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A Asymptotic Results

This section outlines the asymptotic properties for the proposed estimators. The proofs of consis-

tency and asymptotic normality of the NPMLEs essentially follow the steps in Zeng and Lin (2007,

2009). With abuse of notation, we denote the entire set of parameters by ϑ = {α, β, θ, r(·), λ(·)} with

r(·) and λ(·) being the unknown baseline intensity functions. Likewise, let ϑ̂n = {α̂n, β̂n, θ̂n, r̂n(·), λ̂n(·)}
and ϑ0 = {α0, β0, θ0, r0(·), λ0(·)} denote the NPMLE and the true value of ϑ.

We impose the following regularity conditions:

(C1) The parameter value (α0, β0, θ0) belongs to the interior of a known compact set Θ in Rd. The

covariate matrix z ∈ Rp is bounded and has a full rank.

(C2) The true rate function of r0(t) and the true hazard function of λ0(t) are both positive, at

least twice continuously differentiable and have bounded variations over t ∈ [0, τ ].

(C3) With probability one, there exists a κ0 > 0 such that P (C ≥ τ |z) > κ0. With probability

one, E[NR∗(τ)] <∞ and E[ND∗(τ)] <∞.

(C4) The kernel functionK(·) is thrice continuously differentiable and the rth derivativeK(r)(·), r =

0, 1, 2, 3 has bounded variation in (−∞,∞).

(C5) The information matrix I0 is finite and positive definite.

Theorem A.1. Suppose that conditions (C1)–(C4) hold and that as n→∞, na2
n →∞, na4

n → 0,

nb2n →∞, and nb4n → 0. Then, ϑ̂ is strongly consistent for ϑ0 as n→∞.
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Theorem A.2. Suppose that conditions (C1)–(C5) hold and that as n→∞, na2
n →∞, na4

n → 0,

nb2n → ∞, and nb4n → 0. As n → ∞,
√
n(α̂ − α0),

√
n(β̂ − β0) and

√
n(θ̂ − θ0) converge in

distribution to respective mean-0 normal random vectors.

A.1 Proof of Theorem 1

Define the observed log-likelihood function by

ln(ϑ) =

n∏
i=1

log

∫
νi

[∏
t

{νieα
′zir(teα

′zi)}dNR
i (t) exp{−νiR(xie

α′zi)}
]

×
[
{νieβ

′ziλ(xie
β′zi)}δi exp{−νiΛ(xie

β′zi)}
]
fθ(νi)dνi,

and let l0(ϑ) denote the expected version of ln(ϑ). To establish the consistency of the NPMLE,

it suffices to show that supϑ∈Θ |ln(ϑ̂n) − l0(ϑ)| a.s.−→ 0 as n → ∞ and that the maximization is

uniquely determined at ϑ = ϑ0. Toward this end, let us define smoothed estimators for R(t) and

Λ(t), respectively, as

R̃n(t) =

∫ t

−∞

(nan)−1
∑n

i=1

∫∞
0 K{(u− s)/an}dNR

i (ue−α
′
0zi)

n−1
∑n

i=1 ν̃i
∫ (eε̃i(α0)−s)/an
−∞ K(u)du

 ds,
and

Λ̃n(t) =

∫ t

−∞

(nbn)−1
∑n

i=1

∫∞
0 K{(u− s)/bn}dND

i (ue−β
′
0zi)

n−1
∑n

i=1 ν̃i
∫ (eε̃i(β0)−s)/bn
−∞ K(u)du

 ds,
where ν̃i = E(νi|O) for i = 1, ..., n. By Lemma 2.4 of Schuster (1969) and Theorem 2.4.3 of van

der Vaart and Wellner (1996), it can be shown that as n→∞,

sup
t∈[0,τ ]

∣∣∣∣∣ 1

nan

n∑
i=1

∫ ∞
0

K{(u− t)/an}dNR
i (ue−α

′
0zi)− E{dNR

i (te−α
′
0zi)}

dt

∣∣∣∣∣ a.s.−→ 0,

sup
t∈[0,τ ]

∣∣∣∣∣ 1n
n∑
i=1

ν̃i

∫ (eε̃i(α0)−t)/an

−∞
K(u)du− E{ν̃iI(eε̃i(α0) ≥ t)}

∣∣∣∣∣ a.s.−→ 0.

In addition, we have E{dNR
i (te−α

′
0zi)}/dt = r0(t)E{ν̃iI(eε̃i(α0) ≥ t)}. Therefore,

sup
t∈[0,τ ]

∣∣∣∣∣∣(nan)−1
∑n

i=1

∫∞
0 K{(u− t)/an}dNR

i (ue−α
′
0zi)

n−1
∑n

i=1 ν̃i
∫ (eε̃i(α0)−t)/bn
−∞ K(u)du

− r0(t)

∣∣∣∣∣∣ a.s.−→ 0,
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which implies that R̃n(t) → R0(t) almost surely in t ∈ [0, τ ]. The pointwise consistency can be

strengthened to the uniform consistency due to the monotonicity and boundedness of R̃n(t) and

R0(t), i.e., supt∈[0,τ ] |R̃n(t) − R0(t)| → 0 a.s. Similarly, one can show the uniform consistency of

Λ̃n(t) to Λ0(t) on [0, τ ].

It follows from Helly’s selection theorem that there exists a convergent subsequence such that

ϑ̂nk → ϑ∗. Clearly, nk
−1{lnk(ϑ̂nk)−l0(ϑ̃0)} ≥ 0, where ϑ̃0 = (α0, β0, θ0, R̃nk , Λ̃nk). It can be checked

that the Kullback-Leibler information between the density indexed by ϑ∗ and the true density is

negative. These implies that

log

∫
νi

[∏
t

{νieα
′
∗zir∗(te

α′∗zi)}dNR
i (t) exp{−νir∗(xieα

′
∗zi)}

]
×
[
{νieβ

′
∗ziλ∗(xie

β′∗zi)}δi exp{−νiΛ∗(xieβ
′
∗zi)}

]
fθ∗(νi)dνi

= log

∫
νi

[∏
t

{νieα
′
0zir0(teα

′
0zi)}dNR

i (t) exp{−νir0(xie
α′0zi)}

]
×
[
{νieβ

′
0ziλ0(xie

β′0zi)}δi exp{−νiΛ0(xie
β′0zi)}

]
fθ0(νi)dνi,

Some manipulations with the above equations by following the lines of Zeng and Lin (2009) show

that α∗ = α0, β∗ = β0, θ∗ = θ0, and R∗(t) = R0(t) and Λ∗(t) = Λ0(t) for t ∈ [0, τ ] with probability

one. Therefore, ϑ̂nk should converge to ϑ0. Helly’s theorem completes the proof for consistency of

ϑ̂n to ϑ0. Furthermore, the point-wise consistency can be strengthened to uniform convergence on

[0, τ ] by applying the Glivenko-Cantelli theorem.

A.2 Proof of Theorem 2

Let ‖.‖l∞[0,τ ] denote the supremum norm in [0, τ ], BV [0, τ ] the space of bounded variation functions

on [0, τ ], ‖µ‖BV [0,τ ] the total variation of µ(t) in [0, τ ], and H = {µ(t) : ‖µ‖BV [0,τ ] ≤ 1}. Let Pn
denote the empirical measure and P0 the probability measure. For ease of presentation, we further

define φ = (α′, β′, θ)′ and A(·) = {R(·),Λ(·)}, which, respectively, represent finite- and infinite-

dimensional parameters. Likewise, we let ϑ̂n = (φ̂n, Ân) and ϑ0 = (φ0, A0) denote the NPMLE and

the true parameter. Note that Â(t) can be regarded as a bounded linear functional in l∞(H), and

{φ̂n−φ0, Ân(·)−A0(·)} is a random element in Rd× l∞(H), where l∞(H) is the space of bounded

real-valued functions on H under the supremum norm. We claim that n1/2{φ̂n−φ0, Ân(·)−A0(·)}
converges weakly to a zero-mean Gaussian process in the metric space Rd × l∞(H). This can be

accomplished by checking four conditions in Theorem 3.3.1 of van der Vaart and Wellner (1996).

Let h = (h1, h2), where h1 is a vector of the same dimension with φ, say d, and h2 is a bounded
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function, i.e., h = (h1, h2) ∈ Rd×BV [0, τ ]. Consider φs = φ+sh1 and As(t) =
∫ t

0{1+sh2(u)}dA(u).

Let Un(φ,A)(h1, h2) = dln(φs, As)/ds|s=0 = U1n(φ,A)(h1) + U2n(φ,A)(h2), where U1n and U2n

are the directional derivatives with respect to φ and A, respectively. Also, define the limit of

Un(φ,A)(h1, h2) by U0(φ,A)(h1, h2) = U10(h1) + U20(h2), i.e., U0(φ,A)(h) = P0{Un(φ,A)(h)}.
Clearly, Un(φ̂n, Ân)(h1, h2) = U0(φ0, A0)(h1, h2) = 0. It can be checked that U0(φ,A) is Fréchet

differentiable and let U̇(φ0, A0)(φ−φ0, A−A0)(h1, h2) denote the Fréchet derivative of U0(φ,A) at

(φ0, A0).

Note that score operators U1n and U2n can be written as U1n(φ0, A0)(h1) = Pn{h′1Uo1n(φ0, A0)} =

n−1
∑n

i=1 h
′
1U

o
1i(φ0, A0), and U2n(φ0, A0)(h2) = Pn{Uo2n(φ0, A0)(h2)} = n−1

∑n
i=1 U

o
2i(φ0, A0) for

some Uo1i and Uo2i. Consider

A1(φ0, A0) = {h′1Uo1i(φ0, A0); ‖h1‖ <∞},

A2(φ0, A0) = {Uo2i(φ0, A0)(h2);h2 ∈ BV [0, τ ]}.

Under conditions (C1)–(C6), it can be checked that Uo1i is sufficiently smooth and bounded func-

tions, thusA1 is a Donsker class. Similarly, A2 is also Donsker. Therefore, we see that n1/2{Un(φ0, A0)(h)−
U0(φ0, A0)(h)} converges weakly to a Gaussian process G in the metric space Rd × l∞(H). Fur-

thermore, ‖φ− φ0‖+ supt∈[0,τ ] |A(t)−A0(t)| = op(1), we can show that A1(φ,A) and A2(φ,A) are

both Donsker and that n1/2{(Un − U0)(φ̂n, Ân)(h)− (Un − U0)(φ0, A0)(h)} = op(1).

Finally, we need to show that the information operator U̇(φ0, A0)(h) is continuously convertible

on its range. To this end, it is key to show that U̇0(φ0, A0)(h) = 0 almost surely implies h ≡ 0. By

the definition of U̇0(φ,A)(h), U̇0(φ0, A0)(h) = 0 implies E{h′1Uo10(φ0, A0) + Uo20(φ0, A0)(h2)}2 = 0.

Under conditions (C1)–(C6), we have that h′1U
o
10(φ0, A0) + Uo20(φ0, A0)(h2) = 0 almost surely. By

using similar techniques used for the consistency of the estimators, it is easily seen that h1 = 0

and h2(·) = 0 everywhere, thus h ≡ 0. This implies that the information operator is a one-

to-one map and thus U̇(φ0, A0)(h) or equivalently −I0 is invertible. Therefore, n1/2{(φ̂n, Ân) −
(φ0, A0)} converges weakly to the Gaussian process I−1

0 G. The estimation and consistency of the

variance-covariance function can be shown along the lines of Parner (1998) and Zeng and Lin (2007).

In addition, we can show that the asymptotic variance of n1/2{(φ̂n, Ân) − (φ0, A0)} achieves the

semiparametric efficiency bound I−1
0 , using the theory of Bickel et al. (1993).

A.3 Comparison of Frailty Distributions

One reviewer suggested to compare two underlying frailty distributions. Corresponding to the

results in simulation #2 (Table 3.2), we displayed two distributions in the following four cases: (a)

gamma distribution with θ = 0.8 is a true model and log-normal (LN) distribution is a working
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Figure 1: Comparison of gamma and log-normal (LN) frailty distributions under model misspeci-
fication.

model; (b) gamma distribution with θ = 1.5 is a true model and LN distribution is a working

model; (c) LN distribution with θ = exp(σ2)− 1 = 0.8 is a true model and gamma distribution is

a working model; and (d) LN distribution with θ = exp(σ2)− 1 = 1.5 is a true model and gamma

distribution is a working model. Although there exists some discrepancy between underlying and

estimated distributions, two density functions appear to be fairly similar.
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