The Effect of L_{1} Penalization on Condition Number
 Constrained Estimation of Precision Matrix

Xiao Guo and Chunming Zhang
University of Science and Technology of China and University of Wisconsin-Madison

Supplementary Material

The supplementary material here includes the detailed proofs of Theorems 1-4 and Proposition 1 in the paper.

S1 Detailed proofs

Proof of Theorem 1. Without loss of generality, we assume $\boldsymbol{\mu}_{0}=\mathbf{0}$.
Condition A1 indicates that $\mathrm{P}\left\{\left|\mathbf{S}_{n}(i, j)-\boldsymbol{\Sigma}_{0}(i, j)\right| \geq \delta\right\} \leq C \exp \left(-c \delta^{2} n\right)$ for $i, j=$ $1, \ldots, p_{n}$ with an arbitrarily small constant $\delta \in(0, \infty)$ (see, for example, (11) and Lemma A. 3 of Bickel and Levina (2008)), and hence

$$
\begin{equation*}
\left\|\widehat{W}^{2}-W_{0}^{2}\right\|_{2}^{2}=O_{\mathrm{P}}\left\{\log \left(p_{n}\right) / n\right\}=\left\|\widehat{W}^{-1}-W_{0}^{-1}\right\|_{2}^{2} \tag{S1.1}
\end{equation*}
$$

Under Condition A2, we have $\mathrm{P}\left\{\left|\mathbf{S}_{n}(i, j)-\boldsymbol{\Sigma}_{0}(i, j)\right| \geq \delta\right\} \leq C n^{-\beta / 4} \delta^{-\beta / 2}$ for $i, j=$ $1, \ldots, p_{n}$ with a constant $\delta \in(0, \infty)$ (see, for example, Lemma 2 of Ravikumar et al. (2011)), which implies

$$
\begin{equation*}
\left\|\widehat{W}^{2}-W_{0}^{2}\right\|_{2}^{2}=O_{\mathrm{P}}\left(p_{n}^{4 / \beta} / n\right)=\left\|\widehat{W}^{-1}-W_{0}^{-1}\right\|_{2}^{2} \tag{S1.2}
\end{equation*}
$$

It's easy to see that Condition A3 implies

$$
\left\|\widehat{W}^{2}-W_{0}^{2}\right\|_{2}^{2}=O_{\mathrm{P}}\left(p_{n} / n\right)=\left\|\widehat{W}^{-1}-W_{0}^{-1}\right\|_{2}^{2}
$$

Therefore, under either Condition A1 or A2 or A3,

$$
\left\|\widehat{W}^{2}-W_{0}^{2}\right\|_{2}^{2}=o_{\mathrm{P}}(1)=\left\|\widehat{W}^{-1}-W_{0}^{-1}\right\|_{2}^{2}
$$

To prove $\left\|\widehat{\boldsymbol{\Theta}}_{\text {prop-1 }}-\boldsymbol{\Theta}_{0}\right\|_{2} \xrightarrow{\mathrm{P}} 0$, it suffices to show that $\left\|\widetilde{\Omega}_{\kappa_{n}}-\Omega_{0}\right\|_{2} \xrightarrow{\mathrm{P}} 0$.
Under Condition A1 or A2, $\boldsymbol{\Sigma}_{0}$ being diagonal induces $\Gamma_{0}=\mathbf{I}_{p_{n}}$. From (2.2), $\widetilde{\Omega}_{\kappa_{n}}=\left\{p_{n} / \operatorname{tr}\left(\mathbf{R}_{n}\right)\right\} \mathbf{I}_{p_{n}}=\mathbf{I}_{p_{n}}$ due to $\kappa_{n}=1$. Hence, $\left\|\widetilde{\Omega}_{\kappa_{n}}-\Omega_{0}\right\|_{2} \xrightarrow{\mathrm{P}} 0$.

Under Condition A3, we first prove $\left\|\mathbf{S}_{n}-\boldsymbol{\Sigma}_{0}\right\|_{2} \xrightarrow{\mathrm{P}} 0$ for $\boldsymbol{\Sigma}_{0}=\mathbf{I}_{p_{n}}$. For $i=1, \ldots, n$, define $\boldsymbol{X}_{i}^{*}=\left(\boldsymbol{X}_{i}^{T}, \boldsymbol{Y}_{i}^{T}\right)^{T} \in \mathbb{R}^{p_{n}^{*}}$ with $p_{n}^{*}>p_{n}$ an integer and $\boldsymbol{Y}_{1}, \ldots, \boldsymbol{Y}_{n} \in \mathbb{R}^{p_{n}^{*}-p_{n}}$ i.i.d. random vectors, such that $\left\{\boldsymbol{e}_{j, p_{n}^{*}}^{T} \boldsymbol{X}_{i}^{*}: i=1, \ldots, n ; j=1, \ldots, p_{n}^{*}\right\}$ are i.i.d. random variables. Let $\mathbf{S}_{n}^{*}=n^{-1} \sum_{i=1}^{n} \boldsymbol{X}_{i}^{*} \boldsymbol{X}_{i}^{* T}$.

From Theorem 2 of Bai and Yin (1993), if $\lim _{n \rightarrow \infty} p_{n}^{*} / n=y$ with a constant $y \in(0,1)$, then $\lambda_{\max }\left(\mathbf{S}_{n}^{*}\right) \xrightarrow{\mathrm{P}}(1+\sqrt{y})^{2}$ and $\lambda_{\min }\left(\mathbf{S}_{n}^{*}\right) \xrightarrow{\mathrm{P}}(1-\sqrt{y})^{2}$. We know $\lambda_{\min }\left(\mathbf{S}_{n}^{*}\right) \leq$ $\lambda_{\min }\left(n^{-1} \sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{T}\right) \leq \lambda_{\max }\left(n^{-1} \sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{T}\right) \leq \lambda_{\max }\left(\mathbf{S}_{n}^{*}\right)$. Thus, if y is arbitrarily close to 0 , then we have $\lambda_{\max }\left(n^{-1} \sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{T}\right) \xrightarrow{\mathrm{P}} 1$ and $\lambda_{\min }\left(n^{-1} \sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{T}\right) \xrightarrow{\mathrm{P}} 1$. From

$$
\left\|\mathbf{S}_{n}-\boldsymbol{\Sigma}_{0}\right\|_{2} \leq\left\|n^{-1} \sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{T}-\boldsymbol{\Sigma}_{0}\right\|_{2}+\left\|\overline{\boldsymbol{X}} \overline{\boldsymbol{X}}^{T}\right\|_{2}=\mathrm{I}+\mathrm{II}
$$

$\mathrm{I}=\max \left\{\left|\lambda_{\max }\left(n^{-1} \sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{T}\right)-1\right|,\left|\lambda_{\min }\left(n^{-1} \sum_{i=1}^{n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{T}\right)-1\right|\right\} \xrightarrow{\mathrm{P}} 0$ and $\mathrm{II}=$ $\overline{\boldsymbol{X}}^{T} \overline{\boldsymbol{X}} \xrightarrow{\mathrm{P}} 0$, we have $\left\|\mathbf{S}_{n}-\boldsymbol{\Sigma}_{0}\right\|_{2} \xrightarrow{\mathrm{P}} 0$.

For $\boldsymbol{\Sigma}_{0}$ not necessarily equal to $\mathbf{I}_{p_{n}},\left\|\mathbf{S}_{n}-\boldsymbol{\Sigma}_{0}\right\|_{2} \leq\left\|\boldsymbol{\Sigma}_{0}^{1 / 2}\right\|_{2} \| \boldsymbol{\Sigma}_{0}^{-1 / 2} \mathbf{S}_{n} \boldsymbol{\Sigma}_{0}^{-1 / 2}-$ $\mathbf{I}_{p_{n}}\left\|_{2}\right\| \boldsymbol{\Sigma}_{0}^{1 / 2} \|_{2} \xrightarrow{\mathrm{P}} 0$, since $\boldsymbol{\Sigma}_{0}^{-1 / 2} \mathbf{S}_{n} \boldsymbol{\Sigma}_{0}^{-1 / 2}$ is the sample covariance matrix of $\left\{\boldsymbol{\Sigma}_{0}^{-1 / 2} \boldsymbol{X}_{1}\right.$, $\left.\ldots, \boldsymbol{\Sigma}_{0}^{-1 / 2} \boldsymbol{X}_{n}\right\}$ which are i.i.d. with covariance matrix $\mathbf{I}_{p_{n}}$ and

$$
\begin{aligned}
& \left\{E\left(\left|\boldsymbol{e}_{1, p_{n}}^{T} \boldsymbol{\Sigma}_{0}^{-1 / 2} \boldsymbol{X}_{1}\right|^{4}\right)\right\}^{1 / 4} \leq \sum_{i=1}^{p_{n}}\left\{E\left(\left|\boldsymbol{e}_{1, p_{n}}^{T} \boldsymbol{\Sigma}_{0}^{-1 / 2} \boldsymbol{e}_{i, p_{n}} X_{1, i}\right|^{4}\right)\right\}^{1 / 4} \\
\leq & \max _{1 \leq i \leq p_{n}}\left\{E\left(\left|X_{1, i}\right|^{4}\right)\right\}^{1 / 4} \sum_{i=1}^{p_{n}}\left|\boldsymbol{e}_{1, p_{n}}^{T} \boldsymbol{\Sigma}_{0}^{-1 / 2} \boldsymbol{e}_{i, p_{n}}\right|=\max _{1 \leq i \leq p_{n}}\left\{E\left(\left|X_{1, i}\right|^{4}\right)\right\}^{1 / 4}\left\|\boldsymbol{\Sigma}_{0}^{-1 / 2}\right\|_{\infty} \\
< & C<\infty
\end{aligned}
$$

Therefore, $\left\|\mathbf{R}_{n}-\Gamma_{0}\right\|_{2} \xrightarrow{\mathrm{P}} 0$, which implies that $\left\|\widetilde{\Omega}_{\kappa_{n}}-\Omega_{0}\right\|_{2} \xrightarrow{\mathrm{P}} 0$ since liminf $\lim _{n \rightarrow \infty}\left\{\kappa_{n}-\right.$ $\left.\operatorname{cond}\left(\Omega_{0}\right)\right\}>0$.

The result $\left\|\widehat{\boldsymbol{\Theta}}_{\text {prop }-1}^{-1}-\boldsymbol{\Sigma}_{0}\right\|_{2} \xrightarrow{\mathrm{P}} 0$ comes from $\left\|\widehat{\boldsymbol{\Theta}}_{\text {prop }-1}^{-1}-\boldsymbol{\Sigma}_{0}\right\|_{2}=O_{\mathrm{P}}\left(\| \widehat{\boldsymbol{\Theta}}_{\text {prop }-1}-\right.$ $\boldsymbol{\Theta}_{0} \|_{2}$).

Proof of Theorem 2. Suppose the eigendecomposition of \mathbf{R}_{n} is $Q \operatorname{diag}\left(\widehat{\lambda}_{1}, \ldots, \widehat{\lambda}_{p_{n}}\right) Q^{T}$, where $\hat{\lambda}_{1} \geq \cdots \geq \widehat{\lambda}_{p_{n}}$ are the eigenvalues of \mathbf{R}_{n}. From Won et al. (2013), $\widetilde{\Omega}_{\kappa_{n}}^{-1}=$ $Q \operatorname{diag}\left(\widetilde{\lambda}_{1}, \ldots, \widetilde{\lambda}_{p_{n}}\right) Q^{T}$, where $\widetilde{\lambda}_{i}=\min \left\{\max \left(\tau^{*}, \widehat{\lambda}_{i}\right), \kappa_{n} \tau^{*}\right\}$ with $\tau^{*} \in(0, \infty)$ depending on $\widehat{\lambda}_{1}, \ldots, \widehat{\lambda}_{p_{n}}$ and κ_{n}. Hence, $\widetilde{\Omega}_{\kappa_{n}}^{-1}$ truncates the eigenvalues of \mathbf{R}_{n}. From Stewart and Sun (1990) (Corollary 4.10, p. 203),

$$
\max _{1 \leq i \leq p_{n}}\left|\widetilde{\lambda}_{i}-\lambda_{i}\right| \leq\left\|\widetilde{\Omega}_{\kappa_{n}}^{-1}-\Gamma_{0}\right\|_{2}
$$

where $\lambda_{1} \geq \cdots \geq \lambda_{p_{n}}$ are the eigenvalues of Γ_{0}. If $\left\|\widetilde{\Omega}_{\kappa_{n}}^{-1}-\Gamma_{0}\right\|_{2} \xrightarrow{\mathrm{P}} 0$, then $\max _{1 \leq i \leq p_{n}} \mid \widetilde{\lambda}_{i}-$ $\lambda_{i} \mid \xrightarrow{\mathrm{P}} 0$ which implies that $\mathbb{F}^{\widetilde{\Omega}_{\kappa_{n}}^{-1}}$ converges weakly to F_{0} in probability. Therefore, to prove $\left\|\widehat{\boldsymbol{\Theta}}_{\text {prop-1 }}-\boldsymbol{\Theta}_{0}\right\|_{2} \nrightarrow 0$ in probability, we only need to show $\left\|\widetilde{\Omega}_{\kappa_{n}}^{-1}-\Gamma_{0}\right\|_{2} \nrightarrow 0$ in probability, and it suffices to show that $\mathbb{F}^{\widetilde{\Omega}_{\kappa_{n}}^{-1}}$ doesn't converge weakly to F_{0} in probability.

Under Condition B1, if $\lim _{n \rightarrow \infty} p_{n} / n=\infty$, then the rank of \mathbf{R}_{n} is at most n when $p_{n}>n$, and hence, the proportion of the 0 eigenvalues among $\widehat{\lambda}_{1}, \ldots, \widehat{\lambda}_{p_{n}}$ is at least $\left(p_{n}-n\right) / p_{n}$ which converges to 1 as $n \rightarrow \infty$. Therefore, $\mathbb{F}^{\mathbf{R}_{n}}$ will converge weakly to $\mathrm{I}_{[0, \infty)}$ in probability. Since $\widetilde{\lambda}_{i}=\min \left\{\max \left(\tau^{*}, \widehat{\lambda}_{i}\right), \kappa_{n} \tau^{*}\right\}$, if $\mathbb{F}^{\widetilde{\Omega}_{\kappa_{n}}^{-1}}$ converges weakly in probability, then the limit is $\mathrm{I}_{[c, \infty)}$ for some $c \in[0, \infty)$. Since $F_{0} \neq \mathrm{I}_{[C, \infty)}$ for any $C \in[0, \infty), \mathbb{F}^{\widetilde{\Omega}_{n}}-1$ doesn't converge weakly to F_{0} in probability. Therefore, $\left\|\widehat{\boldsymbol{\Theta}}_{\text {prop }-1}-\boldsymbol{\Theta}_{0}\right\|_{2} \nrightarrow 0$ in probability.

Under Condition B2, we will show that $\left|\operatorname{cond}\left(\widetilde{\Omega}_{\kappa_{n}}^{-1}\right)-\operatorname{cond}\left(\Gamma_{0}\right)\right| \nrightarrow 0$ in probability which implies that $\left\|\widetilde{\Omega}_{\kappa_{n}}^{-1}-\Gamma_{0}\right\|_{2} \nrightarrow 0$ in probability. From Theorem 1 in Won et al. (2013), $\operatorname{cond}\left(\widetilde{\Omega}_{\kappa_{n}}^{-1}\right)=\min \left\{\kappa_{n}, \operatorname{cond}\left(\mathbf{R}_{n}\right)\right\}$. Since $\left|\min \left\{\kappa_{n}, \operatorname{cond}\left(\mathbf{R}_{n}\right)\right\}-\operatorname{cond}\left(\Gamma_{0}\right)\right| \nrightarrow 0$ in probability, we have $\left|\operatorname{cond}\left(\widetilde{\Omega}_{\kappa_{n}}^{-1}\right)-\operatorname{cond}\left(\Gamma_{0}\right)\right| \nrightarrow 0$ in probability as $n \rightarrow \infty$.

Under Condition B3, we will show that $\mathbb{F}^{\widetilde{\Omega}_{\kappa_{n}}^{-1}}$ does not converge weakly to F_{0} in probability. We truncate $\mathbb{F}^{\mathbf{R}_{n}}$ in order to obtain $\mathbb{F}^{\widetilde{\Omega}_{n n}^{-1}}$, i.e., $\mathbb{F}^{\widetilde{\Omega}_{\kappa_{n}}^{-1}}=\mathbb{F}^{\mathbf{R}_{n}} \mathrm{I}_{\left[\tau^{*}, \kappa_{n} \tau^{*}\right)}+$ $\mathrm{I}_{\left[\kappa_{n} \tau^{*}, \infty\right)}$. If $\mathbb{F}^{\widetilde{\Omega}_{\kappa_{n}}^{-1}}$ converges weakly to F_{0} in probability, then $F_{0}=F \mathrm{I}_{\left[l_{\min }, l_{\max }\right)}+$ $\mathrm{I}_{\left[l_{\max }, \infty\right)}$, which contradicts Condition B3.

Therefore, we have demonstrated that $\left\|\widehat{\boldsymbol{\Theta}}_{\text {prop }-1}-\boldsymbol{\Theta}_{0}\right\|_{2} \nrightarrow 0$ in probability under either Condition B1 or B2 or B3. Next, we will show that $\left\|\widehat{\boldsymbol{\Theta}}_{\text {prop-1 }}^{-1}-\boldsymbol{\Sigma}_{0}\right\|_{2} \nrightarrow 0$ in probability. If $\left\|\widehat{\boldsymbol{\Theta}}_{\text {prop-1 }}^{-1}-\boldsymbol{\Sigma}_{0}\right\|_{2}=o_{\mathrm{P}}(1)$, then $\left\|\widehat{\boldsymbol{\Theta}}_{\text {prop-1 }}-\boldsymbol{\Theta}_{0}\right\|_{2}=o_{\mathrm{P}}(1)$ because $\left\|\widehat{\boldsymbol{\Theta}}_{\text {prop }-1}-\boldsymbol{\Theta}_{0}\right\|_{2}=O_{\mathrm{P}}\left(\left\|\widehat{\boldsymbol{\Theta}}_{\text {prop-1 }}^{-1}-\boldsymbol{\Sigma}_{0}\right\|_{2}\right)$. Since $\left\|\widehat{\boldsymbol{\Theta}}_{\text {prop }-1}-\boldsymbol{\Theta}_{0}\right\|_{2} \nrightarrow 0$ in probability, we can claim $\left\|\widehat{\boldsymbol{\Theta}}_{\text {prop }-1}^{-1}-\boldsymbol{\Sigma}_{0}\right\|_{2} \nrightarrow 0$ in probability.

Proof of Theorem 3. Following the proofs of Corollaries 1 and 2 in Ravikumar et al. (2011), we have that, with probability tending to 1 ,

$$
\left|\widehat{\Omega}_{\mathrm{RBLZ}}-\Omega_{0}\right|_{\infty}^{2} \leq C r_{n}^{*}
$$

with $r_{n}^{*}=\log \left(p_{n}\right) / n$ under Condition C1, and $r_{n}^{*}=p_{n}^{4 \tau / \beta} / n$ under Condition C2, where $|\cdot|_{\infty}$ is the matrix elementwise L_{∞} norm defined as $|A|_{\infty}=\max _{i, j}|A(i, j)|$ for a generic matrix A. The proof of Theorem 1 in Ravikumar et al. (2011) indicates that $\{(i, j)$:
$\left.\widehat{\Omega}_{\mathrm{RBLZ}}(i, j) \neq 0\right\} \subseteq\left\{(i, j): \Omega_{0}(i, j) \neq 0\right\}$ with probability tending to 1 .
For $n=1,2, \ldots$, let \mathcal{A}_{n} denote the event that $\left|\widehat{\Omega}_{\mathrm{RBLZ}}-\Omega_{0}\right|_{\infty}^{2} \leq C r_{n}^{*}$ and $\{(i, j)$: $\left.\widehat{\Omega}_{\text {RBLZ }}(i, j) \neq 0\right\} \subseteq\left\{(i, j): \Omega_{0}(i, j) \neq 0\right\}$. Hence, $\lim _{n \rightarrow \infty} \mathrm{P}\left(\mathcal{A}_{n}\right)=1$. Then, conditional on event \mathcal{A}_{n}, we have

$$
\begin{align*}
& \left\|\widehat{\Omega}_{\mathrm{RBLZ}}-\Omega_{0}\right\|_{2}^{2} \leq\left\|\widehat{\Omega}_{\mathrm{RBLZ}}-\Omega_{0}\right\|_{F}^{2} \\
& =\sum_{i=1}^{p_{n}}\left|\widehat{\Omega}_{\mathrm{RBLZ}}(i, i)-\Omega_{0}(i, i)\right|^{2}+\sum_{i \neq j: \Omega_{0}(i, j) \neq 0}\left|\widehat{\Omega}_{\mathrm{RBLZ}}(i, j)-\Omega_{0}(i, j)\right|^{2} \tag{S1.3}
\end{align*}
$$

and

$$
\begin{equation*}
\left\|\widehat{\Omega}_{\mathrm{RBLZ}}-\Omega_{0}\right\|_{2}^{2} \leq\left\|\widehat{\Omega}_{\mathrm{RBLZ}}-\Omega_{0}\right\|_{\infty}^{2} \leq t_{n}^{2}\left|\widehat{\Omega}_{\mathrm{RBLZ}}-\Omega_{0}\right|_{\infty}^{2} \tag{S1.4}
\end{equation*}
$$

If $p_{n} \leq s_{n}$, then (S1.3) and (S1.4) indicate $\left\|\widehat{\Omega}_{\mathrm{RBLZ}}-\Omega_{0}\right\|_{2}^{2} \leq C \min \left(p_{n}+s_{n}, t_{n}^{2}\right) r_{n}^{*} \leq$ $C r_{n}$ under Condition C1 or C2. Next, we consider the case $p_{n}>s_{n}$. Define $t_{n}^{i}=$ $\left|\left\{j=1, \ldots, p_{n}: \boldsymbol{\Theta}_{0}(i, j) \neq 0\right\}\right|$. For any $i \in\left\{1, \ldots, p_{n}\right\}$ such that $t_{n}^{i}=1$, we know $\Omega_{0} e_{i, p_{n}}=\boldsymbol{e}_{i, p_{n}}$, which means that the diagonal element is the only nonzero element in the i th column of Ω_{0}. Since $p_{n}>s_{n}$, we have $\left|\left\{i=1, \ldots, p_{n}: t_{n}^{i}=1\right\}\right| \geq p_{n}-s_{n}$. Because $\left\{(i, j): \widehat{\Omega}_{\mathrm{RBLZ}}(i, j) \neq 0\right\} \subseteq\left\{(i, j): \Omega_{0}(i, j) \neq 0\right\}$, from the definition of $\widehat{\Omega}_{\mathrm{RBLZ}}$, we have $\widehat{\Omega}_{\mathrm{RBLZ}} \boldsymbol{e}_{i, p_{n}}=\boldsymbol{e}_{i, p_{n}}$ for any $i \in\left\{1, \ldots, p_{n}\right\}$ with $\Omega_{0} \boldsymbol{e}_{i, p_{n}}=\boldsymbol{e}_{i, p_{n}}$. Hence, $\left|\widehat{\Omega}_{\mathrm{RBLZ}}(i, i)-\Omega_{0}(i, i)\right|=0$ for $i \in\left\{1, \ldots, p_{n}\right\}$ with $t_{n}^{i}=1$. Therefore, (S1.3) indicates $\left\|\widehat{\Omega}_{\mathrm{RBLZ}}-\Omega_{0}\right\|_{2}^{2} \leq C\left(1+s_{n}\right) r_{n}^{*}$, which together with (S1.4) implies that $\left\|\widehat{\Omega}_{\mathrm{RBLZ}}-\Omega_{0}\right\|_{2}^{2} \leq$ $C \min \left(1+s_{n}, t_{n}^{2}\right) r_{n}^{*} \leq C r_{n}$.

Hence, under Condition C1 or C2, $\left\|\widehat{\Omega}_{\mathrm{RBLZ}}-\Omega_{0}\right\|_{2}^{2}=O_{\mathrm{P}}\left(r_{n}\right)$. Therefore, from (S1.1) and (S1.2),

$$
\begin{aligned}
& \left\|\widehat{\boldsymbol{\Theta}}_{\mathrm{RBLZ}}-\Theta_{0}\right\|_{2}=\left\|\widehat{W}^{-1} \widehat{\Omega}_{\mathrm{RBLZ}} \widehat{W}^{-1}-W_{0}^{-1} \Omega_{0} W_{0}^{-1}\right\|_{2} \\
\leq & \left\|\widehat{W}^{-1}-W_{0}^{-1}\right\|_{2}\left\|\widehat{\Omega}_{\mathrm{RBLZ}}-\Omega_{0}\right\|_{2}\left\|\widehat{W}^{-1}-W_{0}^{-1}\right\|_{2} \\
& +\left\|\widehat{W}^{-1}-W_{0}^{-1}\right\|_{2}\left(\left\|\widehat{\Omega}_{\mathrm{RBLZ}}\right\|_{2}\left\|W_{0}^{-1}\right\|_{2}+\left\|\widehat{W}^{-1}\right\|_{2}\left\|\Omega_{0}\right\|_{2}\right) \\
& +\left\|\widehat{\Omega}_{\mathrm{RBLZ}}-\Omega_{0}\right\|_{2}\left\|\widehat{W}^{-1}\right\|_{2}\left\|W_{0}^{-1}\right\|_{2}=O_{\mathrm{P}}\left(r_{n}^{1 / 2}\right) .
\end{aligned}
$$

We obtain $\left\|\widehat{\boldsymbol{\Theta}}_{\mathrm{RBLZ}}^{-1}-\boldsymbol{\Sigma}_{0}\right\|_{2}^{2}=O_{\mathrm{P}}\left(r_{n}\right)$, since $\left\|\widehat{\boldsymbol{\Theta}}_{\mathrm{RBLZ}}^{-1}-\boldsymbol{\Sigma}_{0}\right\|_{2}^{2}=O_{\mathrm{P}}\left(\left\|\widehat{\boldsymbol{\Theta}}_{\mathrm{RBLZ}}-\boldsymbol{\Theta}_{0}\right\|_{2}^{2}\right)$.

Proof of Theorem 4. Following the proof of Theorem 3, under Condition C1 or $\mathrm{C} 2,\left\|\widehat{\Omega}_{\mathrm{RBLZ}}-\Omega_{0}\right\|_{2}^{2}=O_{\mathrm{P}}\left(r_{n}\right)$. Now that $\operatorname{cond}\left(\widehat{\Omega}_{\mathrm{RBLZ}}\right)-\operatorname{cond}\left(\Omega_{0}\right)=o_{\mathrm{P}}(1)$, from
$\lim \inf _{n \rightarrow \infty}\left\{\kappa_{n}-\operatorname{cond}\left(\Omega_{0}\right)\right\}>0$, we have $\operatorname{cond}\left(\widehat{\Omega}_{\text {RBLZ }}\right) \leq \kappa_{n}$ with probability tending to 1 , which means that $\widehat{\Omega}_{\mu_{n}, \kappa_{n}}=\widehat{\Omega}_{\text {RBLZ }}$ with probability tending to 1 , and hence $\lim _{n \rightarrow \infty} \mathrm{P}\left(\widehat{\boldsymbol{\Theta}}_{\text {prop-2 }}=\widehat{\boldsymbol{\Theta}}_{\text {RBLZ }}\right)=1$. Therefore, from the conclusion in Theorem 3 , $\left\|\widehat{\boldsymbol{\Theta}}_{\text {prop }-2}-\boldsymbol{\Theta}_{0}\right\|_{2}^{2}=O_{\mathrm{P}}\left(r_{n}\right)=\left\|\widehat{\boldsymbol{\Theta}}_{\text {prop }-2}^{-1}-\boldsymbol{\Sigma}_{0}\right\|_{2}^{2}$.

Proof of Proposition 1. From (3.2) and (3.3), suppose the eigendecomposition of variable Ω is $R M R^{T}$, where R is orthogonal and $M=\operatorname{diag}\left(m_{1}, \ldots, m_{p_{n}}\right)$ with $m_{1} \leq$ $\cdots \leq m_{p_{n}}$. For Step 1 in Section 3,

$$
\begin{align*}
& \underset{\Omega \succ 0, \operatorname{cond}(\Omega) \leq \kappa_{n}}{\arg \min } L_{\rho}\left(\Omega, Z^{(i-1)} ; U^{(i-1)}\right) \\
= & \underset{\Omega \succ 0, \operatorname{cond}(\Omega) \leq \kappa_{n}}{\arg \min }-\log \{\operatorname{det}(\Omega)\}+\operatorname{tr}\left(\mathbf{R}_{n} \Omega\right)+\frac{\rho}{2}\left\|\Omega-Z^{(i-1)}+U^{(i-1)}\right\|_{F}^{2} \\
= & \underset{\Omega \succ 0, \operatorname{cond}(\Omega) \leq \kappa_{n}}{\arg \min }-\log \{\operatorname{det}(\Omega)\}+\operatorname{tr}\left(\mathbf{R}_{n} \Omega\right)+\frac{\rho}{2} \operatorname{tr}\left\{\Omega \Omega^{T}+2\left(-Z^{(i-1)}+U^{(i-1)}\right) \Omega^{T}\right\} \\
= & \underset{\Omega \succ 0, \operatorname{cond}(\Omega) \leq \kappa_{n}}{\arg \min }-\log \{\operatorname{det}(\Omega)\}+\frac{\rho}{2} \operatorname{tr}\left(\Omega \Omega^{T}\right)+\rho \operatorname{tr}\left\{\left(\mathbf{R}_{n} / \rho-Z^{(i-1)}+U^{(i-1)}\right) \Omega^{T}\right\} \\
= & \underset{\Omega \succ 0, \operatorname{cond}(\Omega) \leq \kappa_{n}}{\arg \min }-\log \{\operatorname{det}(\Omega)\}+\frac{\rho}{2} \operatorname{tr}\left(\Omega \Omega^{T}\right)+\rho \operatorname{tr}\left\{\left(V D V^{T}\right) \Omega^{T}\right\} \\
= & \underset{\Omega=R M R^{T}: M \succ 0, \operatorname{cond}(M) \leq \kappa_{n}}{\arg \min }-\log \{\operatorname{det}(M)\}+\frac{\rho}{2} \operatorname{tr}\left(M M^{T}\right)+\rho \operatorname{tr}\left\{\left(V D V^{T}\right)\left(R M R^{T}\right)^{T}\right\} \\
= & \underset{\Omega=R M R^{T}: R=V, M \succ 0, \operatorname{cond}(M) \leq \kappa_{n}}{\arg \min } \quad-\log \{\operatorname{det}(M)\}+\frac{\rho}{2} \operatorname{tr}\left(M M^{T}\right)+\rho \operatorname{tr}\left(D M^{T}\right) . \quad(\mathrm{S} 1.5) \tag{S1.5}
\end{align*}
$$

The last equation in (S1.5) is true since $\operatorname{tr}\left\{\left(V D V^{T}\right)\left(R M R^{T}\right)^{T}\right\} \geq \operatorname{tr}\left(D M^{T}\right)$ with equality if $R=V$ (Theorem 14.3.2 in Farrell (1985)). Therefore, to prove $\Omega^{(i)}=V \widetilde{D} V^{T}$, it suffices to show that

$$
\widetilde{D}=\underset{M: M \succ 0, \operatorname{cond}(M) \leq \kappa_{n}}{\arg \min }-\log \{\operatorname{det}(M)\}+\frac{\rho}{2} \operatorname{tr}\left(M M^{T}\right)+\rho \operatorname{tr}\left(D M^{T}\right)
$$

which is equivalent to

$$
\begin{align*}
\widetilde{D} & =\underset{M: 0<m_{1} \leq \cdots \leq m_{p_{n}}, m_{p_{n}} / m_{1} \leq \kappa_{n}}{\arg \min }\left\{-\sum_{j=1}^{p_{n}} \log \left(m_{j}\right)+\frac{\rho}{2} \sum_{j=1}^{p_{n}} m_{j}^{2}+\rho \sum_{j=1}^{p_{n}} d_{j} m_{j}\right\} \\
& =\underset{M: \exists \tau, 0<\tau \leq m_{1} \leq \cdots \leq m_{p_{n}} \leq \kappa_{n} \tau}{\arg \min } \sum_{j=1}^{p_{n}}\left\{-\log \left(m_{j}\right)+\frac{\rho}{2}\left(m_{j}+d_{j}\right)^{2}\right\} . \tag{S1.6}
\end{align*}
$$

Define

$$
g\left(m_{j} ; d_{j}\right)=-\log \left(m_{j}\right)+\frac{\rho}{2}\left(m_{j}+d_{j}\right)^{2} .
$$

Then, $g\left(m_{j} ; d_{j}\right)$ is strictly convex in $m_{j} \in(0, \infty)$ for any $j=1, \ldots, p_{n}$, and has a unique minimizer $\delta_{j}=-d_{j} / 2+\sqrt{d_{j}^{2} / 4+1 / \rho}$. Noting that $0<\delta_{1} \leq \cdots \leq \delta_{p_{n}}$, if
$\delta_{p_{n}} / \delta_{1} \leq \kappa_{n}$, then $\widetilde{D}=\operatorname{diag}\left(\delta_{1}, \ldots, \delta_{p_{n}}\right)$ coincides with the solution to problem (S1.6) with any $\tau \in\left[\delta_{p_{n}} / \kappa_{n}, \delta_{1}\right]$.

For case $\delta_{p_{n}} / \delta_{1}>\kappa_{n}$, we first consider minimizing the objective function in (S1.6) with respect to $m_{1}, \ldots, m_{p_{n}}$ separately. For any $\tau>0$ and $j=1, \ldots, p_{n}$, it follows that

$$
\begin{aligned}
m_{j}^{*}(\tau) & :=\underset{\tau \leq m_{j} \leq \kappa_{n} \tau}{\arg \min } \sum_{k=1}^{p_{n}} g\left(m_{k} ; d_{k}\right)=\underset{\tau \leq m_{j} \leq \kappa_{n} \tau}{\arg \min } g\left(m_{j} ; d_{j}\right)=\min \left\{\max \left(\tau, \delta_{j}\right), \kappa_{n} \tau\right\} \\
& = \begin{cases}\tau, & \text { if } \delta_{j}<\tau, \\
\delta_{j}, & \text { if } \tau \leq \delta_{j} \leq \kappa_{n} \tau, \\
\kappa_{n} \tau, & \text { if } \delta_{j}>\kappa_{n} \tau .\end{cases}
\end{aligned}
$$

Since $\tau \leq m_{1}^{*}(\tau) \leq \cdots \leq m_{p_{n}}^{*}(\tau) \leq \kappa_{n} \tau$ for any $\tau>0$, problem (S1.6) amounts to

$$
\underset{M: \exists \tau>0, m_{j}=m_{j}^{*}(\tau)}{\arg \min } \sum_{j=1}^{p_{n}} g\left(m_{j} ; d_{j}\right)=\underset{M: \exists \tau>0, m_{j}=m_{j}^{*}(\tau)}{\arg \min } \sum_{j=1}^{p_{n}} g\left(m_{j}^{*}(\tau) ; d_{j}\right) .
$$

Therefore, to prove that \widetilde{D} is the solution to the optimization problem in (S1.6), we only need to show that τ_{0} is the minimizer of
$f(\tau):=\sum_{j=1}^{p_{n}} g\left(m_{j}^{*}(\tau) ; d_{j}\right)=\sum_{j: \delta_{j}<\tau} g\left(\tau ; d_{j}\right)+\sum_{j: \tau \leq \delta_{j} \leq \kappa_{n} \tau} g\left(\delta_{j} ; d_{j}\right)+\sum_{j: \delta_{j}>\kappa_{n} \tau} g\left(\kappa_{n} \tau ; d_{j}\right)$.
We can verify that $g\left(m_{j}^{*}(\tau) ; d_{j}\right)$ is a convex function of $\tau \in(0, \infty)$ and has a continuous first-order derivative with respect to $\tau \in(0, \infty)$, for any $j=1, \ldots, p_{n}$. Therefore, $f(\tau)$ is convex and continuously differentiable for $\tau \in(0, \infty)$. For $\alpha \in\left\{1, \ldots, p_{n}\right\}$ and $\beta \in\left\{1, \ldots, p_{n}\right\}$ such that $\beta-1 \geq \alpha$, define

$$
\begin{aligned}
R_{\alpha, \beta} & =\left\{\tau: \delta_{\alpha}<\tau \leq \delta_{\alpha+1} \text { and } \delta_{\beta-1} \leq \kappa_{n} \tau<\delta_{\beta}\right\}, \\
f_{\alpha, \beta}(\tau) & =\sum_{j=1}^{\alpha} g\left(\tau ; d_{j}\right)+\sum_{j=\alpha+1}^{\beta-1} g\left(\delta_{j} ; d_{j}\right)+\sum_{j=\beta}^{p_{n}} g\left(\kappa_{n} \tau ; d_{j}\right)
\end{aligned}
$$

Then, $f(\tau)=f_{\alpha, \beta}(\tau)$ for $\tau \in R_{\alpha, \beta}$. Since $f_{\alpha, \beta}^{\prime \prime}(\tau)>0$ for $\tau \in R_{\alpha, \beta}$, we know $f^{\prime}(\tau)$ is strictly monotone increasing on [$\delta_{1}, \delta_{p_{n}} / \kappa_{n}$]. It's also easy to see that $f(\tau)$ is decreasing for $\tau \in\left(0, \delta_{1}\right]$ and increasing for $\tau \in\left[\delta_{p_{n}} / \kappa_{n}, \infty\right)$. Then, the unique minimizer of $f(\tau)$ is the value of $\tau \in\left[\delta_{1}, \delta_{p_{n}} / \kappa_{n}\right]$ such that $f^{\prime}(\tau)=0$.

The solution to $f_{\alpha, \beta}^{\prime}(\tau)=0$ for $\tau \in(0, \infty)$ is

$$
\tau_{\alpha, \beta}=\left[-\rho\left(\sum_{j=1}^{\alpha} d_{j}+\kappa_{n} \sum_{j=\beta}^{p_{n}} d_{j}\right)+\left\{\rho^{2}\left(\sum_{j=1}^{\alpha} d_{j}+\kappa_{n} \sum_{j=\beta}^{p_{n}} d_{j}\right)^{2}+4 \rho\left(\alpha+\kappa_{n}{ }^{2} p_{n}\right.\right.\right.
$$

$$
\left.\left.\left.-\kappa_{n}^{2} \beta+\kappa_{n}^{2}\right)\left(\alpha+p_{n}-\beta+1\right)\right\}^{1 / 2}\right] /\left\{2 \rho\left(\alpha+\kappa_{n}^{2} p_{n}-\kappa_{n}^{2} \beta+\kappa_{n}^{2}\right)\right\} .
$$

Then, $\tau_{\alpha, \beta}$ is also the solution to $f^{\prime}(\tau)=0$ if and only if $\tau_{\alpha, \beta} \in R_{\alpha, \beta}$. This value of $\tau_{\alpha, \beta}$ is the same as τ_{0}.

In practice, we can search over $\left\{R_{\alpha, \beta}: \alpha, \beta=1, \ldots, p_{n}\right\}$ to find α_{0} and β_{0} such that $\tau_{\alpha_{0}, \beta_{0}} \in R_{\alpha_{0}, \beta_{0}}$. Start the selection procedure from $\left(\alpha^{*}, \beta^{*}\right)$, where $\alpha^{*}=1$ and β^{*} is the smallest index in $\left\{1, \ldots, p_{n}\right\}$ such that $\delta_{\beta^{*}}>\kappa_{n} \delta_{\alpha^{*}}$. If $\tau_{\alpha^{*}, \beta^{*}} \notin R_{\alpha^{*}, \beta^{*}}$, then move on to $R_{\alpha^{*}+1, \beta^{*}}, R_{\alpha^{*}+1, \beta^{*}+1}$ or $R_{\alpha^{*}, \beta^{*}+1}$ for the selection of α_{0} and β_{0}. Specifically, if $\kappa_{n} \delta_{\alpha^{*}+1}<\delta_{\beta^{*}}$, then move on to $R_{\alpha^{*}+1, \beta^{*}}$; if $\kappa_{n} \delta_{\alpha^{*}+1}>\delta_{\beta^{*}}$, then go to $R_{\alpha^{*}, \beta^{*}+1}$; otherwise, continue searching α_{0} and β_{0} within $R_{\alpha^{*}+1, \beta^{*}+1}$. Repeat the above procedure until condition $\tau_{\alpha, \beta} \in R_{\alpha, \beta}$ is satisfied. The procedure requires $O\left(p_{n}\right)$ operations.

