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Abstract: In this paper we develop a generalized partial linear model for longitudinal

data. In the model, we allow the link and baseline functions to be unknown. We

explicitly express the estimators of regression parameters and the baseline function;

hence, the computation and programming of our estimators are simple. We show

that the proposed estimators of regression parameters and the baseline function are

asymptotically normal with a simple variance estimator for the baseline function.

In simulation studies, we demonstrate that the proposed nonparametric method is

robust with limited loss of efficiency.
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1. Introduction

Longitudinal studies are often conducted in epidemiology, social science, and

other biomedical research areas. To avoid the risk of misspecifying the baseline

function, Moyeed and Diggle (1994), and Zeger and Diggle (1994) proposed a

semiparametric model that related a response Y (t) at time t to a p-dimension

vector of covariates X(t) via the equation

Y (t) = V (t) + X(t)′β + ε(t), (1.1)

where V (t) is an unspecified smooth baseline function of t, β is a vector of

unknown regression coefficient, and ε(t) is a zero-mean Gaussian process. The

model (1.1) and its variations have received a lot of attention given their flexi-

bility and explanatory power. Martinussen and Scheike (1999, 2001), Cheng and

Wei (2000), and Lin and Ying (2001) proposed estimation procedures under the

formation of point processes without a specific parametric error structure. Fan

and Li (2004) proposed an estimation procedure for the baseline function using

a local polynomial regression and a penalized quadratic loss procedure to select
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significant variables. Chen and Jin (2006) proposed a least-squares-type estima-

tor of the slope parameter via a piecewise local polynomial approximation to the

nonparametric component, and the estimator was shown to be efficient when the

error followed a multivariate normal distribution.

For non-normal responses, including binary, Poisson, gamma, and inverse

Gaussian responses, the traditional partial linear model is not appropriate, and

thus the generalized linear model is adopted and extended (McCullagh and Nelder

(1989)), where a link function is introduced. By adding a parametric canonical

link, Lin and Carroll (2001) and Wang, Carroll and Lin (2005) considered a

generalized partial linear model for longitudinal data through a specification of

the link function and proposed a kernel generalized estimation equation to solve

for estimates. Lin and Carroll (2006) further proposed a backfitting method to

estimate regression coefficients and baseline function with a known link function.

However, specific link functions may be inadequate in some cases (Lord

(1980); Wainer (1983)) and the misspecification of link functions leads to bi-

ased estimators of regression coefficients or baseline function. The importance

of choosing a correct link function has been discussed in the literature. Aranda-

Ordaz (1981) and Scallan, Gilchrist and Green (1984) showed that generalized

linear models can be extended to the cases with a class of parametric link func-

tions. Weisberg and Welsh (1994), Carroll et al. (1997), Chiou and Muller (1998),

Horowitz (2001), and Horowitz and Mammen (2007) proposed approaches to es-

timate the link function. In other contexts, the model with an unspecified link

function is known as the nonparametric single-index model (Hardle, Hall and

Ichimura (1993)). However, the semiparametric methods that allow unknown

link functions focus on models, where no baseline function is involved.

Since the misspecification of a link function can lead to biased estimators of

regression coefficients or baseline function, a nonparametric link function becomes

a necessary device to analyze effects of covariates. In this paper, we propose a

method to estimate regression coefficients and the baseline function when the

link function is unknown.

The body of the paper is organized as follows. In Section 2, we develop the

estimators of regression coefficients and baseline function. Asymptotic properties

of the estimators are derived in Section 3. In Section 4, we provide a bandwidth

selection procedure. Simulation results on the robustness and efficiency of the

proposed estimators are presented in Section 5. In Section 6, we present a data

analysis. A concluding discussion is provided in Section 7. All conditions and

proofs are deferred to Supplementary Material.
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2. Model and Estimation

Let Yij = Yi(tij) be an outcome random variable, and Xij = Xi(tij) be a

p× 1 vector of fixed covariates at time tij for individual i at the jth observation,

where i = 1, · · · , n and j = 1, · · · , ni. We assume that maxi{ni} < ∞. It is

well-known that the asymptotic theory of longitudinal data analysis depends on

the formulation of how the data were collected. Following Wu and his collabo-

rators (see, e.g., Hoover et al. (1998); Wu, Chiang and Hoover (1998)), we also

assume that the time points tij ’s are a random sample from a certain population

T . By allowing the distribution of T to be any smooth function, we are not ac-

tually putting any assumption restriction on values of tij , and this assumption is

just made for convenience. Other formulations can also be accommodated, with

similar results obtained. Suppose the random vector (Yij ,X
′
ij , tij) has the same

distribution as that of (Y,X′, T ). Observations are correlated when they are from

the same subject, or otherwise independent. We assume that the response Yij of

individual i is related to covariates Xij and tij via the generalized partial linear

model

E {Yij |Xij , tij} = m
{
V (tij) + X′ijβ

}
, (2.1)

where m−1(·) is an unknown link function, V (·) is an unknown baseline function,

and β is a vector of unknown regression coefficients. Obviously, (2.1) reduces

to the partial linear model (1.1) when m(x) = x; (2.1) reduces to the marginal

semiparametric generalized linear model (Lin and Carroll (2001); Wang, Carroll

and Lin (2005); Lin and Carroll (2006)) when m(·) is specified by a parametric

form. In addition, (2.1) only specifies the mean function of Yij , hence it can be

regarded as an extension of the nonparametric single-index model (Hardle, Hall

and Ichimura (1993)) with a nonparametric baseline function.

Model (2.1) continues to hold if m(·) and V (·) are replaced by m(·+ c) and

V (·) − c for any constant c. It also holds if m(·), V (·) and β are replaced by

m(·/c), cV (·) and cβ for any nonzero constant c. Therefore, scale and location

normalization are required to make the model identifiable. We assume that

V (t0) = 0 and the first component of β is fixed at a certain value, where t0 is

any given constant. Thus the actual number of parameters of β to be estimated

is reduced by one. For ease of exposition, we abuse the notation to denote the

subvector of parameters to be estimated, although its first element does not need

to be estimated.

First, we propose an estimation procedure for V (·) when β is given. We let

Zij = X′ijβ, Z = X′β, µ(z, t) = E(Y |Z = z, T = t), and p(z, t) be the joint
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density function of (Z, T ). Assume that m(·), µ(·, ·) and V (·) are differentiable

with respect to all their arguments. Define µ1(z, t) = ∂µ(z, t)/∂z, µ2(z, t) =

∂µ(z, t)/∂t and v(t) = dV (t)/dt. Since µ(z, t) = m {V (t) + z}, we have

µ1(z, t) = ṁ {V (t) + z} and µ2(z, t) = ṁ {V (t) + z} v(t),

where ṁ(v) = dm(v)/dv; hence, µ2(z, t)p(z, t) = v(t)µ1(z, t)p(z, t). Replacing z

with Zij and making a summation over all observations, we obtain that
n∑

i=1

ni∑
j=1

µ2(Zij , t)p(Zij , t) = v(t)

n∑
i=1

ni∑
j=1

µ1(Zij , t)p(Zij , t).

Therefore,

v(t) =

∑n
i=1

∑ni

j=1 µ2(Zij , t)p(Zij , t)∑n
i=1

∑ni

j=1 µ1(Zij , t)p(Zij , t)
. (2.2)

Integrating both sides of (2.2) gives

V (t) =

∫ t

t0

∑n
i=1

∑ni

j=1 µ2(Zij , u)p(Zij , u)∑n
i=1

∑ni

j=1 µ1(Zij , u)p(Zij , u)
du. (2.3)

Expression (2.3) forms the basis of the proposed estimator of V (·). Throughout

the paper, 0/0 = 0.

From (2.3), it is clear that estimates of p(z, t) and derivatives of µ(z, t) are

necessary to derive an estimator of V (·) when the value of β is given. We estimate

µ(z, t) by

µn(z, t) =

∑n
i=1

∑ni

j=1 YijK1 ((Zij − z/h1))K2 ((tij − t)/h2)∑n
i=1

∑ni

j=1K1 ((Zij − z)/h1)K2 ((tij − t)/h2)
, (2.4)

where K1 and K2 are bounded and symmetric functions with the support [−1, 1],

orders of r1 and r2, and bandwidths h1 and h2, respectively. Since µ1(z, t) =

∂µ(z, t)/∂z and µ2(z, t) = ∂µ(z, t)/∂t, we obtain estimators of µ1(z, t) and

µ2(z, t) by differentiating µn(z, t) with respect to z and t, respectively:

µ1n(z, t) =
∂µn(z, t)

∂z
,

µ2n(z, t) =
∂µn(z, t)

∂t
. (2.5)

We estimate p(z, t) by a kernel estimator:

pn(z, t) =
1

Nh1h2

n∑
i=1

ni∑
j=1

K1

(
Zij − z
h1

)
K2

(
tij − t
h2

)
, (2.6)

where N =
∑n

i=1 ni. Finally, by (2.3), we estimate V (t) by



GENERALIZED MODEL WITH UNKNOWN LINK AND BASELINE 1285

Vn(t) =

∫ t

0

∑n
i=1

∑ni

j=1 µ2n(X′ijβ, u)pn(X′ijβ, u)∑n
i=1

∑ni

j=1 µ1n(X′ijβ, u)pn(X′ijβ, u)
du. (2.7)

Given V (·), (2.1) reduces to a common single-index nonparametric regres-

sion problem. We estimate β based on the well-known Nadaraya-Watson kernel

method. Here E(Yij |V (tij) + X′ijβ = w) can be estimated by

En(w) =

∑n
i=1

∑ni

j=1 YijK
(
(V (tij) + X′ijβ − w)/h

)∑n
i=1

∑ni

j=1K
(
(V (tij) + X′ijβ − w)/h

) , (2.8)

where K is a bounded and symmetric kernel function with the support [−1, 1],

and h is a bandwidth. Then the least squares estimate of the regression coefficient

β is obtained as the solution to

sn(β) =
1

N

n∑
i=1

ni∑
j=1

Xij

{
Yij − En(V (tij) + X′ijβ)

}
= 0. (2.9)

Substituting (2.8) into (2.9), we get

sn(β) =

1

N

n∑
i=1

ni∑
j=1

Xij

{
Yij −

∑n
r=1

∑nr

k=1 YrkK
(
(V (trk) + X′rkβ − V (tij)−X′ijβ)/h

)∑n
r=1

∑nr

k=1K
(
(V (trk) + X′rkβ − V (tij)−X′ijβ)/h

) }
= 0. (2.10)

As Vn(t) and sn(β) do not involve the unknown link function, our method can

be regarded as a direct method to estimate the coefficient and baseline function.

The algorithm for estimating β and V (·) can be summarized as follows:

Step 1. Obtain an initial value of β. Because µn(z, t) is an estimator of µ(z, t) =

E[Yij |Zij = z, tij = t], by using least squares we obtain an initial value

of β by solving
n∑

i=1

ni∑
j=1

{
Yij−

∑n
r=1

∑nr

k=1 YrkK1

(
(X′rkβ−X′ijβ)/h1

)
K2 ((trk−tij)/h2)∑n

r=1

∑nr

k=1K1

(
(X′rkβ−X′ijβ)/h1

)
K2 ((trk−tij)/h2)

}
×Xij = 0. (2.11)

We denote the initial estimator of β by β̃. It can be shown that β̃ is a√
n−consistent and asymptotically normal estimator of β.

Step 2. Estimate V (·) by (2.7) with β replaced by its estimator.

Step 3. Update β by (2.10) with V (·) replaced by its estimator from Step 2.

Step 4. Repeat Steps 2 and 3 until successive values of β and V (·) do not differ
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significantly.

Step 5. The discussion on large sample properties in Section 3 and the proofs

in Supplementary Material show that the optimal bandwidth h2 and the

optimal kernel K2 to estimate β are different from those to estimate V (·).
Hence, we need one extra step to update the estimate of V (·). Step 5

fix β at its estimated value from Step 4, estimate V (·) by (2.7), while

taking the bandwidth h2 and the kernel function K2 to be optimal for

the estimation of V (·). Denote the bandwidth and the kernel function

at the final step to be b and K, respectively.

The estimation procedure involves choosing kernel functions K1, K2, K, and

K, and bandwidths h1, h2, h, and b. In Steps 2-4 of the algorithm, the aim is

to estimate the parameter β; hence, the kernels and the bandwidths should be

optimal for this task. In Step 5, the objective is to estimate the baseline function,

and thus bandwidth and kernel, in particular b and K, should be optimal in this

respect. In this paper, we take K1 to be a sixth-order kernel, K2 and K to be

fourth-order kernels in Steps 2-4, and K to be a second-order kernel for Step 5, so

that the assumptions on bandwidths and kernels can be satisfied. The second-,

fourth- and sixth-order kernel functions can be taken from Muller (1984). The

details on the selections of bandwidths are provided in Section 4.

For each iteration, the proposed method has a closed-form expression for the

estimator of V (·) and a simple Newton-Raphson algorithm for the estimator of

β; hence, the computation and programming are straightforward. Given β and

V (·), (2.1) reduces to a common nonparametric regression problem. Thus we

can use any familiar nonparametric regression method, such as the local linear

regression technique (Fan and Gijbels (1996)) to estimate the link function m(·).

3. Large Sample Properties

Let β̂ and V̂ (t) be the estimators of β and V (t). We establish asymptotic

normalities for β̂ and V̂ (t), which are summarized in Theorems 1 and 2 under

some conditions given in Supplementary Material S.1. The proofs of theorems

can be found in Supplementary Material S.2-S.4. The key to the proofs is to

establish an asymptotic expansion of (µ̂2(x
′β̂, t)p̂(x′β̂, t))/(µ̂1(x

′β̂, t)p̂(x′β̂, t)),

the estimator of (µ2(x
′β, t)p(x′β, t))/(µ1(x

′β, t)p(x′β, t)), which is obtained by

some nonparametric technique, for example, in Fan and Gijbels (1996), Horowitz

(1996), or Zhou, Lin and Johnson (2009).

Let g(k1,k2,··· )(a1, a2, · · · ) = (d(k1+k2+··· )g(a1, a2, · · · ))/(dak1

1 da
k2

2 · · ·), Z =
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X′β and W = V (T ) + X′β. Let p(z) and p(z, t) be the density functions of

Z and (Z, T ), respectively, and f(·|w) be the conditional density function of T

given W = w. Take

q(w) = E(X|W = w), q(w, t) = E(X|W = w, T = t),

%(z, t) = E[X|Z = z, T = t],

κ(t) = E
{
m(1)(W ) [q(W )− q(W, t)] f(t|W )

}
, ρ(t) = Eµ1(Z, t)p(Z, t),

ξ(z, t) = −
{
ρ(1)(t)p(z)

ρ(t)
+ v(t)p(1)(z)−

[
p(01)(z, t)− v(t)p(10)(z, t)

p(z, t)

]
p(z)

}
× E

{
m(1)(W ) [q(W )−X] I(T ≥ t)

}
,

π(t) =

∫ t

0

1

ρ(s)
E
[
p(Z, s)

{
%(10)(Z, s)µ2(Z, s)− %(01)(Z, s)µ1(Z, s)

}]
ds,

B = E
{
m(1)(W ) [q(W )−X]π′(T )−m(1)(W )X [q(W )−X]′

}
and

Σ = B−1E

{
{Y −m(W )}

[
X− q(W )− ξ(Z, T )

ρ(T )
− κ(T )p(Z)

ρ(T )

]}⊗2
(B′)−1.

Theorem 1. Under Conditions 1-5 in Supplementary Material S.1, if nh2r11 →
0, nh2r22 → 0 and nh2r0 → 0 as n → ∞, where r0 is the order of kernel K(·),
then

√
n(β̂ − β)

d−→ N (0,Σ). (3.1)

Basically, our conditions require that to estimate β at the rate n−1/2, one

must undersmooth the nonparametric part. The necessity of undersmoothing

to obtain an usual rate of convergence is standard in kernel literature and has

analogs in spline literature (Hastie and Tibshirani (1990); Carroll et al. (1997)).

On the other hand, the leading terms of Σ in Theorem 1 do not depend on

bandwidths, indicating that these bandwidths are not crucial for the asymptotic

performance of proposed estimators. The details on the selections of bandwidths

and kernels are given in the next section.

Now we derive the asymptotic normality for V̂ (t), for which extra notation

is required. Let

ϕ1(t1, t2) = E
[
µ(01)(Z, t2)ξ(Z, t2)|T = t1

]
p2(t1),

ϕ2(t) = E
[
µ(02)(Z, t)ξ(Z, t)|T = t

]
p2(t),

ς(t) =
E
[
µ(01)(Z, t)p(01)(Z, t) + µ(02)(Z, t)p(Z, t)/2

]
ρ(t)
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+

∫ t

0

ϕ
(10)
1 (s, s) + ϕ2(s)/2

ρ(s)
ds,

η(t) =
E [H(Z, t)p(Z, t)p(Z)]

ρ2(t)
, H(z, t) = Var(Y |Z = z, T = t),

a0 =
∫
x2K(x)dx, b0 =

∫
xK

2 (x) dx, and p2(t) be the density function of T .

Theorem 2. Under Conditions 1-5 in Supplementary Material S.1, with K a

second-order kernel function, if log n/
√
nh51 → 0, log n/

√
nh31b

2 → 0, nh2r11 → 0

as n→∞, then
√
nb
(
V̂ (t)− V (t)− a0ς(t)b2

)
d−→ N (0, η(t)b0) . (3.2)

Here, the bias V̂ (t) − V (t) is a0ς(t)b
2, and the variance of V̂ (t) − V (t) is

(1/N)bη(t)b0, which can be estimated by

Ψ̂(t) =
1

Nb

n∑
r=1

nr∑
k=1



[
Yrk − µ̂(Ẑrk, t)

]
ρ̂(t)

K2

(
trk − t
b

) p̂(Ẑrk)


2

, (3.3)

where Ẑrk = X′rkβ̂, ρ̂(t) = 1/N
∑n

i=1

∑ni

j=1 µ̂1(Ẑij , t)p(Ẑij , t), p̂(z) = 1/Nh1∑n
i=1

∑ni

j=1K1((Ẑij − z)/h1), and µ̂(z, t), µ̂1(z, t) and p̂(z, t) are µn(z, t), µ1n(z, t)

and pn(z, t), respectively, with β replaced by β̂.

Theorem 2 and its proof show that even though β is estimated, the asymp-

totic distribution of V̂ is the same as if β was known. This is due to the fact that

the rate of convergence of β̂ is much faster than that of V̂ : β̂ is estimated with

order Op(n
−1/2), whereas the rate of convergence of V̂ at least is Op((nb)

−1/2).

As a consequence, the uncertainty of β̂ can be ignored. Here, K is a second-order

kernel and b ∝ n−1/5. These selections guarantee that V (·) can be estimated at

the optimal convergent rate, as in Zeger and Diggle (1994), Moyeed and Diggle

(1994), and Fan and Li (2004) for the partial linear model with a known link

function.

4. The Selections of Bandwidths

Since the leading terms in Theorems 1 and 2 do not depend on the optimal

bandwidths h1, h2, and h, the proposed estimates are not sensitive to these

bandwidths, which makes practical implementation of the proposed method much

easier. From our simulations, we find that the choices of h1 = σ(X′β)n−1/9,

h2 = σ(T )n−1/5, and h = σ(W )n−1/5 provide a reasonable approximation of

h1, h2, and h, respectively, where σ(Z) is the standard error of random variable

Z.
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The selection of b is crucial for the asymptotic performance of the estima-

tor for V (·). We use a K−fold cross-validation procedure to select b that is

commonly used in the literature (Tian, Zucker and Wei (2005); Fan, Lin and

Zhou (2006)). Tian, Zucker and Wei (2005) and Fan, Lin and Zhou (2006) have

shown empirically that the choice of the smoothing parameter can be quite flex-

ible. Our simulations and examples also show that the cross-validation approach

works well.

5. Simulations

We conducted simulation studies to assess the finite-sample performance of

the proposed method. Since the validity of our method does not rely on the para-

metric specification of the link function, we expect our estimators of regression

parameters and the baseline function to be more robust than those derived under

pre-assumed parametric link functions. To investigate these issues, we conducted

simulation studies and compared our method with the semiparametric linear re-

gression model (1.1), as well as the generalized partial linear model (2.1) with a

binary outcome. We assessed the performance of various estimators in terms of

bias, standard error (SE), and the squared root of mean square error (RMSE).

According to our limited experience in simulations, we found that searching

suitable bandwidths requires extensive computation in Steps 2 and 3. We advise

using the empirical formulae h1 = σ(X′β)n−1/9, h2 = σ(T )n−1/5, and h =

σ(W )n−1/5. Those seem to work well in our simulations.

5.1. Continuous outcome

Each dataset comprised n = 400 subjects and ni = m = 5 observations per

subject over time. The covariate vector was Xij = (X1i, X2i, X3ij)
′, where X1i

and X2i were subject level covariates, and X1i took value 1 for one half of the

subjects and 0 for the other half, mimicking a binary treatment indicator, X2i

was N (2, 7), and X3ij was a time-varying covariate. We generated X3ij according

to the model X3ij = 4tij + bi, where bi was N (0, 2) and tij was uniform on (0, 1).

We generated Yij as

Yij =

{
V (tij) + X′ijβ + εij

}
I

(
V (tij) + X′ijβ + εij ≤ c

)
+

(V (tij) + X′ijβ + εij)
3

c2
I

(
V (tij) + X′ijβ + εij > c

)
, (5.1)

where V (t) = 6 sin(πt), β = (3, 2, 2.5)′, and εi = (εi1, . . . , εi,ni
)′ was N (0,Λ),



1290 HUAZHEN LIN, LING ZHOU AND BINHUAN WANG

Table 1. Continuous outcome: the bias, empirical standard error (SE), and root of mean

square error (RMSE) of the coefficient estimators β̂ based on the 200 simulations.

β̂2 β̂3
c NP Method bias SE RMSE bias SE RMSE
c=17 20% Proposed 0.0252 0.1330 0.1354 0.0251 0.1763 0.1781

Fan&Li 1.4157 0.1441 1.4230 1.7617 0.2470 1.7789
c=20.5 10% Proposed 0.0599 0.1234 0.1372 0.0640 0.1729 0.1843

Fan&Li 0.5494 0.0839 0.5558 0.6892 0.1462 0.6987
c=23 5% Proposed 0.0685 0.1058 0.1260 0.0755 0.1486 0.1667

Fan&Li 0.2564 0.0572 0.2627 0.3179 0.1014 0.3337

The first component of β̂ is fixed for both methods.

Λ = (Λrs), Λrs = 4ρ|r−s| and ρ = 0.5. We took c = 17, 20.5, 23 so that

Pr
(
V (tij) + X′ijβ + εij ≤ c

)
≈ 0.80, 0.91, 0.95, respectively; hence, the true model

approaches the semiparametric linear model (1.1) that has an identity link func-

tion, as c increases.

We adopted the method proposed by Fan and Li (2004) as an approach

to estimate the partial linear model (2.1) with an identity link function. For

fair comparisons with the proposed method, we fixed the first element of Fan

and Li’s estimator for β at 3, the true value of β1. Table 1 presents the bias,

empirical SE, and RMSE of the proposed coefficient estimator β̂ based on 200

simulations. Working bandwidths were h1 = 2.7, 2.7, 2.7, h2 = 0.27, 0.3, 0.3, and

h = 0.75, 0.8, 0.8 for c = 17, 20.5, 23, respectively. Table 1 also shows results from

Fan and Li’s method with corresponding optimal bandwidth h = 0.39, 0.26, 0.25

for c = 17, 20.5, 23, respectively, selected by minimizing empirical RMSE from

several pre-specified bandwidths. From Table 1, we can see that Fan and Li’s

estimator is severely biased even for the case where the nonlinear probability

(Pr
(
V (tij) + X′ijβ + εij > c

)
, termed “NP” in Table 1, is 5%. In contrast, the

proposed method is almost unbiased in all cases. Although there is less variation

in Fan and Li’s estimator when the nonlinear probability is 5% or 10% , the

large bias compromises the RMSE. As a result, the proposed estimator has much

smaller RMSE and is much better in all cases. Furthermore, Table 1 shows that

the proposed method is not sensitive to the nonlinear probability of the link

function.

For each simulated dataset, we also obtained estimates of the baseline func-

tion V (·) using the proposed approach with bandwidths h1 = 3.7, b = 0.065,

and Fan and Li’s method with its optimal bandwidth h = 0.12, 0.1, 0.1 for

c = 17, 20.5, 23, respectively. Figure 1 displays the averaged estimated base-
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Figure 1. The first column: the true baseline function curve (solid), the average of the
estimated baseline function curve (dashed) and its 95% confidence limit (dotted) over
200 replications, using the proposed method, where the estimated curve is scaled so that
V̂ (0.5) = 6; The second column: the true baseline function curve (solid), the average
of the estimated baseline function curve (dashed) and its 95% confidence limit (dotted)
over 200 replications, using Fan & Li’s method. Both are under an identical link with
different correctness p = NP = 0.8, 0.91, 0.95 from top to bottom.
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Table 2. Binary outcome: the bias, empirical standard error, and root of mean square
error (RMSE) of the coefficient estimators β̂ based on the 200 simulations.

β̂2 β̂3
Method bias SE RMSE bias SE RMSE
Proposed 0.0184 0.2561 0.2568 0.0274 0.3584 0.3595
GPLM-LOGI 0.6612 0.0507 0.6632 0.8329 0.0810 0.8368

The first component of β̂ is fixed at 3 for both methods.

line function and their 95% empirical pointwise confidence limits, based on 200

simulated datasets. The first column of Figure 1 shows that the proposed es-

timate of the baseline function is very close to the true baseline function. In

contrast, the second column of Figure 1 shows that the estimate of the base-

line function based on Fan and Li’s method is biased, and consequently, its 95%

empirical point-wise confidence interval does not cover the true curve.

5.2. Binary outcome

We generated data in the same manner as in the previous subsection, except

that

Yij = I(V (tij) + X′ijβ + εij > 12),

where εij independently follow a mixture of two normal distributions as 0.5N (2.5,

1) + 0.5N (−2.5, 1). Roughly, Pr (Yij = 1) ≈ 0.42. Therefore, the true model is

the generalized partial linear model (2.1) with a binary outcome that has a non-

logistic link function.

We compared our method with a generalized partial linear model with the

logistic link (GPLM-LOGI), that is the most commonly used model for binary

response. The R package “gplm” is used to fit the GPLM-LOGI with spline

bases with 7 as the number of degrees of freedom. The number 7 was selected

by minimizing the empirical RMSE from several prespecified integers. For fair

comparisons with the proposed method, we also fixed the first element of β at

3, the true value. Table 2 presents the bias, empirical SE, and RMSE of the

coefficient estimator β̂ using the GPLM-LOGI and the proposed method with

bandwidths h1 = 3.3, h2 = 0.27 and h = 0.85, based on 200 simulations. From

Table 2, we can see that the GPLM-LOGI estimator is severely biased and similar

conclusions with those from Table 1 can be claimed: our method has much less

bias and consequently less RMSE than the GPLM-LOGI estimator.

For each simulated dataset, we also obtaind estimates of the baseline func-

tion V (·) using the proposed approach with bandwidths h1 = 3.3, b = 0.12, and
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Figure 2. The first column: true baseline function curve (solid), average of estimated
baseline function curve (dash) and its 95% confidence limit (dotted) over 200 replications,
using the proposed method, where the estimated curve is scaled so that V̂ (0.5) = 6;
The second column: true baseline function curve (solid), average of estimated baseline
function curve (dash) and its 95% confidence limit (dotted) over 200 replications, using
GPLM with the logistic link.

the GPLM-LOGI method. Figure 2 displays the averaged estimated baseline

function and its 95% empirical pointwise confidence limits, based on 200 simu-

lated datasets. Similar conclusions with those from Figure 1 can be obtained:

our estimate of the baseline function is very close to the true baseline function,

while the estimate of the baseline function based on the GPLM-LOGI method is

biased, and consequently its 95% empirical point-wise confidence band does not

cover the true curve.

6. Data Analysis

Multiple sclerosis (MS) is a disease that destroys the myelin that surrounds

the nerves. A clinical trial on MS was conducted at the University of British

Columbia, involving a drug (Betaseron) treatment with three levels (placebo,

low dose, and high dose). There was a total of 50 patients in this study, wherein
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17, 17 and 16 patients were randomized into placebo, low-dose, and high-dose

groups, respectively. According to the trial protocol, the response variable of

exacerbation was scheduled to be observed over a period of 102 weeks, with

value 1 meaning the exacerbation began since the previous magnetic resonance

imaging (MRI) scan, and 0 otherwise. In addition, a baseline covariate expanded

disability status scale (EDSS) score (X3) was collected from each patient. The

central questions were whether and how the risk of exacerbation varied as a

function of the dose levels and the EDSS, and how the risk of exacerbation

varied with time.

This dataset was previously analyzed by Dyachkova, Petkau and White

(1997) using Liang and Zeger’s generalized estimating equation approach, in

which the effect of the time was assumed to be constant with a specified link.

However, a plot of the empirical percentage of exacerbation against time showed

a very strong time-dependent relationship that could not be simply depicted by

a polynomial function. Lin, Song and Zhou (2007) used a varying-coefficient

logistic model to address the population-averaged relation between the proba-

bility of exacerbation and the time-varying effects of the covariates. Lin et al.’s

results suggest the coefficients of (X1, X2, X3) being constants, where X1 = 1

if the treatment was a high dose and otherwise 0, and X2 = 1 if the treatment

was a low dose and otherwise 0. We applied the proposed generalized partial

linear model with an unknown baseline function to explore the time trend and

investigate whether and how the risk of exacerbation varies with the dose levels

and the EDSS.

Let Yij be the indicator of exacerbation and tij be the observation time for

subject i at the jth observation. The model with an unknown baseline function

V (·) and an unknown link function m(·) takes the form

E {Yij | Xi, tij} = m {V (tij) + β1X1i + β2X2i + β3X3i} .

Take Xi = (X1i, X2i, X3i)
′ and β = (β1, β2, β3)

′. For identification, we suppose

‖β‖ = 1 and the first element of β is fixed at a given value for the scales of β.

Although the given scales are different, the resulting estimators using the two

identification conditions provide the same direction of β, which is the aim of our

procedure.

We again apply the empirical formulae h1 = 5×σ(X ′β̃)n−1/9, h2 = σ(T )n−1/5,

and h = 10× σ(W̃ )n−1/5, where β̃ and W̃ were calculated based on the GPLM

with the logistic link function. The bandwidth b = 44 was chosen by a 5-fold

cross-validation (Hoover et al. (1998); Fan, Lin and Zhou (2006)). The calcula-
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Table 3. The estimates and SE for β.

Proposed
Estimate SE p-value

β1 −0.858 0.225 0.0001
β2 −0.234 0.448 0.6014
β3 0.458 0.251 0.0680

−

Figure 3. (a) Plot of the predicted error vs bandwidth b; (b) estimated baseline function
(solid line) and its 95% confidence limit (dashed line) over 500 bootstrap replications;
and (c) estimated link function.

tion of standard errors was carried out via a bootstrap resampling method with

500 bootstrap samples. Given the bandwidths, the resulting estimates of regres-

sion coefficients and the baseline function V (·) associated with their standard

errors are provided in Table 3 and Figure 3, respectively.

From Figure 3, it is clear that there is a strong nonconstant and nonlinear

time effect. The risk of exacerbation since the previous MRI scan decreases in the

first 60 days, and then increases continuously to the highest value. The proposed

coefficient estimates in Table 3 show that the high-dose treatment significantly

reduces the risk of exacerbation, while the effects of low-dose and placebo treat-

ment on a patient’s exacerbation status are not significantly different. The EDSS

score has a marginal effect and the patients with greater EDSS may have higher

risk for exacerbation.
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7. Discussion

In this paper, we develop a semiparametric generalized linear model with

unknown link and baseline functions to analyze the effects of covariates and the

serial trend for longitudinal data. The theoretical studies show that our estima-

tors are asymptotically normal with standard convergent rates for parameters

and the baseline function. Simulation studies show that our method is robust

with limited loss of efficiency. We point out that the proposed estimator does not

incorporate correlations among repeated measurements and that it is possible to

improve the efficiency by incorporating an adaptive correlation structure among

observations.

Supplementary Materials

The online supplementary material includes proofs of Theorems 1-2 and re-

lated conditions.
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