of b2, . . . , bn

such that the sum of the chosen l equals 0, and A
(1)
l as the number of ways of

choosing l − 1 out of b3, . . . , bn such that the sum of the chosen l − 1 is in the

set {b1, b1 + b2}. Similarly, for 2 ≤ l ≤ n − 1, let A
(2)
l denote the numbers of

ways of choosing l− 1 out of b3, . . . , bn such that the sum of the chosen l− 1 is in

the set {0, b2}. These quantities resemble the terms in the traditional WLP with

the major difference that now b1 and b2, representing F1 and F2, are separately

taken care of. For example, A
(0)
l is the number of words of length l in the defining

relation which involve l out of F2, . . . , Fn, while A
(1)
l is the number of words of

lengths l or l + 1 in the defining relation which involve l − 1 of F3, . . . , Fn in

addition to F1 and may or may not involve F2 as well. Clearly,

A
(0)
1 = A

(0)
2 = A

(1)
1 = A

(1)
2 = A

(2)
2 = 0, (5.2)

where A
(1)
2 = 0, by (5.1). The next result gives expressions for the Ksl(h) in (4.1)

in terms of the quantities just introduced. Its proof is sketched in the appendix.

Theorem 2. For 2 ≤ l ≤ n− 1,

(a) K0l(0) = (n− l)A
(0)
l−1 + (l + 1)A

(0)
l+1, (b) K0l(1) = A

(1)
l +A

(1)
l+1,

(c) K1l(0) = (n− l)A
(1)
l−1 +A

(1)
l + lA

(1)
l+1, (d) K1l(1) = 2A

(2)
l ,

where A
(0)
n and A

(1)
n are interpreted as zeros.

In view of (5.2) and Theorem 2, sequential minimization of the terms of K

in (4.2) is equivalent to that of the terms of

A = (A
(0)
3 , A

(1)
3 , A

(0)
4 , A

(1)
4 , A

(2)
3 , A

(0)
5 , A

(1)
5 , A

(2)
4 , . . .). (5.3)

The sequence A, so arising fromK, takes due care of sequential bias minimization

under the present effect hierarchy and can be interpreted as the WLP under

the conditional model. While the successive terms in its traditional counterpart

involve words of progressively higher lengths, A is more complex because it follows

this pattern only on the whole but not strictly. For example, the words of length

four potentially involved in A
(1)
3 get priority over the words of same length in

A
(0)
4 . Even more conspicuously, A

(1)
4 appears before A

(2)
3 in A, but A

(1)
4 involves

words of lengths four and five as against words of length three only in A
(2)
3 .
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Table 1. Regular MA designs under conditional model via complementary sets.

t b1 b2 T
0 δ αδ Empty set
1 λ αλ {δ}
2 λ αλ {δ, αδ}
3 αλ αδλ {α, αδ, λ}
4 δλ αδλ {δ, αδ, λ, αλ}
5 ζ αδζ {α, δ, λ, αλ, δλ}
6 ζ αζ {δ, αδ, λ, αλ, δλ, αδλ}
7 ζ δζ {α, αδ, λ, αλ, δλ, αδλ, αζ}
8 ζ λζ {α, δ, αδ, αλ, δλ, αδλ, αζ, δζ}
9 αδλ δλζ {α, δ, αδ, λ, αλ, δλ, ζ, δζ, λζ}
10 αδλζ δλζ {δ, αδ, λ, αλ, δλ, αδλ, ζ, αζ, δζ, λζ}
11 αδζ δλζ {α, δ, αδ, λ, δλ, αδλ, ζ, αζ, δζ, λζ, αδλζ}
12 λζ αδλζ {α, δ, λ, αλ, δλ, αδλ, ζ, αζ, δζ, αδζ, αλζ, δλζ}

We now develop a complementary set theory with a view to exploring the

practically important saturated or nearly saturated cases where n equals or is

close to the upper bound 2r − 2 and hence, as seen below, it suffices to consider

at most the first three terms of the sequence A. This is in the spirit of the

corresponding work in traditional deigns (Tang and Wu, 1996), but many new

features emerge. Let T̃ be the complement of {b2, . . . , bn} in ∆r. By (5.1), T̃

includes both b1 and b1 + b2. Write T for the set obtained by excluding b1 and

b1 + b2 from T̃ , and t = #T , where # denotes the cardinality of a set. Then

t = 2r −n− 2(≥ 0). For l = 3, 4, define Al(T̃ ) as the number of ways of choosing

l members of T̃ such that the sum of the chosen l equals 0. Similarly, let A2(T )

denote the number of pairs arising from T such that the members of each pair

add up to b1 or b1+ b2. Then for the first three terms in the sequence A, we have

A
(0)
3 = constant−A3(T̃ ), A

(1)
3 = constant +A2(T ),

A
(0)
4 = constant +A3(T̃ ) +A4(T̃ ), (5.4)

where the constants may depend on r and n but not on the specific design.

The first and third equations in (5.4) follow from Tang and Wu (1996), while

the second equation can be deduced from either first principles or Lemmas 1

and 3(ii) in Mukerjee and Wu (2001). The key differences between (5.4) and

the corresponding equations in traditional designs are that the second equation

in (5.4) does not arise there and that neither T̃ nor T is the complement of

{b1, . . . , bn} in ∆r which is actually given by T̃ \ {b1}[= T ∪ {b1 + b2}]. Example

1 below illustrates the implications.
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For 0 ≤ t ≤ 12, Table 1 shows regular MA designs, obtained via (5.4) under

the conditional model, by displaying the associated b1, b2 and T . Given these,

{b3, . . . , bn} can be readily obtained as the complement of {b1, b2, b1 + b2} ∪ T in

∆r. For N = 8, 16, 32, 64 and 128, Table 1 applies to 4 ≤ n ≤ 6, 5 ≤ n ≤ 14,

18 ≤ n ≤ 30, 50 ≤ n ≤ 62 and 114 ≤ n ≤ 126, respectively. Hence it covers all

possible n for run sizes 8 and 16.

In Table 1, all three equations in (5.4) are required for t = 9, and all other

cases settled from the first or first two equations there. In addition to these

equations, the following facts help:

(I) The set T̃ is not closed under addition of distinct members, because b1, b1+

b2 ∈ T̃ but b2 /∈ T̃ .

(II) By Theorem 2, the sequence K and hence the sequence A remain unaltered

if the roles of b1 and b1 + b2 are interchanged.

Thus any pair from T̃ with sum outside T̃ can potentially represent (b1, b1 + b2),

the ordering within such a pair being immaterial to us. Example 1 illustrates the

construction of Table 1. In this example as well as Table 1, α, δ, λ and ζ are any

four linearly independent vectors from ∆r and for brevity, we write δλ = δ + λ,

αδζ = α+ δ + ζ, and so on.

Example 1. (a) Let t = 5, i.e., #T̃ = 7. By the first equation in (5.4), T̃

should maximize A3(T̃ ), subject to (I) above. Up to isomorphism, the unique

T̃ doing so is {α, δ, αδ, λ, αλ, δλ, ζ}. For this T̃ , in view of (II), it suffices to

consider only two choices of (b1, b1 + b2), namely, (α, δλ) and (ζ, αδ), having

A2(T ) values 4 and 2 respectively. Other possible (b1, b1 + b2) are isomorphic to

one of these two; e.g., the choice (ζ, α) reduces to (ζ, αδ) if we replace α, δ, λ, ζ

by αδ, δ, δλ, ζ, respectively, which leaves T̃ unchanged. By the second equation

in (5.4), therefore, T̃ as above, coupled with (b1, b1 + b2) = (ζ, αδ) gives an MA

design. Then b1 = ζ, b2 = αδζ and T = {α, δ, λ, αλ, δλ}, as shown in Table 1.

(b) Let t = 8, i.e., #T̃ = 10. By the first equation in (5.4), following Tang

and Wu (1996), the only two nonisomorphic T̃ that need be considered are T̃1 =

{α, δ, αδ, λ, αλ, δλ, ζ, αζ, δζ, λζ} and T̃2 = {α, δ, αδ, λ, αλ, δλ, αδλ, ζ, αζ, δζ}, both
of which meet (I). Every possible (b1, b1 + b2) entails A2(T ) = 6 for T̃1, and

A2(T ) = 5 or 6 for T̃2. So, we need to consider only T̃2, along with (b1, b1 + b2)

such that A2(T ) = 5. Recalling (II), as in (a) above, all such (b1, b1 + b2) are

isomorphic to (ζ, λ). Therefore, T̃2, together with (b1, b1 + b2) = (ζ, λ) yields

an MA design. Then b1 = ζ, b2 = λζ, T = {α, δ, αδ, αλ, δλ, αδλ, αζ, δζ}, as

recorded in Table 1. The outcome here may be contrasted with what happens
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in traditional factorials where the second equation in (5.4) does not arise and,

as a complementary set of size 10, T̃1 turns out to be superior to T̃2 because

of a smaller A4(T̃ ) (Tang and Wu (1996)). At the same time, in our setup,

the complement of {b1, . . . , bn} in ∆r is not really T̃ but T ∪ {b1 + b2}, which
equals {α, δ, αδ, λ, αλ, δλ, αδλ, αζ, δζ} for the design obtained here, has size 9,

and agrees with the complementary set of the corresponding traditional MA de-

sign. Thus the case t = 8 brings out the subtleties of the conditional model

showing how the associated complementary set theory can differ from or agree

with the traditional one.

More generally, for 0 ≤ t ≤ 12, a comparison of the complementary set

T ∪ {b1 + b2} with its counterpart in the traditional setup (Tang and Wu, 1996)

shows that all designs in Table 1 have MA also as traditional designs. At the

same time, if the roles of b1 and b1+b2 are interchanged in these designs, then by

(II) above, the resulting designs are equally good under the conditional model,

but one can check that several of these cease to remain so in the traditional

setup. Thus no general result connecting MA designs under the conditional and

traditional models is anticipated, though some useful patterns come to light in

the next section.

6. An Efficient Computational Procedure

Starting from an alternative version of the Ksl(h) in (4.1), we now propose,

with the development of necessary theory, a fast computational procedure which

covers even nonregular designs for N = 16, supplements Table 1 for N = 32, and

indicates a very promising design strategy for larger N . By (4.1), for any design,

whether regular or not,

Ksl(h) = N−2tr(Xh1X
′
h1XslX

′
sl). (6.1)

The above is reminiscent of minimum moment aberration in traditional factorials

(Xu, 2003) and very helpful in our context too. To see this, for 0 ≤ c ≤ n−2, let

Q0(c) = 1, Q1(c) = 2c− (n− 2), Qn−1(c) = 0, (6.2)

Ql(c) = l−1[{2c− (n− 2)}Ql−1(c)− (n− l)Ql−2(c)], 2 ≤ l ≤ n− 2. (6.3)

Write D̃ for the subarray given by the last n − 2 columns of D meeting (i) and

(ii) of Theorem 1. For 1 ≤ u,w ≤ N , let cuw be the number of positions where

the uth and wth rows of D̃ have the same entry, and qsl(u,w) be the (u,w)th

element of XslX
′
sl. Then the following result, proved in the Appendix, holds.

Theorem 3. For 1 ≤ u,w ≤ N and 1 ≤ l ≤ n−1, (a) q0l(u,w)=du2dw2Ql−1(cuw)
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+ Ql(cuw), (b) q1l(u,w) = du1dw1(1 + du2dw2)Ql−1(cuw).

Note that cuw is easy to obtain as cuw = (fuw + n − 2)/2, where fuw is the

scalar product of the uth and wth rows of D̃. Moreover, the Ql(.) can be found

very fast using the recursion relation (6.3). Thus Theorem 3 greatly simplifies the

computation of the qsl(u,w) and hence, by (6.1) via direct matrix multiplication,

that of the Ksl(h) appearing in (4.2).

We now show how the above ideas enable us to find regular MA designs under

the conditional model using the existing catalogs of regular traditional designs.

Given N(= 2r) and n(≤ 2r−2), suppose a complete list of nonisomorphic regular

traditional designs is available as given by the corresponding choices of n distinct

vectors b1, . . . , bn from ∆r. As in Section 5, any such design meets (i) and (ii) of

Theorem 1 and hence qualifies for consideration under the conditional model if

and only if the columns of B = [b1 . . . bn] are arranged such that the sum of the

first two columns is different from every other column. This leads to Steps 1-3

below which search all regular designs under the conditional model and yield an

MA design among them.

Step 1. Given N and n, start with a list of all nonisomorphic regular traditional

designs as given by the corresponding choices of b1, . . . , bn. For N = 16

and 32, this can be done using the catalogs in Chen, Sun and Wu (1993)

and Xu (2009).

Step 2. For each choice of b1, . . . , bn in Step 1, identify all pairs (bi, bj), i < j,

such that bi+ bj ̸= bs for every s ̸= i, j. For every such pair, let B̃ be the

matrix with columns bs, s ̸= i, j, and consider designs [bi bj B̃] and

[bj bi B̃]; both need to be taken into account because, by (6.1) and

Theorem 3, factors F1 and F2 affect the Ksl(h) differently and hence are

not interchangeable.

Step 3. For every design obtained through Steps 1 and 2, use (6.1) and Theorem

3 to obtain the sequence K in (4.2), and hence find an MA design.

Table 2 exhibits the results of Steps 1-3 for N = 32 and 6 ≤ n ≤ 17, showing

in each case, the n vectors specifying the design. A vector b = (b(1), . . . , b(r))′ is

written as the number
∑r

l=1 b(l)2
l−1 to save space; e.g., (1, 1, 0, 0, 1)′ is denoted

simply by 19. The first two vectors for any design correspond to factors F1 and

F2, respectively. As hinted in Step 2, these two are not interchangeable. For

example, with N = 32 and n = 7, 8, 9 or 12, if the first two vectors in the design

shown in Table 2 are interchanged, then the resulting design no longer has MA.
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Table 2. Regular MA designs under conditional model for N = 32.

n MA design
6 1, 2, 4, 8, 16, 31
7 1, 4, 2, 8, 15, 16, 19
8 1, 8, 2, 4, 15, 16, 19, 21
9 1, 15, 2, 4, 8, 16, 19, 21, 25
10 1, 2, 4, 8, 15, 16, 19, 21, 25, 30
11 1, 2, 4, 7, 8, 11, 13, 16, 21, 25, 31
12 1, 16, 2, 4, 7, 8, 11, 13, 14, 21, 25, 31
13 1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 25, 31
14 1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 31
15 1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 31
16 1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31
17 1, 4, 2, 3, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31

Tables 1 and 2 together cover all possible n for N = 32. A comparison with Xu

(2009) shows that all designs in Table 2 also have MA as traditional designs.

For N = 16, 32, and every n, we had actually employed Steps 1-3 to obtain

all regular MA designs. Most of these were found to enjoy the same property

as traditional designs and the rest were among the top few in this sense. In the

absence of a general result connecting the two models due to reasons explained

in Section 5, the point just noted can be useful in finding good designs under

the conditional model for larger N where a complete list of all nonisomorphic

regular traditional designs is not yet available but the top few of them may be

known. Our computations as indicated above suggest that consideration of only

these top few in Step 1 should yield a very good design, if not an MA design,

also under the conditional model. An example follows.

Example 2. For N = 64 and n = 20, Xu (2009) lists the top 24 regular tradi-

tional designs. If we include these 24 in Step 1 and then employ Steps 2 and 3

above, then all the resulting designs, one of which is given by

1, 2, 4, 8, 11, 13, 16, 21, 22, 25, 28, 31, 32, 39, 41, 46, 51, 52, 58, 61,

are seen to originate only from the best traditional design. This reinforces our

findings for N up to 32 and makes us hopeful that the designs so found should

continue to have MA under the conditional model or at least come very close to

doing so even if all nonisomorphic regular traditional designs were known and

could be incorporated in Step 1.

We next discuss, for smaller N , the consequences of entertaining nonregular
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designs. For N = 8, all two-symbol orthogonal arrays are regular and hence so

are all designs as envisaged in Theorem 1. For N = 16 and each n, a list of all

nonisomorphic two-symbol orthogonal arrays, regular as well as nonregular, can

be found from Sun, Li and Ye (2008) together with Hall (1961). With all such

designs included in Step 1 of our procedure, we employed Steps 2 and 3, with

appropriate adjustments in Step 2 as dictated by (ii) of Theorem 1, to find MA

designs under the conditional model in the class of all designs regular or not.

It was seen that all the regular designs obtained from Table 1 continue to have

MA even when nonregular designs are allowed. Moreover, for n = 5 and 8, all

nonregular designs turned out to be worse than these regular designs. This is

quite reassuring, and in keeping with other situations such as factorial designs

under a baseline parametrization; cf. Mukerjee and Tang (2012).

7. An Alternative Wordlength Pattern

For traditional factorial designs, the MA criterion was formulated originally

in the regular case (Fries and Hunter, 1980) in terms of sequential minimization

of A3, A4, . . . , where Al is the number of words of length l in the defining relation.

This was motivated by the effect hierarchy there without explicit consideration

of bias control, but shown later by Tang and Deng (1999) to be equivalent to

sequentially minimizing the bias caused in the estimation of the main effects

by interactions of successively higher orders. Indeed, Tang and Deng (1999)

propounded this idea of bias control while extending the MA criterion to the

nonregular case and we have followed their approach because of its applicability

to both regular and nonregular designs. However, it is of interest to examine how

this compares in the regular case with an alternative approach which is driven, in

the spirit of Fries and Hunter (1980)’s original formulation, purely by the present

effect hierarchy without direct reference to bias control for main effects.

The quantities A
(0)
l and A

(1)
l , 1 ≤ l ≤ n − 1, introduced in Section 5, play

a key role in this regard. Recall that A
(0)
l is the number of words of length

l in the defining relation which involve l out of F2, . . . , Fn, while A
(1)
l is the

number of words of lengths l or l+ 1 in the defining relation which involve l− 1

of F3, . . . , Fn in addition to F1 and may or may not involve F2 as well. Thus,

in view of (2.7) and the representation (3.1) of the factorial effect parameters

under the traditional model in terms of those under the conditional model, the

words involved in A
(0)
l and A

(1)
l correspond to β(j1 . . . jn) for j1 . . . jn in Ω0l and

Ω1l, respectively. As a result, if one goes purely by the present effect hierarchy
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as dictated by (2.8), then because of (5.2), one needs to sequentially minimize

the terms of Aalt = (A
(0)
3 , A

(1)
3 , A

(0)
4 , A

(1)
4 , A

(0)
5 , A

(1)
5 , . . .), which differs from the

previously considered A in (5.3) in that the A
(2)
l in the latter are dropped. Note

that the first four terms of Aalt and A are identical. Thus, the designs summarized

in Table 1, as given by the complementary set theory and determined by at most

the first three terms of A, continue to have MA under Aalt. The same is seen to

happen also with the 32-run designs in Table 2. Moreover, one can check that Aalt

and A lead to the same class of regular MA designs for each n in Table 2, except

n = 12 when the MA designs via A form a subclass of those via Aalt. Thus, even

if one goes purely by the present effect hierarchy without explicit consideration

of bias control, the outcome remains essentially the same as reported earlier.

8. Concluding Remarks

In this paper, we initiated a systematic investigation of MA designs under

a conditional model with a pair of conditional and conditioning factors. After

properly introducing effect hierarchy in our setup, we developed a complementary

set theory as well as a fast computational procedure for this purpose. There is

scope of extending the present work in several directions.

(a) For larger run sizes, it will be of interest to obtain theoretical results

which can supplement the findings in Section 6. A related question concerns

possible connection between an MA design under the conditional model with N

runs and n factors and an MA design under the traditional model with N/2 runs

and n−1 factors. While a neat general result in this direction is not anticipated,

even partial results along the lines of Butler (2004) will be illuminating.

(b) A more detailed study of nonregular designs will also be welcome. Al-

though the case N = 16 does not hold out much promise for such designs, it will

be of importance to know if this pattern persists for larger N as well.

(c) Another possible extension concerns the case of more than one pairs

of conditional and conditioning factors. The number of such pairs will seldom

exceed two in practice. The case of several factors conditional on the same

conditioning factor can also be of interest. Both with two pairs of conditional

and conditioning factors and several factors conditional on the same conditioning

factor, initial studies show that effect hierarchy can be defined via a chain of

inequalities similar to (2.8). Thus, our techniques should work at the expense of

heavier notation and algebra.

We hope that the present endeavour will generate interest in these and related



1014 RAHUL MUKERJEE, C. F. J. WU and MING-CHUNG CHANG

open issues.
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Appendix: Proofs of Theorems 2 and 3

Proof of Theorem 2

Part (a) is evident from Section 2 of Tang and Deng (1999). We sketch

the proof of (c). In a regular design specified by distinct nonnull binary vectors

b1, . . . , bn, with the array D = (dui) as introduced in Section 3, it is well known

that for any binary n-tuple j1 . . . jn, the quantity |N−1
∑n

u=1 d
j1
u1 . . . d

jn
un| equals

1 if j1b1 + . . . + jnbn = 0, and 0 otherwise. Hence, considering the elements of

x(010 . . . 0)′X1l, 2 ≤ l ≤ n−1, by (2.7), (3.2) and the definitions of X1l and A
(1)
l ,

N−2x(010 . . . 0)′X1lX
′
1lx(010 . . . 0) = A

(1)
l .

Similarly, if X̃01 consists of the n−2 columns x(00j3 . . . jn) with one of j3, . . . , jn
equal to 1 and the rest zeros, then considering the elements of X̃ ′

01X1l,

N−2tr(X̃ ′
01X1lX

′
1lX̃01) = (n− l)A

(1)
l−1 + lA

(1)
l+1.

Since X01 = [x(010 . . . 0) X̃01], now (c) follows from (4.1). The proofs of (b)

and (d) are similar.

Proof of Theorem 3

For 0 ≤ l ≤ n − 2, let Σ(l) denote sum over binary tuples j3 . . . jn such

that l of j3, . . . , jn equal 1. By (2.7), (3.2) and the definition of Xsl, we get for

1 ≤ u,w ≤ N and 1 ≤ l ≤ n− 1,

q0l(u,w) = Σ(l−1)x(u; 01j3 . . . jn)x(w; 01j3 . . . jn)

+ Σ(l)x(u; 00j3 . . . jn)x(w; 00j3 . . . jn)

= du2dw2Ψl−1(u,w) + Ψl(u,w), (A.1)

q1l(u,w) = Σ(l−1){x(u; 10j3 . . . jn)x(w; 10j3 . . . jn)
+ x(u; 11j3 . . . jn)x(w; 11j3 . . . jn)}

= du1dw1(1 + du2dw2)Ψl−1(u,w), (A.2)
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where

Ψl(u,w) = Σ(l)(du3dw3)
j3 . . . (dundwn)

jn , 0 ≤ l ≤ n− 2, (A.3)

and Ψn−1(u,w) = 0, because the second term on the right-hand side of (A.1)

does not arise when l = n− 1. In view of (A.1) and (A.2), the result will follow

if we can show that Ψl(u,w) = Ql(cuw), a relationship which clearly holds for

l = 0, 1 and n − 1, by (6.2) and (A.3). Thus it remains to show that Ψl(u,w)

satisfies the recursion relation (6.3) for 2 ≤ l ≤ n− 2.

To that end, let Φ(ξ) =
∏n

i=3(1+ ξduidwi) and let Φl(ξ) be the lth derivative

of Φ(ξ). Differentiation of log Φ(ξ) yields

Φ1(ξ) =

(
n∑

i=3

duidwi

1 + ξduidwi

)
Φ(ξ) =

(
cuw
1 + ξ

− n− 2− cuw
1− ξ

)
Φ(ξ),

or, (1− ξ2)Φ1(ξ) = {2cuw − (n− 2)(1 + ξ)}Φ(ξ). Differentiating this l − 1 times

and taking ξ = 0,

Φl(0)−(l−1)(l−2)Φl−2(0) = {2cuw−(n−2)}Φl−1(0)−(n−2)(l−1)Φl−2(0). (A.4)

Now, by (A.3), Ψl(u,w) is the coefficient of ξl in the expansion of Φ(ξ), i.e., it

equals Φl(0)/l!. Hence (A.4) implies that Ψl(u,w) satisfies the recursion relation

(6.3).
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