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S.1 Introduction

This supplement provides proofs that are not included in the main paper. In Section S.9,
we investigate the impacts of the failure threshold Dy, the number of measurements m,

the test duration t,;, and the quantile ¢ on the necessity of acceleration.



S.2 Information matrix of @ in a Wiener process

In a Wiener process, the second partial derivatives of £(0) with respect to 8 are
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Under the Wiener process assumption, E[AX,; — w;At] = 0, E[(AX;; — wAt)?] =
of At, 3TN ST At = mNtyy, and Y07, Y70 3T = mn. The elements of the Fisher

information matrix can be derived as
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S.3 Proof of AVar,(t,) > AVary(t,) when b = 1 in a

Wiener process

When the acceleration relation index b = 1, the Fisher information matrix Zy () is
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On the other hand, the asymptotic variance of 12 in the corresponding nonaccelerated

test 1s
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Note that Yy > 0, E% >0for 0<s; <1landO0<m <1. Then,
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Therefore, when b = 1, Avar,(f,) > Avar,(f,) for all 8 in a Wiener process.



S.4 Proof of 0; = 1.28 when b = 0 in a Wiener process

When the acceleration relation index b = 0, the Fisher information matrix Zy, () is
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On the other hand, the asymptotic variance of tAq in the corresponding nonaccelerated

test is
2
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The difference between (S.4) and (S.5) is 2. Since X' is not related to 6, and a, the value
of 63 is thereby not related to ¢; and a. Numerical results show that 43 is around 1.28 in

this case.

S.5 Information matrix of 8 in a gamma process

Under the gamma process assumption, the log-likelihood based on D (up to a constant)

can be written as:
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Note that E[Az;; — k0;At] = 0, and E{In(Axz;;) — [¢(kiAt) + In6;]} = 0 with the

digamma function ¢(-). Elements of the Fisher information matrix of 8 can be derived
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where 1, = 11 (2 ?*At/a®) with the trigamma function 1, (-).
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S.6 Proof of AVar,(t,) > AVar,(t,) when b = 1 in a

gamma process

When the acceleration relation index b = 1, the Fisher information matrix Zg,(0) is
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Substituting (S.6) into AVar,(f,) = h/[Z(8)] " h yields
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On the other hand, the asymptotic variance of f; in the corresponding nonaccelerated

test is
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Note that 35 >0, 32 >0 for 0 <s; <1 and 0 < 7; < 1. Then,
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Therefore, when b = 1, Avar,(f,) > Avar,(#,) for all @ under the gamma process assump-

tion.

S.7 Information matrix of 8 in an 1G process

Under the IG process assumption, the log-likelihood based on D (up to a constant) is

given by
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It is readily shown that E[Az;; — wAt] = 0, E[Ax; — wAt)? = ot = a?u°At, and
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information matrix of 0 in an IG process are
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S.8 Information matrix of @ in an ED model

In an ED model, the second derivatives of ¢(€) with respect of 8 are given by
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Note that E[Ax;;; — k'(w;)At] = 0. Let
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Elements of the Fisher information matrix in an ED model can be obtained.



S.9 Impacts of Dy, m, t); and ¢ on the necessity of

acceleration

In this section, we investigate the effects of the failure threshold D, number of measure-
ments m, test duration ¢,; and the quantile ¢ on the necessity of acceleration. When
the acceleration relation index b > 1, the necessity of acceleration is not related to these
parameters. That is because the signal-to-noise ratio always decreases with the stress
levels even under different settings of these parameters. Therefore, the conclusion that
acceleration is unnecessary when b > 1 is valid for all settings of Dy, m, ty; and ¢. When
the acceleration relation index b < 1, we calculate the numerical values of the break-even
point 65 under different settings of these parameters in a two-stress level ADT. Without
loss of generality, we set Dy = 100, m = 10, tpy = 10 and ¢ = 0.1 as the baseline. Usually,
we are concerned about a small quantile ¢, as mature products are expected to have low
failure rates within the mission time. Based on this consideration, we set ¢ = 0.01, 0.05,
0.1 and 0.2. Similarly, parameter settings of Dy, m and t,; are also chosen based on
the values commonly used in practical applications. Figure S.1 plots the patterns of 4,
under different settings of Dy, m, tj; and ¢ in a Wiener process when b € [0,1). As can
be seen, the value of d5 is not sensitive to these parameters. Numerical results of the
gamma and IG processes are similar to those of the Wiener process and thus are omitted
here. Therefore, the parameters Dy, m, t); and g have negligible effects on the necessity

of acceleration.
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Figure S.1: Values of the break-even point 45 under different settings of Dy, m, t5; and
q when the acceleration relation index b € [0,1) in a Wiener process (a = 0.5, §; = 1).
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