The Effect of L_1 Penalization on Condition Number Constrained Estimation of Precision Matrix

Xiao Guo and Chunming Zhang

University of Science and Technology of China and University of Wisconsin-Madison

Supplementary Material

The supplementary material here includes the detailed proofs of Theorems 1–4 and Proposition 1 in the paper.

S1 Detailed proofs

Proof of Theorem 1. Without loss of generality, we assume $\mu_0 = 0$.

Condition A1 indicates that $P\{|\mathbf{S}_n(i,j) - \mathbf{\Sigma}_0(i,j)| \ge \delta\} \le C \exp(-c\delta^2 n)$ for $i, j = 1, \ldots, p_n$ with an arbitrarily small constant $\delta \in (0, \infty)$ (see, for example, (11) and Lemma A.3 of Bickel and Levina (2008)), and hence

$$\|\widehat{W}^2 - W_0^2\|_2^2 = O_{\rm P}\{\log(p_n)/n\} = \|\widehat{W}^{-1} - W_0^{-1}\|_2^2.$$
(S1.1)

Under Condition A2, we have $P\{|\mathbf{S}_n(i,j) - \mathbf{\Sigma}_0(i,j)| \geq \delta\} \leq Cn^{-\beta/4}\delta^{-\beta/2}$ for $i, j = 1, \ldots, p_n$ with a constant $\delta \in (0, \infty)$ (see, for example, Lemma 2 of Ravikumar et al. (2011)), which implies

$$\|\widehat{W}^2 - W_0^2\|_2^2 = O_{\rm P}(p_n^{4/\beta}/n) = \|\widehat{W}^{-1} - W_0^{-1}\|_2^2.$$
(S1.2)

It's easy to see that Condition A3 implies

$$\|\widehat{W}^2 - W_0^2\|_2^2 = O_{\mathrm{P}}(p_n/n) = \|\widehat{W}^{-1} - W_0^{-1}\|_2^2.$$

Therefore, under either Condition A1 or A2 or A3,

$$\|\widehat{W}^2 - W_0^2\|_2^2 = o_{\mathbf{P}}(1) = \|\widehat{W}^{-1} - W_0^{-1}\|_2^2.$$

To prove $\|\widehat{\boldsymbol{\Theta}}_{\text{prop}-1} - \boldsymbol{\Theta}_0\|_2 \xrightarrow{P} 0$, it suffices to show that $\|\widetilde{\Omega}_{\kappa_n} - \Omega_0\|_2 \xrightarrow{P} 0$.

Under Condition A1 or A2, Σ_0 being diagonal induces $\Gamma_0 = \mathbf{I}_{p_n}$. From (2.2), $\widetilde{\Omega}_{\kappa_n} = \{p_n/\operatorname{tr}(\mathbf{R}_n)\}\mathbf{I}_{p_n} = \mathbf{I}_{p_n}$ due to $\kappa_n = 1$. Hence, $\|\widetilde{\Omega}_{\kappa_n} - \Omega_0\|_2 \xrightarrow{\mathrm{P}} 0$. Under Condition A3, we first prove $\|\mathbf{S}_n - \mathbf{\Sigma}_0\|_2 \xrightarrow{\mathbf{P}} 0$ for $\mathbf{\Sigma}_0 = \mathbf{I}_{p_n}$. For $i = 1, \ldots, n$, define $\mathbf{X}_i^* = (\mathbf{X}_i^T, \mathbf{Y}_i^T)^T \in \mathbb{R}^{p_n^*}$ with $p_n^* > p_n$ an integer and $\mathbf{Y}_1, \ldots, \mathbf{Y}_n \in \mathbb{R}^{p_n^* - p_n}$ i.i.d. random vectors, such that $\{\mathbf{e}_{j,p_n^*}^T \mathbf{X}_i^* : i = 1, \ldots, n; j = 1, \ldots, p_n^*\}$ are i.i.d. random variables. Let $\mathbf{S}_n^* = n^{-1} \sum_{i=1}^n \mathbf{X}_i^* \mathbf{X}_i^{*T}$.

From Theorem 2 of Bai and Yin (1993), if $\lim_{n\to\infty} p_n^*/n = y$ with a constant $y \in (0,1)$, then $\lambda_{\max}(\mathbf{S}_n^*) \xrightarrow{\mathrm{P}} (1+\sqrt{y})^2$ and $\lambda_{\min}(\mathbf{S}_n^*) \xrightarrow{\mathrm{P}} (1-\sqrt{y})^2$. We know $\lambda_{\min}(\mathbf{S}_n^*) \leq \lambda_{\min}(n^{-1}\sum_{i=1}^n \mathbf{X}_i \mathbf{X}_i^T) \leq \lambda_{\max}(n^{-1}\sum_{i=1}^n \mathbf{X}_i \mathbf{X}_i^T) \leq \lambda_{\max}(\mathbf{S}_n^*)$. Thus, if y is arbitrarily close to 0, then we have $\lambda_{\max}(n^{-1}\sum_{i=1}^n \mathbf{X}_i \mathbf{X}_i^T) \xrightarrow{\mathrm{P}} 1$ and $\lambda_{\min}(n^{-1}\sum_{i=1}^n \mathbf{X}_i \mathbf{X}_i^T) \xrightarrow{\mathrm{P}} 1$. From

$$\|\mathbf{S}_n - \mathbf{\Sigma}_0\|_2 \le \left\| n^{-1} \sum_{i=1}^n \mathbf{X}_i \mathbf{X}_i^T - \mathbf{\Sigma}_0 \right\|_2 + \|\overline{\mathbf{X}} \,\overline{\mathbf{X}}^T\|_2 = \mathrm{I} + \mathrm{II},$$

 $I = \max\{|\lambda_{\max}(n^{-1}\sum_{i=1}^{n} \boldsymbol{X}_{i}\boldsymbol{X}_{i}^{T}) - 1|, |\lambda_{\min}(n^{-1}\sum_{i=1}^{n} \boldsymbol{X}_{i}\boldsymbol{X}_{i}^{T}) - 1|\} \xrightarrow{\mathbf{P}} 0 \text{ and } \mathbf{II} = \overline{\boldsymbol{X}}^{T}\overline{\boldsymbol{X}} \xrightarrow{\mathbf{P}} 0, \text{ we have } \|\mathbf{S}_{n} - \boldsymbol{\Sigma}_{0}\|_{2} \xrightarrow{\mathbf{P}} 0.$

For Σ_0 not necessarily equal to \mathbf{I}_{p_n} , $\|\mathbf{S}_n - \Sigma_0\|_2 \leq \|\Sigma_0^{1/2}\|_2 \|\Sigma_0^{-1/2} \mathbf{S}_n \Sigma_0^{-1/2} - \mathbf{I}_{p_n}\|_2 \|\Sigma_0^{1/2}\|_2 \xrightarrow{\mathbf{P}} 0$, since $\Sigma_0^{-1/2} \mathbf{S}_n \Sigma_0^{-1/2}$ is the sample covariance matrix of $\{\Sigma_0^{-1/2} \mathbf{X}_1, \ldots, \Sigma_0^{-1/2} \mathbf{X}_n\}$ which are i.i.d. with covariance matrix \mathbf{I}_{p_n} and

$$\{ E(|\boldsymbol{e}_{1,p_n}^T \boldsymbol{\Sigma}_0^{-1/2} \boldsymbol{X}_1|^4) \}^{1/4} \leq \sum_{i=1}^{p_n} \{ E(|\boldsymbol{e}_{1,p_n}^T \boldsymbol{\Sigma}_0^{-1/2} \boldsymbol{e}_{i,p_n} X_{1,i}|^4) \}^{1/4}$$

$$\leq \max_{1 \leq i \leq p_n} \{ E(|X_{1,i}|^4) \}^{1/4} \sum_{i=1}^{p_n} |\boldsymbol{e}_{1,p_n}^T \boldsymbol{\Sigma}_0^{-1/2} \boldsymbol{e}_{i,p_n}| = \max_{1 \leq i \leq p_n} \{ E(|X_{1,i}|^4) \}^{1/4} \| \boldsymbol{\Sigma}_0^{-1/2} \|_{\infty}$$

$$< C < \infty.$$

Therefore, $\|\mathbf{R}_n - \Gamma_0\|_2 \xrightarrow{\mathbf{P}} 0$, which implies that $\|\widetilde{\Omega}_{\kappa_n} - \Omega_0\|_2 \xrightarrow{\mathbf{P}} 0$ since $\liminf_{n \to \infty} \{\kappa_n - \operatorname{cond}(\Omega_0)\} > 0$.

The result $\|\widehat{\Theta}_{\text{prop}-1}^{-1} - \Sigma_0\|_2 \xrightarrow{P} 0$ comes from $\|\widehat{\Theta}_{\text{prop}-1}^{-1} - \Sigma_0\|_2 = O_P(\|\widehat{\Theta}_{\text{prop}-1} - \Theta_0\|_2)$.

Proof of Theorem 2. Suppose the eigendecomposition of \mathbf{R}_n is $Q \operatorname{diag}(\hat{\lambda}_1, \ldots, \hat{\lambda}_{p_n}) Q^T$, where $\hat{\lambda}_1 \geq \cdots \geq \hat{\lambda}_{p_n}$ are the eigenvalues of \mathbf{R}_n . From Won et al. (2013), $\tilde{\Omega}_{\kappa_n}^{-1} = Q \operatorname{diag}(\tilde{\lambda}_1, \ldots, \tilde{\lambda}_{p_n}) Q^T$, where $\tilde{\lambda}_i = \min\{\max(\tau^*, \hat{\lambda}_i), \kappa_n \tau^*\}$ with $\tau^* \in (0, \infty)$ depending on $\hat{\lambda}_1, \ldots, \hat{\lambda}_{p_n}$ and κ_n . Hence, $\tilde{\Omega}_{\kappa_n}^{-1}$ truncates the eigenvalues of \mathbf{R}_n . From Stewart and Sun (1990) (Corollary 4.10, p. 203),

$$\max_{1 \le i \le p_n} |\widetilde{\lambda}_i - \lambda_i| \le \|\widetilde{\Omega}_{\kappa_n}^{-1} - \Gamma_0\|_2,$$

where $\lambda_1 \geq \cdots \geq \lambda_{p_n}$ are the eigenvalues of Γ_0 . If $\|\widetilde{\Omega}_{\kappa_n}^{-1} - \Gamma_0\|_2 \xrightarrow{P} 0$, then $\max_{1 \leq i \leq p_n} |\widetilde{\lambda}_i - \lambda_i| \xrightarrow{P} 0$ which implies that $\mathbb{F}^{\widetilde{\Omega}_{\kappa_n}^{-1}}$ converges weakly to F_0 in probability. Therefore, to prove $\|\widehat{\Theta}_{\text{prop}-1} - \Theta_0\|_2 \neq 0$ in probability, we only need to show $\|\widetilde{\Omega}_{\kappa_n}^{-1} - \Gamma_0\|_2 \neq 0$ in probability, and it suffices to show that $\mathbb{F}^{\widetilde{\Omega}_{\kappa_n}^{-1}}$ doesn't converge weakly to F_0 in probability.

Under Condition B1, if $\lim_{n\to\infty} p_n/n = \infty$, then the rank of \mathbf{R}_n is at most nwhen $p_n > n$, and hence, the proportion of the 0 eigenvalues among $\hat{\lambda}_1, \ldots, \hat{\lambda}_{p_n}$ is at least $(p_n - n)/p_n$ which converges to 1 as $n \to \infty$. Therefore, $\mathbb{F}^{\mathbf{R}_n}$ will converge weakly to $\mathbf{I}_{[0,\infty)}$ in probability. Since $\tilde{\lambda}_i = \min\{\max(\tau^*, \hat{\lambda}_i), \kappa_n \tau^*\}$, if $\mathbb{F}^{\tilde{\Omega}_{\kappa_n}^{-1}}$ converges weakly in probability, then the limit is $\mathbf{I}_{[c,\infty)}$ for some $c \in [0,\infty)$. Since $F_0 \neq \mathbf{I}_{[C,\infty)}$ for any $C \in [0,\infty)$, $\mathbb{F}^{\tilde{\Omega}_{\kappa_n}^{-1}}$ doesn't converge weakly to F_0 in probability. Therefore, $\|\widehat{\mathbf{\Theta}}_{\text{prop}-1} - \mathbf{\Theta}_0\|_2 \to 0$ in probability.

Under Condition B2, we will show that $|\operatorname{cond}(\widetilde{\Omega}_{\kappa_n}^{-1}) - \operatorname{cond}(\Gamma_0)| \not\rightarrow 0$ in probability which implies that $\|\widetilde{\Omega}_{\kappa_n}^{-1} - \Gamma_0\|_2 \not\rightarrow 0$ in probability. From Theorem 1 in Won et al. (2013), $\operatorname{cond}(\widetilde{\Omega}_{\kappa_n}^{-1}) = \min\{\kappa_n, \operatorname{cond}(\mathbf{R}_n)\}$. Since $|\min\{\kappa_n, \operatorname{cond}(\mathbf{R}_n)\} - \operatorname{cond}(\Gamma_0)| \not\rightarrow 0$ in probability, we have $|\operatorname{cond}(\widetilde{\Omega}_{\kappa_n}^{-1}) - \operatorname{cond}(\Gamma_0)| \not\rightarrow 0$ in probability as $n \rightarrow \infty$.

Under Condition B3, we will show that $\mathbb{F}^{\widehat{\Omega}_{\kappa_n}^{-1}}$ does not converge weakly to F_0 in probability. We truncate $\mathbb{F}^{\mathbf{R}_n}$ in order to obtain $\mathbb{F}^{\widehat{\Omega}_{\kappa_n}^{-1}}$, i.e., $\mathbb{F}^{\widehat{\Omega}_{\kappa_n}^{-1}} = \mathbb{F}^{\mathbf{R}_n} \mathbf{I}_{[\tau^*,\kappa_n\tau^*)} + \mathbf{I}_{[\kappa_n\tau^*,\infty)}$. If $\mathbb{F}^{\widehat{\Omega}_{\kappa_n}^{-1}}$ converges weakly to F_0 in probability, then $F_0 = F \mathbf{I}_{[l_{\min},l_{\max})} + \mathbf{I}_{[l_{\max},\infty)}$, which contradicts Condition B3.

Therefore, we have demonstrated that $\|\widehat{\Theta}_{\text{prop}-1} - \Theta_0\|_2 \neq 0$ in probability under either Condition B1 or B2 or B3. Next, we will show that $\|\widehat{\Theta}_{\text{prop}-1}^{-1} - \Sigma_0\|_2 \neq 0$ in probability. If $\|\widehat{\Theta}_{\text{prop}-1}^{-1} - \Sigma_0\|_2 = o_P(1)$, then $\|\widehat{\Theta}_{\text{prop}-1} - \Theta_0\|_2 = o_P(1)$ because $\|\widehat{\Theta}_{\text{prop}-1} - \Theta_0\|_2 = O_P(\|\widehat{\Theta}_{\text{prop}-1}^{-1} - \Sigma_0\|_2)$. Since $\|\widehat{\Theta}_{\text{prop}-1} - \Theta_0\|_2 \neq 0$ in probability, we can claim $\|\widehat{\Theta}_{\text{prop}-1}^{-1} - \Sigma_0\|_2 \neq 0$ in probability.

Proof of Theorem 3. Following the proofs of Corollaries 1 and 2 in Ravikumar et al. (2011), we have that, with probability tending to 1,

$$|\widehat{\Omega}_{\text{RBLZ}} - \Omega_0|_{\infty}^2 \le C r_n^*$$

with $r_n^* = \log(p_n)/n$ under Condition C1, and $r_n^* = p_n^{4\tau/\beta}/n$ under Condition C2, where $|\cdot|_{\infty}$ is the matrix elementwise L_{∞} norm defined as $|A|_{\infty} = \max_{i,j} |A(i,j)|$ for a generic matrix A. The proof of Theorem 1 in Ravikumar et al. (2011) indicates that $\{(i,j):$

 $\widehat{\Omega}_{\text{RBLZ}}(i,j) \neq 0 \} \subseteq \{(i,j) : \Omega_0(i,j) \neq 0\}$ with probability tending to 1.

For $n = 1, 2, ..., \text{ let } \mathcal{A}_n$ denote the event that $|\widehat{\Omega}_{\text{RBLZ}} - \Omega_0|_{\infty}^2 \leq Cr_n^*$ and $\{(i, j) : \widehat{\Omega}_{\text{RBLZ}}(i, j) \neq 0\} \subseteq \{(i, j) : \Omega_0(i, j) \neq 0\}$. Hence, $\lim_{n \to \infty} P(\mathcal{A}_n) = 1$. Then, conditional on event \mathcal{A}_n , we have

$$\begin{aligned} &\|\widehat{\Omega}_{\text{RBLZ}} - \Omega_0\|_2^2 \le \|\widehat{\Omega}_{\text{RBLZ}} - \Omega_0\|_F^2 \\ &= \sum_{i=1}^{p_n} |\widehat{\Omega}_{\text{RBLZ}}(i,i) - \Omega_0(i,i)|^2 + \sum_{i \ne j: \Omega_0(i,j) \ne 0} |\widehat{\Omega}_{\text{RBLZ}}(i,j) - \Omega_0(i,j)|^2 \quad (\text{S1.3}) \end{aligned}$$

and

$$\|\widehat{\Omega}_{\text{RBLZ}} - \Omega_0\|_2^2 \le \|\widehat{\Omega}_{\text{RBLZ}} - \Omega_0\|_{\infty}^2 \le t_n^2 |\widehat{\Omega}_{\text{RBLZ}} - \Omega_0|_{\infty}^2.$$
(S1.4)

If $p_n \leq s_n$, then (S1.3) and (S1.4) indicate $\|\widehat{\Omega}_{RBLZ} - \Omega_0\|_2^2 \leq C \min(p_n + s_n, t_n^2)r_n^* \leq Cr_n$ under Condition C1 or C2. Next, we consider the case $p_n > s_n$. Define $t_n^i = |\{j = 1, \ldots, p_n : \Theta_0(i, j) \neq 0\}|$. For any $i \in \{1, \ldots, p_n\}$ such that $t_n^i = 1$, we know $\Omega_0 e_{i,p_n} = e_{i,p_n}$, which means that the diagonal element is the only nonzero element in the *i*th column of Ω_0 . Since $p_n > s_n$, we have $|\{i = 1, \ldots, p_n : t_n^i = 1\}| \geq p_n - s_n$. Because $\{(i,j) : \widehat{\Omega}_{RBLZ}(i,j) \neq 0\} \subseteq \{(i,j) : \Omega_0(i,j) \neq 0\}$, from the definition of $\widehat{\Omega}_{RBLZ}$, we have $\widehat{\Omega}_{RBLZ} e_{i,p_n} = e_{i,p_n}$ for any $i \in \{1, \ldots, p_n\}$ with $\Omega_0 e_{i,p_n} = e_{i,p_n}$. Hence, $|\widehat{\Omega}_{RBLZ}(i,i) - \Omega_0(i,i)| = 0$ for $i \in \{1, \ldots, p_n\}$ with $t_n^i = 1$. Therefore, (S1.3) indicates $\|\widehat{\Omega}_{RBLZ} - \Omega_0\|_2^2 \leq C(1+s_n)r_n^*$, which together with (S1.4) implies that $\|\widehat{\Omega}_{RBLZ} - \Omega_0\|_2^2 \leq C \min(1+s_n, t_n^2)r_n^* \leq Cr_n$.

Hence, under Condition C1 or C2, $\|\widehat{\Omega}_{RBLZ} - \Omega_0\|_2^2 = O_P(r_n)$. Therefore, from (S1.1) and (S1.2),

$$\begin{split} \|\widehat{\Theta}_{\text{RBLZ}} - \Theta_0\|_2 &= \|\widehat{W}^{-1}\widehat{\Omega}_{\text{RBLZ}}\widehat{W}^{-1} - W_0^{-1}\Omega_0W_0^{-1}\|_2 \\ &\leq \|\widehat{W}^{-1} - W_0^{-1}\|_2\|\widehat{\Omega}_{\text{RBLZ}} - \Omega_0\|_2\|\widehat{W}^{-1} - W_0^{-1}\|_2 \\ &+ \|\widehat{W}^{-1} - W_0^{-1}\|_2(\|\widehat{\Omega}_{\text{RBLZ}}\|_2\|W_0^{-1}\|_2 + \|\widehat{W}^{-1}\|_2\|\Omega_0\|_2) \\ &+ \|\widehat{\Omega}_{\text{RBLZ}} - \Omega_0\|_2\|\widehat{W}^{-1}\|_2\|W_0^{-1}\|_2 = O_{\text{P}}(r_n^{1/2}). \end{split}$$

We obtain $\|\widehat{\boldsymbol{\Theta}}_{\text{RBLZ}}^{-1} - \boldsymbol{\Sigma}_0\|_2^2 = O_{\text{P}}(r_n)$, since $\|\widehat{\boldsymbol{\Theta}}_{\text{RBLZ}}^{-1} - \boldsymbol{\Sigma}_0\|_2^2 = O_{\text{P}}(\|\widehat{\boldsymbol{\Theta}}_{\text{RBLZ}} - \boldsymbol{\Theta}_0\|_2^2)$.

Proof of Theorem 4. Following the proof of Theorem 3, under Condition C1 or C2, $\|\widehat{\Omega}_{\text{RBLZ}} - \Omega_0\|_2^2 = O_{\text{P}}(r_n)$. Now that $\operatorname{cond}(\widehat{\Omega}_{\text{RBLZ}}) - \operatorname{cond}(\Omega_0) = o_{\text{P}}(1)$, from

$$\begin{split} &\lim \inf_{n\to\infty} \{\kappa_n - \operatorname{cond}(\Omega_0)\} > 0, \text{ we have } \operatorname{cond}(\widehat{\Omega}_{\mathrm{RBLZ}}) \leq \kappa_n \text{ with probability tend-}\\ &\inf for 1, \text{ which means that } \widehat{\Omega}_{\mu_n,\kappa_n} = \widehat{\Omega}_{\mathrm{RBLZ}} \text{ with probability tending to 1, and hence}\\ &\lim_{n\to\infty} \mathrm{P}(\widehat{\Theta}_{\mathrm{prop}-2} = \widehat{\Theta}_{\mathrm{RBLZ}}) = 1. \text{ Therefore, from the conclusion in Theorem 3,}\\ &\|\widehat{\Theta}_{\mathrm{prop}-2} - \Theta_0\|_2^2 = O_{\mathrm{P}}(r_n) = \|\widehat{\Theta}_{\mathrm{prop}-2}^{-1} - \Sigma_0\|_2^2. \blacksquare \end{split}$$

Proof of Proposition 1. From (3.2) and (3.3), suppose the eigendecomposition of variable Ω is RMR^T , where R is orthogonal and $M = \text{diag}(m_1, \ldots, m_{p_n})$ with $m_1 \leq \cdots \leq m_{p_n}$. For Step 1 in Section 3,

$$\begin{aligned} \arg\min_{\Omega\succ 0, \operatorname{cond}(\Omega)\leq\kappa_{n}} L_{\rho}(\Omega, Z^{(i-1)}; U^{(i-1)}) \\ &= \arg\min_{\Omega\succ 0, \operatorname{cond}(\Omega)\leq\kappa_{n}} -\log\{\det(\Omega)\} + \operatorname{tr}(\mathbf{R}_{n}\Omega) + \frac{\rho}{2} \|\Omega - Z^{(i-1)} + U^{(i-1)}\|_{F}^{2} \\ &= \arg\min_{\Omega\succ 0, \operatorname{cond}(\Omega)\leq\kappa_{n}} -\log\{\det(\Omega)\} + \operatorname{tr}(\mathbf{R}_{n}\Omega) + \frac{\rho}{2}\operatorname{tr}\{\Omega\Omega^{T} + 2(-Z^{(i-1)} + U^{(i-1)})\Omega^{T}\} \\ &= \arg\min_{\Omega\succ 0, \operatorname{cond}(\Omega)\leq\kappa_{n}} -\log\{\det(\Omega)\} + \frac{\rho}{2}\operatorname{tr}(\Omega\Omega^{T}) + \rho\operatorname{tr}\{(\mathbf{R}_{n}/\rho - Z^{(i-1)} + U^{(i-1)})\Omega^{T}\} \\ &= \arg\min_{\Omega\succ 0, \operatorname{cond}(\Omega)\leq\kappa_{n}} -\log\{\det(\Omega)\} + \frac{\rho}{2}\operatorname{tr}(\Omega\Omega^{T}) + \rho\operatorname{tr}\{(VDV^{T})\Omega^{T}\} \\ &= \arg\min_{\Omega\vDash 0, \operatorname{cond}(\Omega)\leq\kappa_{n}} -\log\{\det(\Omega)\} + \frac{\rho}{2}\operatorname{tr}(MM^{T}) + \rho\operatorname{tr}\{(VDV^{T})(RMR^{T})^{T}\} \\ &= \arg\min_{\Omega=RMR^{T}:R=V, M\succ 0, \operatorname{cond}(M)\leq\kappa_{n}} -\log\{\det(M)\} + \frac{\rho}{2}\operatorname{tr}(MM^{T}) + \rho\operatorname{tr}(DM^{T}). \quad (S1.5) \end{aligned}$$

The last equation in (S1.5) is true since $\operatorname{tr}\{(VDV^T)(RMR^T)^T\} \geq \operatorname{tr}(DM^T)$ with equality if R = V (Theorem 14.3.2 in Farrell (1985)). Therefore, to prove $\Omega^{(i)} = V\widetilde{D}V^T$, it suffices to show that

$$\widetilde{D} = \operatorname*{arg\,min}_{M:M \succ 0,\, \mathrm{cond}(M) \le \kappa_n} - \log\{\det(M)\} + \frac{\rho}{2} \mathrm{tr}(MM^T) + \rho \mathrm{tr}(DM^T),$$

which is equivalent to

$$\widetilde{D} = \arg\min_{M: \, 0 < m_1 \le \dots \le m_{p_n}, \, m_{p_n}/m_1 \le \kappa_n} \left\{ -\sum_{j=1}^{p_n} \log(m_j) + \frac{\rho}{2} \sum_{j=1}^{p_n} m_j^2 + \rho \sum_{j=1}^{p_n} d_j m_j \right\} \\ = \arg\min_{M: \, \exists \, \tau, \, 0 < \tau \le m_1 \le \dots \le m_{p_n} \le \kappa_n \tau} \sum_{j=1}^{p_n} \left\{ -\log(m_j) + \frac{\rho}{2} (m_j + d_j)^2 \right\}.$$
(S1.6)

Define

$$g(m_j; d_j) = -\log(m_j) + \frac{\rho}{2}(m_j + d_j)^2$$

Then, $g(m_j; d_j)$ is strictly convex in $m_j \in (0, \infty)$ for any $j = 1, \ldots, p_n$, and has a unique minimizer $\delta_j = -d_j/2 + \sqrt{d_j^2/4 + 1/\rho}$. Noting that $0 < \delta_1 \leq \cdots \leq \delta_{p_n}$, if

 $\delta_{p_n}/\delta_1 \leq \kappa_n$, then $\widetilde{D} = \text{diag}(\delta_1, \ldots, \delta_{p_n})$ coincides with the solution to problem (S1.6) with any $\tau \in [\delta_{p_n}/\kappa_n, \delta_1]$.

For case $\delta_{p_n}/\delta_1 > \kappa_n$, we first consider minimizing the objective function in (S1.6) with respect to m_1, \ldots, m_{p_n} separately. For any $\tau > 0$ and $j = 1, \ldots, p_n$, it follows that

$$\begin{split} m_j^*(\tau) &:= & \operatorname*{arg\,min}_{\tau \le m_j \le \kappa_n \tau} \sum_{k=1}^{p_n} g(m_k; d_k) = \operatorname*{arg\,min}_{\tau \le m_j \le \kappa_n \tau} g(m_j; d_j) = \min\{\max(\tau, \delta_j), \kappa_n \tau\} \\ &= & \begin{cases} \tau, & \text{if } \delta_j < \tau, \\ \delta_j, & \text{if } \tau \le \delta_j \le \kappa_n \tau, \\ \kappa_n \tau, & \text{if } \delta_j > \kappa_n \tau. \end{cases} \end{split}$$

Since $\tau \leq m_1^*(\tau) \leq \cdots \leq m_{p_n}^*(\tau) \leq \kappa_n \tau$ for any $\tau > 0$, problem (S1.6) amounts to

$$\underset{M: \exists \tau > 0, m_j = m_j^*(\tau)}{\operatorname{arg\,min}} \sum_{j=1}^{p_n} g(m_j; d_j) = \underset{M: \exists \tau > 0, m_j = m_j^*(\tau)}{\operatorname{arg\,min}} \sum_{j=1}^{p_n} g(m_j^*(\tau); d_j).$$

Therefore, to prove that D is the solution to the optimization problem in (S1.6), we only need to show that τ_0 is the minimizer of

$$f(\tau) := \sum_{j=1}^{p_n} g(m_j^*(\tau); d_j) = \sum_{j:\delta_j < \tau} g(\tau; d_j) + \sum_{j:\tau \le \delta_j \le \kappa_n \tau} g(\delta_j; d_j) + \sum_{j:\delta_j > \kappa_n \tau} g(\kappa_n \tau; d_j).$$

We can verify that $g(m_j^*(\tau); d_j)$ is a convex function of $\tau \in (0, \infty)$ and has a continuous first-order derivative with respect to $\tau \in (0, \infty)$, for any $j = 1, \ldots, p_n$. Therefore, $f(\tau)$ is convex and continuously differentiable for $\tau \in (0, \infty)$. For $\alpha \in \{1, \ldots, p_n\}$ and $\beta \in \{1, \ldots, p_n\}$ such that $\beta - 1 \ge \alpha$, define

$$R_{\alpha,\beta} = \{\tau : \delta_{\alpha} < \tau \le \delta_{\alpha+1} \text{ and } \delta_{\beta-1} \le \kappa_n \tau < \delta_{\beta}\},\$$

$$f_{\alpha,\beta}(\tau) = \sum_{j=1}^{\alpha} g(\tau; d_j) + \sum_{j=\alpha+1}^{\beta-1} g(\delta_j; d_j) + \sum_{j=\beta}^{p_n} g(\kappa_n \tau; d_j).$$

Then, $f(\tau) = f_{\alpha,\beta}(\tau)$ for $\tau \in R_{\alpha,\beta}$. Since $f''_{\alpha,\beta}(\tau) > 0$ for $\tau \in R_{\alpha,\beta}$, we know $f'(\tau)$ is strictly monotone increasing on $[\delta_1, \delta_{p_n}/\kappa_n]$. It's also easy to see that $f(\tau)$ is decreasing for $\tau \in (0, \delta_1]$ and increasing for $\tau \in [\delta_{p_n}/\kappa_n, \infty)$. Then, the unique minimizer of $f(\tau)$ is the value of $\tau \in [\delta_1, \delta_{p_n}/\kappa_n]$ such that $f'(\tau) = 0$.

The solution to $f'_{\alpha,\beta}(\tau) = 0$ for $\tau \in (0,\infty)$ is

$$\tau_{\alpha,\beta} = \left[-\rho \left(\sum_{j=1}^{\alpha} d_j + \kappa_n \sum_{j=\beta}^{p_n} d_j \right) + \left\{ \rho^2 \left(\sum_{j=1}^{\alpha} d_j + \kappa_n \sum_{j=\beta}^{p_n} d_j \right)^2 + 4\rho (\alpha + \kappa_n^2 p_n) \right\} \right]$$

$$-\kappa_n^2\beta + \kappa_n^2)(\alpha + p_n - \beta + 1) \Big\}^{1/2} \Big] \Big/ \{2\rho(\alpha + \kappa_n^2 p_n - \kappa_n^2\beta + \kappa_n^2)\}.$$

Then, $\tau_{\alpha,\beta}$ is also the solution to $f'(\tau) = 0$ if and only if $\tau_{\alpha,\beta} \in R_{\alpha,\beta}$. This value of $\tau_{\alpha,\beta}$ is the same as τ_0 .

In practice, we can search over $\{R_{\alpha,\beta} : \alpha, \beta = 1, \ldots, p_n\}$ to find α_0 and β_0 such that $\tau_{\alpha_0,\beta_0} \in R_{\alpha_0,\beta_0}$. Start the selection procedure from (α^*,β^*) , where $\alpha^* = 1$ and β^* is the smallest index in $\{1,\ldots,p_n\}$ such that $\delta_{\beta^*} > \kappa_n \delta_{\alpha^*}$. If $\tau_{\alpha^*,\beta^*} \notin R_{\alpha^*,\beta^*}$, then move on to $R_{\alpha^*+1,\beta^*}, R_{\alpha^*+1,\beta^*+1}$ or R_{α^*,β^*+1} for the selection of α_0 and β_0 . Specifically, if $\kappa_n \delta_{\alpha^*+1} < \delta_{\beta^*}$, then move on to R_{α^*+1,β^*} ; if $\kappa_n \delta_{\alpha^*+1} > \delta_{\beta^*}$, then go to R_{α^*,β^*+1} ; otherwise, continue searching α_0 and β_0 within R_{α^*+1,β^*+1} . Repeat the above procedure until condition $\tau_{\alpha,\beta} \in R_{\alpha,\beta}$ is satisfied. The procedure requires $O(p_n)$ operations.