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Supplementary Material

The supplementary material here includes the detailed proofs of Theorems 1–4 and

Proposition 1 in the paper.

S1 Detailed proofs

Proof of Theorem 1. Without loss of generality, we assume µ0 = 0.

Condition A1 indicates that P{|Sn(i, j) −Σ0(i, j)| ≥ δ} ≤ C exp(−cδ2n) for i, j =

1, . . . , pn with an arbitrarily small constant δ ∈ (0,∞) (see, for example, (11) and Lemma

A.3 of Bickel and Levina (2008)), and hence

∥Ŵ 2 −W 2
0 ∥22 = OP{log(pn)/n} = ∥Ŵ−1 −W−1

0 ∥22. (S1.1)

Under Condition A2, we have P{|Sn(i, j) − Σ0(i, j)| ≥ δ} ≤ Cn−β/4δ−β/2 for i, j =

1, . . . , pn with a constant δ ∈ (0,∞) (see, for example, Lemma 2 of Ravikumar et al.

(2011)), which implies

∥Ŵ 2 −W 2
0 ∥22 = OP(p

4/β
n /n) = ∥Ŵ−1 −W−1

0 ∥22. (S1.2)

It’s easy to see that Condition A3 implies

∥Ŵ 2 −W 2
0 ∥22 = OP(pn/n) = ∥Ŵ−1 −W−1

0 ∥22.

Therefore, under either Condition A1 or A2 or A3,

∥Ŵ 2 −W 2
0 ∥22 = oP(1) = ∥Ŵ−1 −W−1

0 ∥22.

To prove ∥Θ̂prop−1 −Θ0∥2
P→ 0, it suffices to show that ∥Ω̃κn − Ω0∥2

P→ 0.

Under Condition A1 or A2, Σ0 being diagonal induces Γ0 = Ipn . From (2.2),

Ω̃κn = {pn/tr(Rn)}Ipn = Ipn due to κn = 1. Hence, ∥Ω̃κn − Ω0∥2
P→ 0.
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Under Condition A3, we first prove ∥Sn−Σ0∥2
P→ 0 for Σ0 = Ipn . For i = 1, . . . , n,

define X∗
i = (XT

i ,Y
T
i )

T ∈ Rp∗
n with p∗n > pn an integer and Y 1, . . . ,Y n ∈ Rp∗

n−pn

i.i.d. random vectors, such that {eTj,p∗
n
X∗

i : i = 1, . . . , n; j = 1, . . . , p∗n} are i.i.d. random

variables. Let S∗
n = n−1

∑n
i=1 X

∗
iX

∗T
i .

From Theorem 2 of Bai and Yin (1993), if limn→∞ p∗n/n = y with a constant

y ∈ (0, 1), then λmax(S
∗
n)

P→ (1+
√
y)2 and λmin(S

∗
n)

P→ (1−√
y)2. We know λmin(S

∗
n) ≤

λmin(n
−1

∑n
i=1 XiX

T
i ) ≤ λmax(n

−1
∑n

i=1 XiX
T
i ) ≤ λmax(S

∗
n). Thus, if y is arbitrarily

close to 0, then we have λmax(n
−1

∑n
i=1 XiX

T
i )

P→ 1 and λmin(n
−1

∑n
i=1 XiX

T
i )

P→ 1.

From

∥Sn −Σ0∥2 ≤
∥∥∥n−1

n∑
i=1

XiX
T
i −Σ0

∥∥∥
2
+ ∥XX

T ∥2 = I + II,

I = max{|λmax(n
−1

∑n
i=1 XiX

T
i ) − 1|, |λmin(n

−1
∑n

i=1 XiX
T
i ) − 1|} P→ 0 and II =

X
T
X

P→ 0, we have ∥Sn −Σ0∥2
P→ 0.

For Σ0 not necessarily equal to Ipn , ∥Sn − Σ0∥2 ≤ ∥Σ1/2
0 ∥2∥Σ−1/2

0 SnΣ
−1/2
0 −

Ipn∥2∥Σ
1/2
0 ∥2

P→ 0, since Σ
−1/2
0 SnΣ

−1/2
0 is the sample covariance matrix of {Σ−1/2

0 X1,

. . . ,Σ
−1/2
0 Xn} which are i.i.d. with covariance matrix Ipn and

{E(|eT1,pn
Σ

−1/2
0 X1|4)}1/4 ≤

pn∑
i=1

{E(|eT1,pn
Σ

−1/2
0 ei,pnX1,i|4)}1/4

≤ max
1≤i≤pn

{E(|X1,i|4)}1/4
pn∑
i=1

|eT1,pn
Σ

−1/2
0 ei,pn | = max

1≤i≤pn

{E(|X1,i|4)}1/4∥Σ−1/2
0 ∥∞

< C < ∞.

Therefore, ∥Rn−Γ0∥2
P→ 0, which implies that ∥Ω̃κn −Ω0∥2

P→ 0 since lim infn→∞{κn−

cond(Ω0)} > 0.

The result ∥Θ̂
−1

prop−1 −Σ0∥2
P→ 0 comes from ∥Θ̂

−1

prop−1 −Σ0∥2 = OP(∥Θ̂prop−1 −

Θ0∥2). �

Proof of Theorem 2. Suppose the eigendecomposition ofRn isQdiag(λ̂1, . . . , λ̂pn)Q
T ,

where λ̂1 ≥ · · · ≥ λ̂pn are the eigenvalues of Rn. From Won et al. (2013), Ω̃−1
κn

=

Qdiag(λ̃1, . . . , λ̃pn
)QT , where λ̃i = min{max(τ∗, λ̂i), κnτ

∗} with τ∗ ∈ (0,∞) depending

on λ̂1, . . . , λ̂pn and κn. Hence, Ω̃−1
κn

truncates the eigenvalues of Rn. From Stewart and

Sun (1990) (Corollary 4.10, p. 203),

max
1≤i≤pn

|λ̃i − λi| ≤ ∥Ω̃−1
κn

− Γ0∥2,
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where λ1 ≥ · · · ≥ λpn are the eigenvalues of Γ0. If ∥Ω̃−1
κn

−Γ0∥2
P→ 0, then max1≤i≤pn |λ̃i−

λi|
P→ 0 which implies that FΩ̃−1

κn converges weakly to F0 in probability. Therefore, to

prove ∥Θ̂prop−1 −Θ0∥2 9 0 in probability, we only need to show ∥Ω̃−1
κn

− Γ0∥2 9 0 in

probability, and it suffices to show that FΩ̃−1
κn doesn’t converge weakly to F0 in probability.

Under Condition B1, if limn→∞ pn/n = ∞, then the rank of Rn is at most n

when pn > n, and hence, the proportion of the 0 eigenvalues among λ̂1, . . . , λ̂pn is

at least (pn − n)/pn which converges to 1 as n → ∞. Therefore, FRn will converge

weakly to I[0,∞) in probability. Since λ̃i = min{max(τ∗, λ̂i), κnτ
∗}, if FΩ̃−1

κn converges

weakly in probability, then the limit is I[c,∞) for some c ∈ [0,∞). Since F0 ̸= I[C,∞)

for any C ∈ [0,∞), FΩ̃−1
κn doesn’t converge weakly to F0 in probability. Therefore,

∥Θ̂prop−1 −Θ0∥2 9 0 in probability.

Under Condition B2, we will show that |cond(Ω̃−1
κn

)− cond(Γ0)| 9 0 in probability

which implies that ∥Ω̃−1
κn

− Γ0∥2 9 0 in probability. From Theorem 1 in Won et al.

(2013), cond(Ω̃−1
κn

) = min{κn, cond(Rn)}. Since |min{κn, cond(Rn)} − cond(Γ0)| 9 0

in probability, we have |cond(Ω̃−1
κn

)− cond(Γ0)| 9 0 in probability as n → ∞.

Under Condition B3, we will show that FΩ̃−1
κn does not converge weakly to F0 in

probability. We truncate FRn in order to obtain FΩ̃−1
κn , i.e., FΩ̃−1

κn = FRn I[τ∗,κnτ∗) +

I[κnτ∗,∞). If FΩ̃−1
κn converges weakly to F0 in probability, then F0 = F I[lmin,lmax) +

I[lmax,∞), which contradicts Condition B3.

Therefore, we have demonstrated that ∥Θ̂prop−1 −Θ0∥2 9 0 in probability under

either Condition B1 or B2 or B3. Next, we will show that ∥Θ̂
−1

prop−1 − Σ0∥2 9 0

in probability. If ∥Θ̂
−1

prop−1 − Σ0∥2 = oP(1), then ∥Θ̂prop−1 − Θ0∥2 = oP(1) because

∥Θ̂prop−1 −Θ0∥2 = OP(∥Θ̂
−1

prop−1 −Σ0∥2). Since ∥Θ̂prop−1 −Θ0∥2 9 0 in probability,

we can claim ∥Θ̂
−1

prop−1 −Σ0∥2 9 0 in probability. �

Proof of Theorem 3. Following the proofs of Corollaries 1 and 2 in Ravikumar et al.

(2011), we have that, with probability tending to 1,

|Ω̂RBLZ − Ω0|2∞ ≤ Cr∗n

with r∗n = log(pn)/n under Condition C1, and r∗n = p
4τ/β
n /n under Condition C2, where

| · |∞ is the matrix elementwise L∞ norm defined as |A|∞ = maxi,j |A(i, j)| for a generic

matrix A. The proof of Theorem 1 in Ravikumar et al. (2011) indicates that {(i, j) :
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Ω̂RBLZ(i, j) ̸= 0} ⊆ {(i, j) : Ω0(i, j) ̸= 0} with probability tending to 1.

For n = 1, 2, . . . , let An denote the event that |Ω̂RBLZ − Ω0|2∞ ≤ Cr∗n and {(i, j) :

Ω̂RBLZ(i, j) ̸= 0} ⊆ {(i, j) : Ω0(i, j) ̸= 0}. Hence, limn→∞ P(An) = 1. Then, conditional

on event An, we have

∥Ω̂RBLZ − Ω0∥22 ≤ ∥Ω̂RBLZ − Ω0∥2F

=

pn∑
i=1

|Ω̂RBLZ(i, i)− Ω0(i, i)|2 +
∑∑

i ̸=j:Ω0(i,j)̸=0

|Ω̂RBLZ(i, j)− Ω0(i, j)|2 (S1.3)

and

∥Ω̂RBLZ − Ω0∥22 ≤ ∥Ω̂RBLZ − Ω0∥2∞ ≤ t2n|Ω̂RBLZ − Ω0|2∞. (S1.4)

If pn ≤ sn, then (S1.3) and (S1.4) indicate ∥Ω̂RBLZ − Ω0∥22 ≤ Cmin(pn + sn, t
2
n)r

∗
n ≤

Crn under Condition C1 or C2. Next, we consider the case pn > sn. Define tin =

|{j = 1, . . . , pn : Θ0(i, j) ̸= 0}|. For any i ∈ {1, . . . , pn} such that tin = 1, we know

Ω0ei,pn = ei,pn , which means that the diagonal element is the only nonzero element in

the ith column of Ω0. Since pn > sn, we have |{i = 1, . . . , pn : tin = 1}| ≥ pn − sn.

Because {(i, j) : Ω̂RBLZ(i, j) ̸= 0} ⊆ {(i, j) : Ω0(i, j) ̸= 0}, from the definition of

Ω̂RBLZ, we have Ω̂RBLZei,pn = ei,pn for any i ∈ {1, . . . , pn} with Ω0ei,pn = ei,pn . Hence,

|Ω̂RBLZ(i, i) − Ω0(i, i)| = 0 for i ∈ {1, . . . , pn} with tin = 1. Therefore, (S1.3) indicates

∥Ω̂RBLZ−Ω0∥22 ≤ C(1+sn)r
∗
n, which together with (S1.4) implies that ∥Ω̂RBLZ−Ω0∥22 ≤

Cmin(1 + sn, t
2
n)r

∗
n ≤ Crn.

Hence, under Condition C1 or C2, ∥Ω̂RBLZ−Ω0∥22 = OP(rn). Therefore, from (S1.1)

and (S1.2),

∥Θ̂RBLZ −Θ0∥2 = ∥Ŵ−1Ω̂RBLZŴ
−1 −W−1

0 Ω0W
−1
0 ∥2

≤ ∥Ŵ−1 −W−1
0 ∥2∥Ω̂RBLZ − Ω0∥2∥Ŵ−1 −W−1

0 ∥2
+∥Ŵ−1 −W−1

0 ∥2(∥Ω̂RBLZ∥2∥W−1
0 ∥2 + ∥Ŵ−1∥2∥Ω0∥2)

+∥Ω̂RBLZ − Ω0∥2∥Ŵ−1∥2∥W−1
0 ∥2 = OP(r

1/2
n ).

We obtain ∥Θ̂
−1

RBLZ −Σ0∥22 = OP(rn), since ∥Θ̂
−1

RBLZ −Σ0∥22 = OP(∥Θ̂RBLZ −Θ0∥22). �

Proof of Theorem 4. Following the proof of Theorem 3, under Condition C1 or

C2, ∥Ω̂RBLZ − Ω0∥22 = OP(rn). Now that cond(Ω̂RBLZ) − cond(Ω0) = oP(1), from
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lim infn→∞{κn − cond(Ω0)} > 0, we have cond(Ω̂RBLZ) ≤ κn with probability tend-

ing to 1, which means that Ω̂µn,κn
= Ω̂RBLZ with probability tending to 1, and hence

limn→∞ P(Θ̂prop−2 = Θ̂RBLZ) = 1. Therefore, from the conclusion in Theorem 3,

∥Θ̂prop−2 −Θ0∥22 = OP(rn) = ∥Θ̂
−1

prop−2 −Σ0∥22. �

Proof of Proposition 1. From (3.2) and (3.3), suppose the eigendecomposition of

variable Ω is RMRT , where R is orthogonal and M = diag(m1, . . . ,mpn) with m1 ≤

· · · ≤ mpn . For Step 1 in Section 3,

argmin
Ω≻0, cond(Ω)≤κn

Lρ(Ω, Z
(i−1);U (i−1))

= argmin
Ω≻0, cond(Ω)≤κn

− log{det(Ω)}+ tr(RnΩ) +
ρ

2
∥Ω− Z(i−1) + U (i−1)∥2F

= argmin
Ω≻0, cond(Ω)≤κn

− log{det(Ω)}+ tr(RnΩ) +
ρ

2
tr{ΩΩT + 2(−Z(i−1) + U (i−1))ΩT }

= argmin
Ω≻0, cond(Ω)≤κn

− log{det(Ω)}+ ρ

2
tr(ΩΩT ) + ρtr{(Rn/ρ− Z(i−1) + U (i−1))ΩT }

= argmin
Ω≻0, cond(Ω)≤κn

− log{det(Ω)}+ ρ

2
tr(ΩΩT ) + ρtr{(V DV T )ΩT }

= argmin
Ω=RMRT :M≻0, cond(M)≤κn

− log{det(M)}+ ρ

2
tr(MMT ) + ρtr{(V DV T )(RMRT )T }

= argmin
Ω=RMRT :R=V,M≻0, cond(M)≤κn

− log{det(M)}+ ρ

2
tr(MMT ) + ρtr(DMT ). (S1.5)

The last equation in (S1.5) is true since tr{(V DV T )(RMRT )T } ≥ tr(DMT ) with equal-

ity if R = V (Theorem 14.3.2 in Farrell (1985)). Therefore, to prove Ω(i) = V D̃V T , it

suffices to show that

D̃ = argmin
M :M≻0, cond(M)≤κn

− log{det(M)}+ ρ

2
tr(MMT ) + ρtr(DMT ),

which is equivalent to

D̃ = argmin
M : 0<m1≤···≤mpn ,mpn/m1≤κn

{
−

pn∑
j=1

log(mj) +
ρ

2

pn∑
j=1

m2
j + ρ

pn∑
j=1

djmj

}
= argmin

M : ∃ τ, 0<τ≤m1≤···≤mpn≤κnτ

pn∑
j=1

{
− log(mj) +

ρ

2
(mj + dj)

2
}
. (S1.6)

Define

g(mj ; dj) = − log(mj) +
ρ

2
(mj + dj)

2.

Then, g(mj ; dj) is strictly convex in mj ∈ (0,∞) for any j = 1, . . . , pn, and has a

unique minimizer δj = −dj/2 +
√
d2j/4 + 1/ρ. Noting that 0 < δ1 ≤ · · · ≤ δpn , if
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δpn/δ1 ≤ κn, then D̃ = diag(δ1, . . . , δpn) coincides with the solution to problem (S1.6)

with any τ ∈ [δpn
/κn, δ1].

For case δpn/δ1 > κn, we first consider minimizing the objective function in (S1.6)

with respect to m1, . . . ,mpn separately. For any τ > 0 and j = 1, . . . , pn, it follows that

m∗
j (τ) := argmin

τ≤mj≤κnτ

pn∑
k=1

g(mk; dk) = argmin
τ≤mj≤κnτ

g(mj ; dj) = min{max(τ, δj), κnτ}

=


τ, if δj < τ,

δj , if τ ≤ δj ≤ κnτ,

κnτ, if δj > κnτ.

Since τ ≤ m∗
1(τ) ≤ · · · ≤ m∗

pn
(τ) ≤ κnτ for any τ > 0, problem (S1.6) amounts to

argmin
M : ∃ τ>0,mj=m∗

j (τ)

pn∑
j=1

g(mj ; dj) = argmin
M : ∃ τ>0,mj=m∗

j (τ)

pn∑
j=1

g(m∗
j (τ); dj).

Therefore, to prove that D̃ is the solution to the optimization problem in (S1.6), we only

need to show that τ0 is the minimizer of

f(τ) :=

pn∑
j=1

g(m∗
j (τ); dj) =

∑
j:δj<τ

g(τ ; dj) +
∑

j:τ≤δj≤κnτ

g(δj ; dj) +
∑

j:δj>κnτ

g(κnτ ; dj).

We can verify that g(m∗
j (τ); dj) is a convex function of τ ∈ (0,∞) and has a continuous

first-order derivative with respect to τ ∈ (0,∞), for any j = 1, . . . , pn. Therefore,

f(τ) is convex and continuously differentiable for τ ∈ (0,∞). For α ∈ {1, . . . , pn} and

β ∈ {1, . . . , pn} such that β − 1 ≥ α, define

Rα,β = {τ : δα < τ ≤ δα+1 and δβ−1 ≤ κnτ < δβ},

fα,β(τ) =
α∑

j=1

g(τ ; dj) +

β−1∑
j=α+1

g(δj ; dj) +

pn∑
j=β

g(κnτ ; dj).

Then, f(τ) = fα,β(τ) for τ ∈ Rα,β . Since f ′′
α,β(τ) > 0 for τ ∈ Rα,β , we know f ′(τ) is

strictly monotone increasing on [δ1, δpn/κn]. It’s also easy to see that f(τ) is decreasing

for τ ∈ (0, δ1] and increasing for τ ∈ [δpn/κn,∞). Then, the unique minimizer of f(τ) is

the value of τ ∈ [δ1, δpn/κn] such that f ′(τ) = 0.

The solution to f ′
α,β(τ) = 0 for τ ∈ (0,∞) is

τα,β =
[
− ρ

( α∑
j=1

dj + κn

pn∑
j=β

dj

)
+
{
ρ2
( α∑

j=1

dj + κn

pn∑
j=β

dj

)2

+ 4ρ(α+ κn
2pn
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−κn
2β + κn

2)(α+ pn − β + 1)
}1/2]/

{2ρ(α+ κn
2pn − κn

2β + κn
2)}.

Then, τα,β is also the solution to f ′(τ) = 0 if and only if τα,β ∈ Rα,β . This value of τα,β

is the same as τ0.

In practice, we can search over {Rα,β : α, β = 1, . . . , pn} to find α0 and β0 such

that τα0,β0 ∈ Rα0,β0 . Start the selection procedure from (α∗, β∗), where α∗ = 1 and

β∗ is the smallest index in {1, . . . , pn} such that δβ∗ > κnδα∗ . If τα∗,β∗ /∈ Rα∗,β∗ , then

move on to Rα∗+1,β∗ , Rα∗+1,β∗+1 or Rα∗,β∗+1 for the selection of α0 and β0. Specifically,

if κnδα∗+1 < δβ∗ , then move on to Rα∗+1,β∗ ; if κnδα∗+1 > δβ∗ , then go to Rα∗,β∗+1;

otherwise, continue searching α0 and β0 within Rα∗+1,β∗+1. Repeat the above procedure

until condition τα,β ∈ Rα,β is satisfied. The procedure requires O(pn) operations. �


