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Proposition 1. As s goes to infinity, (0 — v)/\/s converges weakly to a normal distribution

. ) 2 2 2
with mean zero and variance v~ = i + 5, where

W%:%-F%-F%, ’Y%Z{l—po+%}'{l70—ﬁ}~
Proof of Proposition M. With m = (ng,n1,m2)" and p = (po,p1,p2) ', as s goes to infinity,
V/5(m/s—p) converges weakly to A'(0, diag(p) —pp '), where N'(u, X) is a multivariate normal
distribution with mean p and covariance matrix ¥ and diag(-) builds a diagonal matrix with
its arguments as diagonal entries. Let f(p) = 1 — po + p3/(2p2). By the delta method, as
s goes to infinity, (¥ — v)/v/s = /s(f(m/s) — f(p)) converges weakly to N(0,+?), where
v = V' f(p){diag(p) — pp "}V f(p) and V' f(p) = (—1,p1/p2, —p1/(2p3)). By some algebra,

7= 493 O
Proposition 2. The estimator v is unbiased in the limit in the sense that

E(9/s) = 1—po+pi/(2p2) + O((1 - p2)*). (1)
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Proposition 3. The 52 is unbiased in the limit in the sense that

5°/s) =% + O(s*(1 — p2)°).

Proofs of Propositions B and B. We will show that the following hold, i.e.,

E(/s) =1—po+p1/(2p2) — pi/{2p2(1 — p2)} - (1 — p2)°,

E@%/s) =1 — (1 —p2)~° - 7(s,p1,p2)(1 — p2)°.

For i =1, 2 and 3, write
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where u = s —n1 —ng and ¢ = 1 — p1 — p2. Clearly, (B) and (@) hold.

Proposition 4. Both 7 and 62 are unbiased in the limit, i.e.,

E(@/s)=1—po+pi/(2p2) + bi(p1,p2)/s + O((1 — p2)*),

E(5°/s) =i + ba(p1,p2) /s + O(s~*?),

where by (p1, p2) = p1/(2p2) and

Z {p2 + (p1 + p2) (i — 1)/2}ipt

2(p1.p2) <+ I(i=1)+3IG=3)p, "

Proof of Proposition | . Write
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Note that (8) holds as, with n} = ni(n1 — 1) 4+ na,
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To prove (B), we write
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(n1/s)* (n1/s)’ n (n1/s)*

_ L 1 (m/s)” (7)
2 (na/s+1/s) (n2/s+1/s)2 4 (n2/s+1/s)3"

By the linearity of the expectation functional, one can consider the three terms in (@) one by
one. Let gm(z1,22) = :r;”+1/m£”, m=1,2and 3, z1 > 0 and z2 > 0. Let f be one of g1, g2

and g3, and
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Let W1 = n1/s and Wy = (n2 + 1)/s. Note that Ef(Wi, Wa) — f(p1,p2) = A1 + A2, where,
using Taylor expansion of f(Wi, Wa2) at (p1,p2) and the linearity of the expectation, and with
& being between p; and Wy, ¢ =1, 2,
A= fLoB(Wi —p1) + fo . B(Wa = p2) + 27 oo E(W1 = p1)°
+27 fo 2 E(Wa = p2)° + FLaB(Wi — p1)(Wa — pa),
3 1 3 "’ . - .
Az = ;::0 30 <z> EX fiz—i(&,6) (W1 —p1)' (Wa — pg)‘g_l} , (8)

where fll,o, f(;,h fé:o, f(;iz and f{ll are evaluated at (p1,p2). One has

fou+ 271f2,0p1(1 —p1) + 271f0,2p2(1 —p2) — f1,1p1p2 " fo2
s 252
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Next we will seek an upper bound of |Az| by considering the terms in A one by one. By

the Cauchy-Schwarz inequality, one has

2
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With Z; s = (ni — spi)/{spi(1 — pi)}'/?, by the Cauchy-Schwarz inequality,

B{(Ws — 1) (Wa — p2)* 'Y < {BAW: — p) "} B((Wa — )"} } )

E{W1 —p)"} = s {m(1 - p)}"EZ1,,
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where v; ; = (4(3].7i)). Let p; denote the ith moment of M'(0, 1). Because the moment generating

function of Z; s converges to that of N'(0,1),

1/2

Jim SS/Q{E{(Wl —p1)' (W —pz)s_i}Q} < A{di(pr,p2)}* (10)

5—00

where d;(p1,p2) = {p1(1 — p1)}* {p2(1 — p2)}*® ™) paipraz—sy.-

2 2
Either f;5 ; = 0 or f;3; oc x%/ab or 1/x3, where a and b are natural numbers. If

11

fiz—i x x$/xb, then, since £27/€3° < (p3® + WE%)(1/p3® + 1/W3), by the Cauchy-Schwarz

inequality and the Minkowski inequality,

B(63°/63%) < B{(p}* + W2*)(1/p3* + 1/W3)}

<{E(T" + Wi} B p3 + 1/W5")* 2
< {p%“ n \/E<W;*a>} {wsb n \/Eu/wglb)} .

By the Jensen inequality and the Minkowski inequality, one has
4a
pi® = (EW1)* < EW}* = E(W1 — p1 +p1)** < [pl + {E(W1 —p1)4a}1/(4a> .

Note that lims .o E(me) = pi® since

Tim [s/{p1(1 = p)}]** E(W1 — p1)* = lim BZ{% = puaa.
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Let d(u; s,p) = (3)p“(1 — p)* ™ and write

B(1/W3") s =S
2% H;Q{u+(u+2)}‘“’ s p2) +Z{u+(u+2)}4b (155:p2)
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Since lims_y00 E(1/W4?) < (2/p2)*®,

Fm (B /) < {200+ 2l /).

11

If fi5_; oc 1/a5, then lims— oo {E(1/€3°)}/2 < {(1 + 2%)/p3*}*/%. To summarize, there exists

¢i(p1, p2) always being either zero or positive such that

— 1’ 2
slirgo E fi,S—i(§17§2) < Ci(p17p2)a 1= 03 1a 27 3. (11)

From (8), (8), (I0) and (), conclude that

T 5*/2 |5 { £l -i(61, &) (Wa = p1) (Wa = p2)* 7 }| < e}/ (o1, p2)d}’ (1, p2),

§—00
Jim 57242 < Z 31 < ) (pr, p2)d;’* (p1,p2).



