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Abstract: The Chao estimator for the number of species plays an important role

in conservation biology. We show that its asymptotic variance is not estimable

but admits estimable lower and upper bounds. We observe that the pre-existing

variance estimator is for the variance lower bound. We propose a bias-adjusted

estimator for the variance lower bound. We show that the adjusted Chao estimator

in the literature and the proposed adjusted estimator for the variance lower bound

are both unbiased in the limit. These findings reinforce the attractiveness of the

Chao estimator. Simulation studies and applications are reported.
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1. Introduction

The number of species in a species assemblage is an important parameter

in conservational biology, and estimating the number of species from empirical

data is an everpresent problem (Corbet, Fisher and Williams (1943); Goodman

(1949); Colwell and Coddington (1994); Colwell et al. (2012)). Because observed

data may empirically rule out simple models but cannot preclude complicated

ones (Donoho (1988)), it is understandable that, the number of species cannot

be bounded from above but can be bounded from below (Harris (1959); Bunge

and Fitzpatrick (1993); Mao and Lindsay (2007)).

Suppose that there are s species and species i is observed Xi times. If Xi is

a Poisson random variable with mean parameter λi, and the λi follow a mixing

distribution G, then the Xi arise as a random sample from a Poisson mixture

pj =
∫

(e−λλj/j!) dG(λ), j > 0. The number of species that appear exactly j

times is nj =
∑s

i=1 I(Xi = j). The number of observed species is n =
∑∞

x=1 nx.

We consider estimating the unknown number of species s from the nj , j > 1. For

instance, Chao and Shen (2003) studied an application about beetles. There are

n = 78 species observed with nonzero counts n1 = 59, n2 = 9, n3 = 3, n4 = 2,

n5 = 2, n6 = 2, and n11 = 1.

https://doi.org/10.5705/ss.202015.0332


1194 CHANG XUAN MAO, SIJIA ZHANG AND ZHILIN LIAO

The Poisson mixture model can be used in a variety of applications (Efron

and Thisted (1976); Bunge and Fitzpatrick (1993); Chao (2001)). In particular,

estimating the unknown size of a population from repeated encounters can also

be done in the Poisson mixture model (e.g., van der Heijden, Cruyff and van

Houwelingen (2003)). Among pre-existing estimators, the Chao (1984), devel-

oped for a lower bound of the number of species, has been widely accepted in

practice, see e.g., Van Hest et al. (2007); Böhning et al. (2013); Magurran (2013);

Reva et al. (2015). The Zelterman estimator, once a competitor, has been shown

to be inferior (Mao, Yang and Zhong (2013)). There are lower bound estimators

that are less biased but demand more computational resources (Mao (2006); Mao

and Lindsay (2007)).

The Chao estimator admits a bias adjusted version (Chao (2005)). We show

that its bias adjusted version is unbiased in the limit. We also study the total

asymptotic variance of the Chao estimator. It is a sum of an estimable component

and non-estimable component. Since the non-estimable component admits an

upper bound and a trivial lower bound zero, the total variance is bounded from

above and below. The estimated variance in the literature is an estimator for

the variance lower bound. We provide some bias-adjusted estimators for the

estimable component that are also shown to be unbiased in the limit.

The rest of this article is arranged as follows. The methods are presented in

Section 2. Simulation experiments are reported in Section 3. Applications are

studied in Section 4. The proofs are provided as supplementary materials.

2. Methods

2.1. The Chao estimator and its asymptotic limit

The vector of counts (n0, n1, n2, . . . )
> follows a multinomial distribution with

infinitely many cells,

(n0, n1, n2, . . . )
> ∼ s!∏∞

j=0 nj !

∞∏
j=0

{pj}nj . (2.1)

It is clear that E(nj) = spj and E(n) = s(1 − p0). By the Cauchy-Schwarz

inequality,
∫
e−λdG(λ)

∫
e−λλ2dG(λ) > {

∫
e−λλdG(λ)}2 or

p0(2p2) =

∫
e−λλ0

0!
dG(λ) ·

{
2

∫
e−λλ2

2!
dG(λ)

}
>

{∫
e−λλ1

1!
dG(λ)

}2

= p21,

where the equality holds if and only ifG is degenerate. This means that p21/(2p2) 6
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p0. Consider the parameter

ν = s(1− p0) +
sp21
2p2

. (2.2)

It is a lower bound of s because

s(1− p0) +
sp21
2p2

6 s(1− p0) + sp0 = s, (2.3)

and so Chao estimator can be written as

ν̂ = n+
n21
2n2

. (2.4)

2.2. The total asymptotic variance and its components

By the delta method, Chao (1989) gave the variance estimator as

σ̂2 = n1

{
n1
2n2

+
n21
n22

+
n31
4n32

}
. (2.5)

Proposition 1. As s goes to infinity, (ν̂ − ν)/
√
s converges weakly to a normal

distribution with mean zero and variance γ2 = γ21 + γ22 , where

γ21 =
p21
2p2

+
p31
p22

+
p41
4p32

, γ22 =

{
1− p0 +

p21
2p2

}
·
{
p0 −

p21
2p2

}
.

The total asymptotic variance of ν̂ is σ2T = sγ2 = σ2 + ω2 with σ2 = sγ21
and ω2 = sγ22 . The component σ2 admits an estimator σ̂2 in (2.5). The variance

component ω2 = ν(1 − ν/s), as a function in s, is strictly increasing with a

supremum over [ν,∞) of ν and a minimum of zero. Thus 0 6 ω2 < ν and

σ2 6 σ2T = σ2 + ω2 < σ2U = σ2 + ν. The lower bound σ2 and upper bound σ2U of

the total asymptotic variance σ2T can be easily estimated. If s and ν are replaced

by ν̂, then ω̂2 = 0 and σ̂2T = σ̂2, the choice made in the literature. Another

choice replaces ω2 with ν̂ and σ2T with σ̂2U = σ̂2 + ν̂.

2.3. Confidence inference

The asymptotical normality of the Chao estimator ν̂ can be used to construct

approximate confidence intervals for the number of species s. We consider one-

sided confidence intervals like (̂̀1−α,∞) (Mao and Lindsay (2007)), where ̂̀1−α
is a lower confidence limit with confidence level 1 − α. With q0.95 as the 95%

quantile of the standard normal distribution, one could takề
0.95 = ν̂ − q0.95σ̂, (2.6)

using the asymptotic normality of ν̂, albeit σ2T is underestimated by σ̂2.

We consider treating ̂̀0.95 as an approximate 95% lower confidence limit for
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s. We argue that the coverage probability of (̂̀0.95,∞) is no smaller than 0.95,

approximately. Take ̂̀?0.95 = ν̂ − q0.95{σ̂2 + (s − ν)ν/s}1/2, understood as an

approximate 95% “lower confidence limit” for ν. Then̂̀
0.95 − ̂̀?0.95 = q0.95{σ̂2 +

(s− ν)ν

s
}1/2)− q0.95σ̂

= q0.95
σ̂2 + (s− ν)ν/s− σ̂2

{σ̂2 + (s− ν)ν/s}1/2 + σ̂

=

{
ν

s
· 2

1 + {1 + (s− ν)ν/(sσ̂2)}1/2

}
q0.95
2σ̂

(s− ν)

6
q0.95
2σ̂

(s− ν).

The last inequality holds because ν/s 6 1 and (s − ν)ν/(sσ̂2) > 0. If σ̂ >

q0.95/2 = 0.822, then (̂̀0.95 − ̂̀?0.95) 6 (s − ν) or (̂̀0.95 − s) 6 (̂̀?0.95 − ν). This

implies that Pr(̂̀0.95 − s 6 0) > Pr(̂̀?0.95 − ν 6 0) ≈ 0.95.

2.4. Bias adjustment

If n2 = 0, then ν̂ = ∞ from (2.4). Chao (2005) proposes an adjusted

estimator

ν̃ = n+
n1(n1 − 1)

2(n2 + 1)
. (2.7)

The probability that of n2 = 0 is (1− p2)s, which may be noticeable if neither s

nor p2 is large. Even if such a probability is small, one has E(ν̂) =∞. To avoid

the issue of ν̂ = ∞ when n2 = 0, we add one to the denominator of n21/n2. We

provide an explicit justification on the modification in (2.7) of the numerator of

n21/n2. It can be shown that

E(
ν̃

s
) = 1− p0 +

p21
2p2
− p21

2p2(1− p2)
· (1− p2)s. (2.8)

We obtain (2.8) using the multinomial distribution of (n0, n1, n2, n2+) with n2+ =∑∞
x=3 derived from (2.1), and the modification from n21 in (2.4) to n1(n1 − 1) in

(2.7).

Proposition 2. The estimator ν̃ is unbiased in the limit,

E(
ν̃

s
) = 1− p0 +

p21
2p2

+O
(
(1− p2)s

)
. (2.9)

We propose a bias adjusted-estimator for σ2 as

σ̃2 = n1

 n1 − 1

2(n2 + 1)
+

2∏
j=1

n1 − j
n2 + j

+
1

4

3∏
j=1

n1 − j
n2 + j

 . (2.10)
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It can be shown that

E(
σ̃2

s
) = γ21 − (1− p2)−3 · r(s, p1, p2)(1− p2)s, (2.11)

where r(s, p1, p2) = O(s2) is given by

r(s, p1, p2) = γ21(1− p2)2 +

(
s− 1

1

)
(1− p2)

(
p31
p2

+
p41
4p22

)
+

(
s− 1

2

)
p41
4p2

.

The proof of (2.11) also relies on the multinomial distribution of (n0, n1, n2, n2+)>.

Proposition 3. σ̃2 is unbiased in the limit,

E(
σ̃2

s
) = γ21 +O

(
s2(1− p2)s

)
. (2.12)

There are alternative approaches to constructing bias-adjusted estimators,

for example,

ν̌ = n+
n21

2(n2 + 1)
, (2.13)

σ̌2 = n1

{
n1

2(n2 + 1)
+

n21
(n2 + 1)2

+
n31

4(n2 + 1)3

}
. (2.14)

Colwell (2013) has provided others.

Proposition 4. ν̌ in (2.13) and σ̌2 in (2.14) are unbiased in the limit,

E(
ν̌

s
) = 1− p0 +

p21
2p2

+
b1(p1, p2)

s
+O((1− p2)s), (2.15)

E(
σ̌2

s
) = γ21 +

b2(p1, p2)

s
+O(s−3/2), (2.16)

where b1(p1, p2) = p1/(2p2) and

b2(p1, p2) =

3∑
i=1

{p2 + (p1 + p2)(i− 1)/2}ipi1
{1 + I(i = 1) + 3I(i = 3)}pi+1

2

.

Because b1(p1, p2) > 0 and b2(p1, p2) > 0, although the bias of ν̌ in (2.13)

and that of σ̌2 in (2.14) are small, they are positive if s is not too small.

3. Simulation Studies

We compared the Chao estimator against the jackknife estimator ν̂J = n+n1
with an estimand νJ = s(1−p0+p1) (Smith and van Belle (1984); Mao, Yang and

Zhong (2013)). We considered mixing distributions, G1 = 0.9δ(0.3) + 0.1δ(10),

G2 = 0.5δ(1) + 0.5δ(2), G3 = 0.6δ(0.3) + 0.3δ(3) + 0.1δ(10), and G4, a gamma

distribution with shape and scale 1, where δ(λ) is a distribution degenerate at λ.
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Figure 1. The biases E(ν̃) − ν (solid) and E(ν̌) − ν (dashed) as functions of s given
different mixing distributions (Gi in panel i, i = 1, 2, 3 and 4).

We calculated the biases of ν̃ and ν̌ over a grid of s (50 6 s 6 200), given

each of the four mixing distributions. Figure 1 presents these biases against the

number of species. Under G1, the bias of ν̌ is negative for small s, and is positive

for s > 100, while the bias of ν̃ is always negative and is increasing in s. Under

G2, G3, or G4, the biases of ν̃ and ν̌ vary little over s, the bias of ν̌ is increasing

in s and approaches p1/(2p2), and the bias of ν̃ is increasing in s and approaches

zero.

In our simulation experiment, there were 12 settings labelled by (s,G), with

s ∈ {50, 500, 5, 000} and G ∈ {G1, G2, G3, G4}. For each setting, 5,000 sam-

ples were generated and the lower bound ν was calculated. When s = 50, the

probability of n2 = 0 was 0.2155 (G1), 0.0103 (G3), and 0.0013 (G4), and the

proportion of samples in which n2 = 0 was 0.2230 (G1), 0.0128 (G3) and 0.0014

(G4). Under (50, G2), the probability of n2 = 0 was 2.5 × 10−6 and no sample

had n2 = 0. When s = 500 or 5, 000, no sample had n2 = 0.

For each sample, we calculated the estimate ν̂, the standard error σ̂, together

with their adjusted versions ν̃, ν̌, σ̃ and σ̌. Table 1 presents the true values of
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ν and σ, the sample means, and the root mean square errors of their estima-

tors. Some statistics in settings (50, G1), (50, G3), and (50, G4) were unavailable

due to n2 = 0. The adjustment eliminates the value of infinity and the sample

means were close to the corresponding estimands. Under (500, G2), (5, 000, G2),

(500, G3), (5, 000, G3), (500, G4), and (5, 000, G4), the sample means of the ad-

justed and unadjusted estimators differ little. Under (500, G1) and (5, 000, G1),

the sample means of ν̂ is larger than those of ν̃ and ν̌. The adjusted estimators

generally perform better, and indispensable on occasion.

Table 2 presents the coverage probabilities of 95% lower confidence limits

obtained from the Chao estimator and its adjusted versions, and those of the

95% lower confidence limit ̂̀0.95,J = ν̂J − q0.95σ̂J obtained from the jackknife

estimator ν̂J , where σ̂2J = 2n1 estimates σ2J = 2sp1. The asymptotic variance

of ν̂J is σ2T,J = sσ2J + νJ − ν2J/s. Table 2 presents the expected number of

observed species E(n), and the true values of ν and νJ . The poor coverage

probabilities of (̂̀0.95,J ,∞) in settings (50, G2), (500, G2), and (5, 000, G2) are

due to the fact that νJ > s under G2. From Table 2, confidence intervals from

the Chao estimator and its adjusted versions are conservative. However, it is

difficult to make some improvements upon them as the lower bound can be quite

sharp when the population is homogeneous or close to homogeneous. To obtain

larger lower confidence limits, we can consider the possibility of using larger lower

bounds such as those in Mao (2006) and Mao and Lindsay (2007).

4. Applications

In addition to the application beetle, we introduce three applications: tomato,

firearm and coin. The application tomato studied in Mao and Lindsay (2002)

is about expressed genes of tomato flowers. There were n = 1, 825 expressed

genes observed from 2,586 expressed sequence tags. The non-zero counts were

n1 = 1, 434, n2 = 253, n3 = 71, n4 = 33, n5 = 11, n6 = 6, n7 = 2, n8 = 3, n9 = 1,

n10 = 2, n11 = 2, n12 = 1, n13 = 1, n14 = 1, n16 = 2, n23 = 1, and n27 = 1.

The application firearm studied in van der Heijden, Cruyff and van Houwelingen

(2003) is about illegal possession of firearms from the Dutch police. There were

n = 2, 638 cases with n1 = 2, 561, n2 = 72, n3 = 5, and nx = 0 for x > 4. In

firearm, we are interested in estimating the size s of a population consisting of

individuals that can be seen multiple times. The application coin concerns 662

coins struck from a variety of dies, with n = 660, n1 = 658 and n2 = 2 (Chao

(1984); Eddy (1967)). In coin, we are interested in estimating the number of dies
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Table 1. The sample mean (mean) and root mean square error (rmse) of the Chao
estimator and the estimator for the lower bound of its asymptotic variance, and their
adjusted versions, together with the true values in 12 settings.

mean rmse
G s ν ν̂ ν̃ ν̌ ν̂ ν̃ ν̌
G1 50 50 - 42 45 - 7.31 4.70

500 498 527 498 501 29.27 0.03 3.28
5,000 4,976 5,001 4,976 4,979 24.84 0.70 2.61

G2 50 49 50 48 49 1.77 0.19 0.51
500 486 488 486 487 1.76 0.04 0.75

5,000 4,863 4,866 4,864 4,865 2.44 0.75 1.45
G3 50 36 - 36 37 - 0.19 0.82

500 361 364 361 362 2.98 0.24 0.78
5,000 3,611 3,612 3,609 3,610 1.13 1.97 0.95

G4 50 37 - 37 38 - 0.19 0.80
500 375 378 375 376 3.47 0.37 1.37

5,000 3,750 3,755 3,752 3,753 4.63 1.62 2.62
σ σ̂ σ̃ σ̌ σ̂ σ̃ σ̌

G1 50 35 - 15 29 - 19.52 5.42
500 109 125 102 112 15.16 7.60 3.10

5,000 346 350 343 347 3.95 2.39 0.94
G2 50 7 8 6 8 1.08 0.85 0.23

500 23 24 23 23 0.32 0.24 0.12
5,000 73 73 73 73 0.12 0.06 0.05

G3 50 8 - 6 9 - 2.02 0.83
500 25 26 25 26 0.90 0.70 0.23

5,000 81 81 80 81 0.17 0.33 0.03
G4 50 9 - 8 10 - 1.71 0.64

500 30 30 29 30 0.82 0.48 0.29
5,000 94 94 93 94 0.25 0.15 0.09

from which coins were struck.

Table 3 presents the estimate ν̂ and the standard error σ̂, together with their

two adjusted versions ν̃, ν̌, σ̃ and σ̌ for each application. Table 3 also presents

σ̂U , σ̃U and σ̌U . It is clear that the differences between ν̂ and σ̂ and their adjusted

versions ν̃ and σ̃ (or ν̌ and σ̌) vary over applications. In tomato, the unadjusted

version and each of the adjusted versions are quite close, and in firearm, the two

versions have some differences. In beetle, ν̂/ν̃ − 1 = 8.9%, σ̂/σ̃ − 1 = 31.0%,

σ̂U/σ̃U − 1 = 29.6%, and ν̂/ν̌ − 1 = 7.7%, σ̂/σ̌− 1 = 14.4%, σ̂U/σ̌U − 1 = 14.0%.

In coin, the unadjusted and adjusted versions differ dramatically (e.g., σ̂/σ̃−1 =

172.6%). We calculated (ν̃ − q0.95 · σ̃,∞) for each application: (145,∞) (beetle),

(5, 317,∞) (tomato), (38, 589,∞) (firearm), and (26, 255,∞) (coin).
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Table 2. The coverage probabilities of 95% lower confidence limits obtained from the
Chao estimator, its adjusted versions, and the jackknife estimator.

coverage probability
G s E(n) ν νJ ν̂ ν̃ ν̌ ν̂J
G1 50 17 50 27 - 1 1 1

500 167 498 267 1 0.99 1 1
5,000 1,666 4,976 2,666 0.97 0.97 0.97 1

G2 50 37 49 53 1 1 1 0.91
500 374 486 534 0.99 0.99 0.99 0.39

5,000 3,742 4,863 5,339 1 1 1 0
G3 50 27 36 36 - 1 1 1

500 270 361 359 1 1 1 1
5,000 2,703 3,611 3,593 1 1 1 1

G4 50 25 37 37 - 1 1 1
500 250 375 375 1 1 1 1

5,000 2,500 3,750 3,752 1 1 1 1

Table 3. The estimate, standard error, and their adjusted versions.

ν̂ ν̃ ν̌ σ̂ σ̃ σ̌ σ̂U σ̃U σ̌U
beetle 271 249 252 83 63 73 85 65 74
tomato 5,889 5,870 5,873 340 336 338 348 345 347
firearm 48,185 47,543 47,561 5,666 5,444 5,554 5,670 5,448 5,558
coin 108,901 72,711 72,821 77,003 28,243 42,041 77,003 28,244 42,042

5. Discussion

We shed some light on the Chao estimator in the Poisson mixture model. Its

variance is discussed in detail. We justify the adjustment of the Chao estimator

using the concept “unbiased in the limit” and propose two adjusted estimators

for the lower bound of the variance of the Chao estimator. We demonstrate that,

using the Chao estimator and the estimated lower bound of its variance, one can

calculate a lower confidence limit for the number of species that approximately

achieves its nominal confidence level.

Supplementary Materials

The proofs are provided as the Web Supplementary Materials.
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