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Abstract: In clinical and epidemiological studies, recurrent events can arise when a

subject repeatedly experiences the event of interest. Often, a terminal event such as

death may preclude further occurrence of recurrent events in an informative manner

such that the terminal event is strongly correlated with the recurrent event process.

In this article, we propose a semiparametric joint analysis of correlated recurrent

and terminal events. Specifically, we consider an accelerated intensity model for

the recurrent events and an accelerated failure time model for the terminal event.

We assess the dependency between the two event processes through a commonly

used log-normal or gamma shared frailty. To estimate regression parameters and

unspecified baseline intensity functions, we develop an EM algorithm with kernel

smoothing adapted for both intensity functions, and perform variance estimation

via numerical differentiation of the profile likelihoods. We evaluated the finite

sample performance of the proposed method via simulation studies for both gamma

and log-normal frailty models, and applied our method to the analysis of tumor

recurrences and patient survival times in a soft tissue sarcoma study.
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1. Introduction

In many clinical and epidemiological studies, recurrent event data are fre-

quently encountered when a subject repeatedly experiences the event of interest.

The recurrent event times for the subject are thus ordered and correlated. Sta-

tistical analysis of recurrent event data has been broadly explored in theory and

extensively used in practice (Andersen and Gill (1982), Pepe and Cai (1993),

Lin et al. (2000), Cai and Schaubel (2004), Liu, Lu and Zhang (2014)). Cook

and Lawless (2007) provides a comprehensive review of the analysis of recurrent

events.

When analyzing recurrent event data, an independent censoring condition is

typically assumed in the construction of statistical methods. However, in many

applications, especially in medical research, the timing of the terminating event

such as death is likely to correlate with the recurrent event process, so that
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the assumption of independent censoring between two event processes can be

violated. For this situation, one has to consider not only the dependence among

recurrent events, but also the association between recurrent and terminal events;

ignorance of either could lead to biased estimates. A particularly important

approach to this problem is to consider shared random-effects or frailty models

(Wang, Qin and Chiang (2001), Huang and Wang (2004), Liu, Wolfe and Huang

(2004), Ye, Kalbfleisch and Schaubel (2007), Liu and Huang (2007), Zeng and

Lin (2009), Kalbfleisch et al. (2013)), in which a latent variable is incorporated to

characterize the association between the recurrent event process and the failure

time by allowing a common frailty variable to appear in the intensity of the

recurrent event process and the hazard of the failure time. Similar techniques

have been also extensively explored to accommodate an analysis of longitudinal

data with informative right censoring (Wulfsohn and Tsiatis (1997), Tsiatis and

Davidian (2004), Liu and Ying (2007), among others).

Many frailty-based models have assumed Cox-type multiplicative intensity/

hazard functions for modeling both recurrent and terminal event processes.

Wang, Qin and Chiang (2001) and Huang and Wang (2004) proposed an esti-

mating equation approach for the shared frailty proportional intensity model that

is flexible, in that no assumption for the frailty distribution is required. These

methods, however, are statistically inefficient compared to a likelihood-based ap-

proach and do not allow for assessment of the degree of association, as well as

a multivariate frailty structure. Ye, Kalbfleisch and Schaubel (2007) considered

a gamma frailty for the same model and used estimating functions for marginal

models along with a closed-form variance estimation, conditioning only on the

covariates and the frailty. This approach was further extended by Kalbfleisch et

al. (2013) to avoid the strong Poisson-type likelihood assumptions. Based on ear-

lier work by Huang and Wolfe (2002) for informative censoring in clustered data,

Liu, Wolfe and Huang (2004) proposed frailty proportional hazards models for

the recurrent and terminal event processes, and carried out maximum likelihood

estimation and inference via a Monte Carlo expectation-maximization (EM) al-

gorithm. Alternatively, Zeng and Lin (2009) assumed a class of semiparametric

transformation models for the intensity functions of both recurrent and terminal

event processes. Their formulation allows flexible dependence structures on two

event processes, including negative correlations between recurrent event times.

Zeng and Lin developed an efficient EM algorithm to calculate the nonparametric

maximum likelihood estimators (NPMLEs) and established asymptotic theories

for the proposed estimators. Their algorithm was further extended by Zhu et al.

(2011) for the situations with multiple types of recurrent events.

As an alternative to the Cox-type regression models, several authors have

used semiparametric accelerated failure time (AFT) models for the counting pro-

cess (Kalbfleisch and Prentice (2002, Chap. 7), Ying (1993), Lin, Wei and Ying
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(1998), Jin et al. (2003), Zeng and Lin (2007)), where a known transformation of

the failure time is linearly related to the covariates, while the distribution of the

residuals is left unspecified. Because of its quite direct physical interpretation,

the AFT model is often preferred in applications, but less popularized due to lack

of efficient and reliable inferential procedures. Jin et al. (2003) and Jin, Lin and

Ying (2006) developed rank regression estimators that can be obtained through

linear programming. Zeng and Lin (2007) used a kernel-based profile likelihood

maximization to achieve an NPMLE for the AFT model with censored data. Liu,

Lu and Zhang (2014) extended their algorithm to facilitate a semiparametric ac-

celerated intensity model for correlated recurrent event survival data.

In this article, we present a joint estimation of the accelerated intensity mod-

els for the recurrent/terminal event data and assess their dependence through a

shared frailty with gamma and log-normal distribution assumptions. We propose

to estimate the model parameters by the NPMLEs and to establish their theoret-

ical properties. In addition, we provide simple and efficient numerical algorithms

to implement the proposed inference procedures. The remainder of the article is

organized as follows. Section 2 describes joint accelerated intensity frailty models

for recurrent/terminal event data, taking potential dependency into considera-

tion via a latent variable. In the same section, an estimation procedure and the

asymptotic properties of the resulting estimators are provided. Section 3 presents

results from simulation studies conducted to evaluate the finite-sample properties

of the proposed estimates. Section 4 illustrates the application of the proposed

methodology to a sarcoma cancer study. Section 5 presents some concluding

remarks.

2. Statistical Models and Likelihood Inference

2.1. Model and notation

Suppose there are n independent subjects. Let Ci and Di be the censoring

and death times of individual i = 1, . . . , n. Let Xi = min(Di, Ci ∧ τ) be the

follow-up time and δi = I(Di ≤ Ci ∧ τ) the observed terminal event (death)

indicator, where τ is the maximum follow-up time, a ∧ b = min(a, b), and I(·)
denotes an indicator function. Then, ND

i (t) = I(Xi ≤ t, δi = 1) is the observed

death process. Let NR
i (t) denote the observed recurrence process that counts

the number of observed recurrences up to time t ∈ [0, Xi]. Both NR
i and ND

i

are the observed parts of the underlying recurrence and death counting processes

NR∗
i and ND∗

i , respectively, which might increase after Xi when δi = 0. These

two sets of processes are related through NR
i (t) =

∫ t
0 Yi(s)dN

R∗
i (s) and ND

i (t) =∫ t
0 Yi(s)dN

D∗
i (s), where Yi(t) = I(Xi ≥ t) is the at-risk indicator at t. For subject

i, we may observe the recurrent events at distinct times, 0 < Ti1 < · · · < Tini ≤
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Xi, where ni = NR
i (Xi) represents the total number of recurrences. There may

exist a p-vector of possibly time-dependent covariates zi(t). Then, the observed

data of individual i include Oi = {Yi(t), NR
i (t), ND

i (t), zi(t); 0 ≤ t ≤ τ}, and
O = {Oi, i = 1, . . . , n} is all the observed data. For simplicity of presentation,

we assume that the covariates are time-independent, but the following argument

can be easily generalized to the analysis with time-dependent covariates.

To evaluate the effects of covariates zi, we specify the intensity function of

the recurrent event process NR∗
i (t) and the hazard function of the terminal event

process ND∗
i (t), respectively, as

{
ri(t|νi, zi) = νie

α′zir0(te
α′zi) = νiri(t|zi),

λi(t|νi, zi) = νie
β′ziλ0(te

β′zi) = νiλi(t|zi),
(2.1)

where r0(·) and λ0(·) are the unspecified baseline intensity functions, respectively

corresponding to the recurrent and terminal events, α and β are the regression

parameters of primary interest, and νi’s are unobserved i.i.d. realizations of

a latent variable ν > 0. It is assumed that, given (z, ν), {NR∗(·), ND∗(·), C}
are mutually independent. The occurrence of recurrent events is modeled by

a subject-specific Poisson process via a latent variable, and conditioning on it,

the rate function equals the intensity function. A multiplicative hazard function

with the same latent variable but a different baseline function is assumed for the

hazard of the failure event.

In model (2.1), dependence between the recurrent and terminal events is

characterized by a latent variable νi, whose interpretation is analogous to a ran-

dom effect from a mixed model. Technically, ν ∼ fθ(ν) can follow any distribution

with strictly positive support, where the parameter θ indexes the frailty distri-

bution. In the semiparametric setting, some distributional constraint on fθ(ν),

such as E(ν) = 1, may be required for model identification. A popular choice is

a one-parameter Gamma distribution with mean 1 and variance θ:

fθ(ν) =
νθ−1 exp(−θν)θθ

Γ(θ)
. (2.2)

In addition to assuming (2.2), we consider a log-normal distribution for fθ(ν).

When θ ↓ 0, the frailty terms νi’s are identically 1, so that the heterogeneity in

both the recurrent and terminal event rates is explained solely by zi.

The two sub-models in (2.1) are equivalent to a class of AFT models for

counting processes (Lin, Wei and Ying (1998), Zhang and Peng (2007)). One

major advantage of this approach is that it allows for a direct relationship between

event times and covariates, and marginal interpretation within the framework of

accelerated regression modeling is possible. To see this, model (2.1) implies

E[NR∗
i (t)|νi, zi] = exp{−νiR0(te

α′zi)}, E[ND∗
i (t)|νi, zi] = exp{−νiΛ0(te

β′zi)},
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where R0(t) =
∫ t
0 r0(u)du and Λ0(t) =

∫ t
0 λ0(u)du. Therefore,

E[NR∗
i (te−α′zi)|νi] = exp{−νiR0(t)}, E[ND∗

i (te−β′zi)|νi] = exp{−νiΛ0(t)}.

According to this formulation, the set of covariates zi affects both the frequency

of recurrences and the risk of death over time by expanding or contracting the

time scale on which the events occur by a multiplicative factor of eα
′zi and eβ

′zi ,

respectively, relative to that of a zero-valued covariate vector. Clearly, a large

value of the shared frailty νi inflates both the intensity of the recurrent events and

the hazard of the failure event. However, this does not alter the direct association

between the event times and covariates, and holds even after the latent variable

is integrated out.

2.2. Nonparametric maximum likelihood estimation

A likelihood can be constructed with a general approach for counting pro-

cesses (Kalbfleisch and Prentice (2002, Chap. 6.2)) from the intensity specifica-

tion in model (2.1). The specification in (2.1) implicitly assumes that, condi-

tioning on the subject-specific random effect νi, two processes for recurrence and

death are independent. Therefore, given νi, the “complete-data” likelihood of the

ith subject can be factored into the products of the conditional distribution of

NR∗
i , the conditional distribution of ND∗

i , and the distribution of νi. Integrating

over νi, the joint nonparametric likelihood for ϑ = {α, β, θ, r0(·), λ0(·)} is

L(ϑ) =
n∏

i=1

∫

νi

[{ ni∏
k=1

νie
α′zir0(tike

α′zi)
}
exp{−νiR0(xie

α′zi)}
]

×
[
{νieβ

′ziλ0(xie
β′zi)}δi exp{−νiΛ0(xie

β′zi)}
]
fθ(νi)dνi. (2.3)

Contrary to the shared gamma frailty models (Nielsen et al. (1992)), the full log-

likelihood (2.3) of the joint frailty model does not take a simple form because the

integrals do not have a closed form. Also, without a parametric assumption on the

baseline hazards on r0(·) and λ0(·), direct inference on the marginal likelihood is

virtually impossible. For that situation, accomplishing a closed form expression

for the complete data likelihood corresponding to (2.3) makes it feasible and

attractive to use the EM algorithm that treats the νi’s as missing values.

The complete data log-likelihood, based on the observed data Oi and a

random effect νi, consists of three components:

lc(ϑ|ν) = lc1(α, r0|ν) + lc2(β, λ0|ν) + lc3(θ|ν), (2.4)

where

lc1(α, r0|ν) = n−1
n∑

i=1

[ ni∑
k=1

{α′zi + log r0(e
η̃ik(α))} − νiR0(e

ε̃i(α))
]
,
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lc2(β, λ0|ν) = n−1
n∑

i=1

[
δi{β′zi + log λ0(e

ε̃i(β))} − νiΛ0(e
ε̃i(β))

]
,

lc3(θ|ν) = n−1
n∑

i=1

{(ni + δi) log νi + log fθ(νi)} ,

with η̃ik(α) = log(tik) + α′zi, ε̃i(α) = log(xi) + α′zi, and ε̃i(β) = log(xi) + β′zi.

E-step. In the E-step, we calculate the conditional expectation of g(νi) for some

function g(·), given the observed data and the estimate of ϑ in the previous step.

By Bayes’ rule, the conditional distribution of νi, given (ϑ,Oi), is

f(νi|ϑ,Oi) =
νni+δi
i e−νiR0(eε̃i(α))e−νiΛ0(eε̃i(β))fθ(νi)∫

νi
νni+δi
i e−νiR0(eε̃i(α))e−νiΛ0(eε̃i(β))fθ(νi)dνi

. (2.5)

If ϑ̂(s) = {α̂(s), β̂(s), θ̂(s), r̂
(s)
0 (·), λ̂(s)

0 (·)} is obtained in the sth iteration of the

EM step, the (s + 1)th iteration, taking the expectation with respect to νi in

(2.4) given (ϑ̂(s),Oi) reduces to computing




ν̂
(s)
i = E[νi|ϑ̂(s),Oi],

l̂og νi
(s)

= E[log νi|ϑ̂(s),Oi],

̂log fθ(νi)
(s)

= E[log fθ(νi)|ϑ̂(s),Oi].

(2.6)

When the frailty follows the gamma distribution, given in (2.2), we have




ν̂
(s)
i =

θ̂(s) + ni + δi

{θ̂(s) + R̂
(s)
0 (eε̃(α̂

(s))) + Λ̂
(s)
0 (eε̃(β̂

(s)))}
,

l̂og νi
(s)

= Ψ(θ̂(s) + ni + δi)− log{θ̂(s) + R̂
(s)
0 (eε̃(α̂

(s))) + Λ̂
(s)
0 (eε̃(β̂

(s)))},

̂log fθ(νi)
(s)

= (θ − 1)l̂og νi
(s)

− θν̂
(s)
i + θ log θ − log Γ(θ),

where Ψ(x) = Γ′(x)/Γ(x) is the digamma function. In general, E{g(νi)|ϑ̂(s),Oi}
can be approximated by the Monte Carlo simulation of νi or the Gaussian-

quadrature approximation when νi follows a log-normal distribution.

M-step. In the M-step, we need to maximize the conditional expectation of

the pseudo-complete data log-likelihood function given the observed data and

the estimated quantities for the subject-specific frailty variable. Suppose the

quantities (2.6) associated with unknown νi’s are obtained in the sth iteration of

ANALYSIS OF RECURRENT AND TERMINAL EVENTS 7

the E-step. Then we maximize the expectation of the complete data log-likelihood

in equation (2.4)

le(ϑ|ν̂(s)) = le1(α, r0|ν̂(s)) + le2(β, λ0|ν̂(s)) + le3(θ|ν̂(s)), (2.7)

where

le1(α, r0|ν̂(s)) = n−1
n∑

i=1

[ ni∑
k=1

{α′zi + log r0(e
η̃ik(α))} − ν̂

(s)
i R0(e

ε̃i(α))
]
, (2.8)

le2(β, λ0|ν̂(s)) = n−1
n∑

i=1

[
δi{β′zi + log λ0(e

ε̃i(β))} − ν̂
(s)
i Λ0(e

ε̃i(β))
]
, (2.9)

le3(θ|ν̂(s)) = n−1
n∑

i=1

[
(ni + δi)l̂og νi

(s)
+ ̂log fθ(νi)

(s)
]
. (2.10)

The maximization of (2.10) for θ is relatively easy with a standard opti-

mization algorithm and we let θ̂(s+1) denote the maximizer of (2.10). However,

maximums of (2.8) and (2.9) do not exist when considering nonparametric es-

timation of r0(·) and λ0(·) (Zeng and Lin (2007)). To see this, under model

(2.1) and the conditional independent censoring assumption, the intensity func-

tions of the two counting processes, NR
i (te−α′zi) and ND

i (te−β′zi), are given by

νir0(t)I(e
ε̃i(α) ≥ t) and νiλ0(t)I(e

ε̃i(β) ≥ t), respectively, conditional on νi and

zi. This implies that the nonparametric maximum likelihood estimators of R0(t)

and Λ0(t) are

R̃0(t;α) =

n∑
i=1

∫ t

0
∆R̂0(u;α)du, Λ̃0(t;β) =

n∑
i=1

∫ t

0
∆Λ̂0(u;β)du, (2.11)

where

∆R̃0(t;α) =
dNR

i (te−α′zi)∑n
j=1 ν̂

(s)
j I(eε̃j(α) ≥ t)

, ∆Λ̃0(t;β) =
dND

i (te−β′zi)∑n
j=1 ν̂

(s)
j I(eε̃j(β) ≥ t)

.

Here ∆R̃0(t;α) and ∆Λ̃0(t;β) represent the jump size of the step function

R̃0(t;α) and Λ̃0(t;β) at time t, respectively, for subject i. It follows from the mar-

tingale property that
∑n

i=1 ν̂
(s)
i R̃0{eε̃i(α);α}=

∑n
i=1 ni and

∑n
i=1 ν̂

(s)
i Λ̃0{eε̃i(β);β}

=
∑n

i=1 δi. The profile log-likelihoods corresponding to (2.8) and (2.9) can then

be reduced to, ignoring constants independent of the parameters, to

lp1(α|ν̂
(s)) = n−1

n∑
i=1

ni∑
k=1

{
α′zi + log∆R̃0(e

η̃ik(α);α)
}
, (2.12)

lp2(β|ν̂
(s)) = n−1

n∑
i=1

δi

{
β′zi + log∆Λ̃0(e

ε̃i(β);β)
}
. (2.13)
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lc2(β, λ0|ν) = n−1
n∑

i=1

[
δi{β′zi + log λ0(e

ε̃i(β))} − νiΛ0(e
ε̃i(β))

]
,

lc3(θ|ν) = n−1
n∑

i=1

{(ni + δi) log νi + log fθ(νi)} ,

with η̃ik(α) = log(tik) + α′zi, ε̃i(α) = log(xi) + α′zi, and ε̃i(β) = log(xi) + β′zi.

E-step. In the E-step, we calculate the conditional expectation of g(νi) for some

function g(·), given the observed data and the estimate of ϑ in the previous step.

By Bayes’ rule, the conditional distribution of νi, given (ϑ,Oi), is

f(νi|ϑ,Oi) =
νni+δi
i e−νiR0(eε̃i(α))e−νiΛ0(eε̃i(β))fθ(νi)∫

νi
νni+δi
i e−νiR0(eε̃i(α))e−νiΛ0(eε̃i(β))fθ(νi)dνi

. (2.5)

If ϑ̂(s) = {α̂(s), β̂(s), θ̂(s), r̂
(s)
0 (·), λ̂(s)

0 (·)} is obtained in the sth iteration of the

EM step, the (s + 1)th iteration, taking the expectation with respect to νi in

(2.4) given (ϑ̂(s),Oi) reduces to computing




ν̂
(s)
i = E[νi|ϑ̂(s),Oi],

l̂og νi
(s)

= E[log νi|ϑ̂(s),Oi],

̂log fθ(νi)
(s)

= E[log fθ(νi)|ϑ̂(s),Oi].

(2.6)

When the frailty follows the gamma distribution, given in (2.2), we have




ν̂
(s)
i =

θ̂(s) + ni + δi

{θ̂(s) + R̂
(s)
0 (eε̃(α̂

(s))) + Λ̂
(s)
0 (eε̃(β̂

(s)))}
,

l̂og νi
(s)

= Ψ(θ̂(s) + ni + δi)− log{θ̂(s) + R̂
(s)
0 (eε̃(α̂

(s))) + Λ̂
(s)
0 (eε̃(β̂

(s)))},

̂log fθ(νi)
(s)

= (θ − 1)l̂og νi
(s)

− θν̂
(s)
i + θ log θ − log Γ(θ),

where Ψ(x) = Γ′(x)/Γ(x) is the digamma function. In general, E{g(νi)|ϑ̂(s),Oi}
can be approximated by the Monte Carlo simulation of νi or the Gaussian-

quadrature approximation when νi follows a log-normal distribution.

M-step. In the M-step, we need to maximize the conditional expectation of

the pseudo-complete data log-likelihood function given the observed data and

the estimated quantities for the subject-specific frailty variable. Suppose the

quantities (2.6) associated with unknown νi’s are obtained in the sth iteration of
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the E-step. Then we maximize the expectation of the complete data log-likelihood

in equation (2.4)

le(ϑ|ν̂(s)) = le1(α, r0|ν̂(s)) + le2(β, λ0|ν̂(s)) + le3(θ|ν̂(s)), (2.7)

where

le1(α, r0|ν̂(s)) = n−1
n∑

i=1

[ ni∑
k=1

{α′zi + log r0(e
η̃ik(α))} − ν̂

(s)
i R0(e

ε̃i(α))
]
, (2.8)

le2(β, λ0|ν̂(s)) = n−1
n∑

i=1

[
δi{β′zi + log λ0(e

ε̃i(β))} − ν̂
(s)
i Λ0(e

ε̃i(β))
]
, (2.9)

le3(θ|ν̂(s)) = n−1
n∑

i=1

[
(ni + δi)l̂og νi

(s)
+ ̂log fθ(νi)

(s)
]
. (2.10)

The maximization of (2.10) for θ is relatively easy with a standard opti-

mization algorithm and we let θ̂(s+1) denote the maximizer of (2.10). However,

maximums of (2.8) and (2.9) do not exist when considering nonparametric es-

timation of r0(·) and λ0(·) (Zeng and Lin (2007)). To see this, under model

(2.1) and the conditional independent censoring assumption, the intensity func-

tions of the two counting processes, NR
i (te−α′zi) and ND

i (te−β′zi), are given by

νir0(t)I(e
ε̃i(α) ≥ t) and νiλ0(t)I(e

ε̃i(β) ≥ t), respectively, conditional on νi and

zi. This implies that the nonparametric maximum likelihood estimators of R0(t)

and Λ0(t) are

R̃0(t;α) =

n∑
i=1

∫ t

0
∆R̂0(u;α)du, Λ̃0(t;β) =

n∑
i=1

∫ t

0
∆Λ̂0(u;β)du, (2.11)

where

∆R̃0(t;α) =
dNR

i (te−α′zi)∑n
j=1 ν̂

(s)
j I(eε̃j(α) ≥ t)

, ∆Λ̃0(t;β) =
dND

i (te−β′zi)∑n
j=1 ν̂

(s)
j I(eε̃j(β) ≥ t)

.

Here ∆R̃0(t;α) and ∆Λ̃0(t;β) represent the jump size of the step function

R̃0(t;α) and Λ̃0(t;β) at time t, respectively, for subject i. It follows from the mar-

tingale property that
∑n

i=1 ν̂
(s)
i R̃0{eε̃i(α);α}=

∑n
i=1 ni and

∑n
i=1 ν̂

(s)
i Λ̃0{eε̃i(β);β}

=
∑n

i=1 δi. The profile log-likelihoods corresponding to (2.8) and (2.9) can then

be reduced to, ignoring constants independent of the parameters, to

lp1(α|ν̂
(s)) = n−1

n∑
i=1

ni∑
k=1

{
α′zi + log∆R̃0(e

η̃ik(α);α)
}
, (2.12)

lp2(β|ν̂
(s)) = n−1

n∑
i=1

δi

{
β′zi + log∆Λ̃0(e

ε̃i(β);β)
}
. (2.13)
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However, maximums of these respective objective functions cannot be achieved

with finite values of α and β, essentially because the estimators for R0(·) and

Λ0(·) are very nonsmooth, involving only the ranks of ε̃i(α) and ε̃i(β) through

the indicator function I(·).
To handle such complexities, we seek smoothed versions of the baseline in-

tensity functions in (2.11) using a symmetric kernel function K(·) with band-

widths an and bn. Specifically, the estimated intensity function ∆R̃0(t;α) for

NR
i (te−α′zi) can be approximated by its smoothed version

r̂
(s)
0 (t;α) =

(nan)
−1

∑n
i=1

∫∞
0 K{(u− t)/an}dNR

i (ue−α′zi)

n−1
∑n

i=1 ν̂
(s)
i

∫ (eε̃i(α)−t)/an
−∞ K(u)du

=
(nan)

−1
∑n

i=1

∑ni
k=1K{(eη̃ik(α) − t)/an}

n−1
∑n

i=1 ν̂
(s)
i

∫ (eε̃i(α)−t)/an
−∞ K(u)du

, (2.14)

as an → 0. Similarly, the intensity function ∆Λ̃0(t;β) for ND
i (te−β′zi) can be

approximated by

λ̂
(s)
0 (t;β) =

(nbn)
−1

∑n
i=1

∫∞
0 K{(u− t)/bn}dND

i (ue−β′zi)

n−1
∑n

i=1 ν̂
(s)
i

∫ (eε̃i(β)−t)/bn
−∞ K(u)du

=
(nbn)

−1
∑n

i=1 δiK{(eε̃i(β) − t)/bn}

n−1
∑n

i=1 ν̂
(s)
i

∫ (eε̃i(β)−t)/bn
−∞ K(u)du

, (2.15)

as bn → 0. The corresponding estimators of R0(t) and Λ0(t) are respectively

given by

R̂
(s)
0 (t;α) =

∫ t

−∞

(nan)
−1

∑n
i=1

∑ni
k=1K{(eη̃ik(α) − s)/an}

n−1
∑n

i=1 ν̂
(s)
i

∫ (eε̃i(α)−s)/an
−∞ K(u)du

ds,

Λ̂
(s)
0 (t;β) =

∫ t

−∞

(nbn)
−1

∑n
i=1 δiK{(eε̃i(β) − s)/bn}

n−1
∑n

i=1 ν̂
(s)
i

∫ (eε̃i(β)−s)/bn
−∞ K(u)du

ds.

Therefore, the smoothed profile likelihoods for α and β, corresponding to

(2.12) and (2.13), can be represented by

ls1(α|ν̂(s)) =
1

n

n∑
i=1

ni(α
′zi)

+
1

n

n∑
i=1

ni∑
k=1

log
{ 1

nan

n∑
i′=1

ni∑
k′=1

K
(eη̃i′k′ (α) − eη̃ik(α)

an

)}

− 1

n

n∑
i=1

ni∑
k=1

log
{ 1

n

n∑
i′=1

ν̂
(s)
i′

∫ (eε̃i′ (α)−eε̃i(α))/an

−∞
K(u)du

}
, (2.16)
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ls2(β|ν̂(s)) =
1

n

n∑
i=1

δi(β
′zi)

+
1

n

n∑
i=1

δi log
{ 1

nbn

n∑
j=1

δjK
(eε̃j(β) − eε̃i(β)

bn

)}

− 1

n

n∑
i=1

δi log
{ 1

n

n∑
j=1

ν̂
(s)
j

∫ (eε̃j(β)−eε̃i(β))/bn

−∞
K(u)du

}
. (2.17)

In the (s+1)th iteration of the M-step, we propose to maximize the objective

functions (2.16) and (2.17) over α and β, respectively, to obtain α̂(s+1) and

β̂(s+1). Because K(·) is a smooth kernel function, the maximum of each function

can be achieved using the Newton-Raphson method or any optimization search

algorithm. In the implementation, we set the initial values of α̂(0) and β̂(0) to

the values of the estimators from the näıve Cox analyses that ignore correlations

between recurrent and terminal events, and θ̂(0) = 1. Letting ν̂
(0)
i = 1, we

can also calculate r̂
(0)
0 (·) from (2.14) and λ̂

(0)
0 (·) from (2.15) that are required

to initiate the E-step. Then the process between the E-step and the M-step is

iterated until it reaches convergence. In each step, it usually suffices to obtain

one-step estimates. Our experience with simulation studies in practical settings

reveals that the results do not seem to be sensitive to the choice of initial values

and that the maximizers that optimize the smoothed profile likelihood functions

(2.16) and (2.17) also increase the actual complete-data log-likelihood function

(2.7).

2.3. Variance estimation

To estimate the variance of the parameters of interest, we use the EM-aided

numerical differentiation method (Chen and Little (1999)), which numerically

computes the empirical information matrix of the observed profile likelihood.

Similar inferential procedures were adapted by Liu, Lu and Zhang (2013, 2014)

to facilitate clustered and recurrent event time data. To be specific, let lei (ϑ|ν̂)
denote the ith component of the expected complete-data log-likelihood le(ϑ|ν̂)
in (2.7). Here, we focus on variance estimation of the finite-dimensional pa-

rameter of interest. The variance of α̂ is evaluated as follows. By perturbing

the jth component α̂j of α̂ = (α̂1, . . . , α̂p)
′ by a small amount, ϵ, we obtain

the pair of perturbed estimates, denoted by α̂j+ = (α̂1, . . . , α̂j + ϵ, . . . , α̂p) and

α̂j− = (α̂1, . . . , α̂j − ϵ, . . . , α̂p) for j = 1, . . . , p. We perform the EM algorithm

until convergence to obtain a new estimator, ϑ̂α,j+, which consists of updated

components of {β, θ, r0(·), λ0(·)} while fixing α at α̂j+. We run another EM step

to obtain ϑ̂α,j− while fixing α at α̂j−. Then we calculate S̃α,i = (Sα,i1, . . . , Sα,ip)
′

632
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However, maximums of these respective objective functions cannot be achieved

with finite values of α and β, essentially because the estimators for R0(·) and

Λ0(·) are very nonsmooth, involving only the ranks of ε̃i(α) and ε̃i(β) through

the indicator function I(·).
To handle such complexities, we seek smoothed versions of the baseline in-

tensity functions in (2.11) using a symmetric kernel function K(·) with band-

widths an and bn. Specifically, the estimated intensity function ∆R̃0(t;α) for

NR
i (te−α′zi) can be approximated by its smoothed version

r̂
(s)
0 (t;α) =

(nan)
−1

∑n
i=1

∫∞
0 K{(u− t)/an}dNR

i (ue−α′zi)

n−1
∑n

i=1 ν̂
(s)
i

∫ (eε̃i(α)−t)/an
−∞ K(u)du

=
(nan)

−1
∑n

i=1

∑ni
k=1K{(eη̃ik(α) − t)/an}

n−1
∑n

i=1 ν̂
(s)
i

∫ (eε̃i(α)−t)/an
−∞ K(u)du

, (2.14)

as an → 0. Similarly, the intensity function ∆Λ̃0(t;β) for ND
i (te−β′zi) can be

approximated by

λ̂
(s)
0 (t;β) =

(nbn)
−1

∑n
i=1

∫∞
0 K{(u− t)/bn}dND

i (ue−β′zi)

n−1
∑n

i=1 ν̂
(s)
i

∫ (eε̃i(β)−t)/bn
−∞ K(u)du

=
(nbn)

−1
∑n

i=1 δiK{(eε̃i(β) − t)/bn}

n−1
∑n

i=1 ν̂
(s)
i

∫ (eε̃i(β)−t)/bn
−∞ K(u)du

, (2.15)

as bn → 0. The corresponding estimators of R0(t) and Λ0(t) are respectively

given by

R̂
(s)
0 (t;α) =

∫ t

−∞

(nan)
−1

∑n
i=1

∑ni
k=1K{(eη̃ik(α) − s)/an}

n−1
∑n

i=1 ν̂
(s)
i

∫ (eε̃i(α)−s)/an
−∞ K(u)du

ds,

Λ̂
(s)
0 (t;β) =

∫ t

−∞

(nbn)
−1

∑n
i=1 δiK{(eε̃i(β) − s)/bn}

n−1
∑n

i=1 ν̂
(s)
i

∫ (eε̃i(β)−s)/bn
−∞ K(u)du

ds.

Therefore, the smoothed profile likelihoods for α and β, corresponding to

(2.12) and (2.13), can be represented by

ls1(α|ν̂(s)) =
1

n

n∑
i=1

ni(α
′zi)

+
1

n

n∑
i=1

ni∑
k=1

log
{ 1

nan

n∑
i′=1

ni∑
k′=1

K
(eη̃i′k′ (α) − eη̃ik(α)

an

)}

− 1

n

n∑
i=1

ni∑
k=1

log
{ 1

n

n∑
i′=1

ν̂
(s)
i′

∫ (eε̃i′ (α)−eε̃i(α))/an

−∞
K(u)du

}
, (2.16)
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ls2(β|ν̂(s)) =
1

n

n∑
i=1

δi(β
′zi)

+
1

n

n∑
i=1

δi log
{ 1

nbn

n∑
j=1

δjK
(eε̃j(β) − eε̃i(β)

bn

)}

− 1

n

n∑
i=1

δi log
{ 1

n

n∑
j=1

ν̂
(s)
j

∫ (eε̃j(β)−eε̃i(β))/bn

−∞
K(u)du

}
. (2.17)

In the (s+1)th iteration of the M-step, we propose to maximize the objective

functions (2.16) and (2.17) over α and β, respectively, to obtain α̂(s+1) and

β̂(s+1). Because K(·) is a smooth kernel function, the maximum of each function

can be achieved using the Newton-Raphson method or any optimization search

algorithm. In the implementation, we set the initial values of α̂(0) and β̂(0) to

the values of the estimators from the näıve Cox analyses that ignore correlations

between recurrent and terminal events, and θ̂(0) = 1. Letting ν̂
(0)
i = 1, we

can also calculate r̂
(0)
0 (·) from (2.14) and λ̂

(0)
0 (·) from (2.15) that are required

to initiate the E-step. Then the process between the E-step and the M-step is

iterated until it reaches convergence. In each step, it usually suffices to obtain

one-step estimates. Our experience with simulation studies in practical settings

reveals that the results do not seem to be sensitive to the choice of initial values

and that the maximizers that optimize the smoothed profile likelihood functions

(2.16) and (2.17) also increase the actual complete-data log-likelihood function

(2.7).

2.3. Variance estimation

To estimate the variance of the parameters of interest, we use the EM-aided

numerical differentiation method (Chen and Little (1999)), which numerically

computes the empirical information matrix of the observed profile likelihood.

Similar inferential procedures were adapted by Liu, Lu and Zhang (2013, 2014)

to facilitate clustered and recurrent event time data. To be specific, let lei (ϑ|ν̂)
denote the ith component of the expected complete-data log-likelihood le(ϑ|ν̂)
in (2.7). Here, we focus on variance estimation of the finite-dimensional pa-

rameter of interest. The variance of α̂ is evaluated as follows. By perturbing

the jth component α̂j of α̂ = (α̂1, . . . , α̂p)
′ by a small amount, ϵ, we obtain

the pair of perturbed estimates, denoted by α̂j+ = (α̂1, . . . , α̂j + ϵ, . . . , α̂p) and

α̂j− = (α̂1, . . . , α̂j − ϵ, . . . , α̂p) for j = 1, . . . , p. We perform the EM algorithm

until convergence to obtain a new estimator, ϑ̂α,j+, which consists of updated

components of {β, θ, r0(·), λ0(·)} while fixing α at α̂j+. We run another EM step

to obtain ϑ̂α,j− while fixing α at α̂j−. Then we calculate S̃α,i = (Sα,i1, . . . , Sα,ip)
′
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for i = 1, . . . , n, where Sα,ij = {lei (ϑ̂α,j+|ν̂) − lei (ϑ̂α,j−|ν̂)}/(2ϵ). We obtain

S̃β,i and S̃θ,i in a similar manner so as to form S̃i = (S̃′
α,i, S̃

′
β,i, S̃

′
θ,i)

′. We

let Ĩ =
∑n

i=1 S̃iS̃ ′
i. Finally, we approximate the variance-covariance matrix of

(α̂, β̂, θ̂) by Ĩ−1, the diagonal entities of which may provide desirable variance

estimators for the NPMLEs.

2.4. Asymptotic results

In this section, we show that the proposed NPMLEs are consistent, asymp-

totically normal and semiparametrically efficient. The proofs are sketched in the

Web Appendix. We need certain regularity conditions.

(C1) The parameter value (α0, β0, θ0) belongs to the interior of a known compact

set Θ in Rd. The covariate matrix z ∈ Rp is bounded and has full rank.

(C2) The true rate function of r0(t) and the true hazard function of λ0(t) are

both positive, at least twice continuously differentiable, and have bounded

variations over t ∈ [0, τ ].

(C3) With probability one, there exists a κ0 > 0 such that P (C ≥ τ |z) > κ0.

With probability one, E[NR∗(τ)] < ∞ and E[ND∗(τ)] < ∞.

(C4) The kernel function K(·) is thrice continuously differentiable and the rth

derivative K(r)(·), r = 0, 1, 2, 3 has bounded variation in (−∞,∞).

(C5) The information matrix I0 is finite and positive definite.

Theorem 1. If (C1)−(C4) hold and, as n → ∞, na2n → ∞, na4n → 0, nb2n → ∞,

and nb4n → 0, then ϑ̂ is strongly consistent for ϑ0 as n → ∞.

Theorem 2. If (C1)−(C5) hold and, as n → ∞, na2n → ∞, na4n → 0, nb2n → ∞,

and nb4n → 0, then
√
n(α̂−α0),

√
n(β̂−β0) and

√
n(θ̂−θ0) converge in distribution

to respective mean-0 normal random vectors, as n → ∞.

3. Simulation Studies

We conducted a set of simulation studies to examine the performance of the

proposed methods in practical settings. We generated recurrent and terminal

event times from the frailty models

Ri(t|νi) = νiR0(ξ1te
α′zi), Λi(t|νi) = νiΛ0(ξ2te

β′zi), (3.1)

which involve two covariates, zi = (z1i, z2i)
′, where z1i is a uniform (−1, 1) vari-

able and z2i is a Bernoulli variable with 0.5 success probability. The frailty

variable νi follows a gamma distribution or a log-normal distribution. Specifi-

cally, we considered (a) νi ∼ Gamma(1/θ, 1/θ) and (b) log νi ∼ N(0, σ2). We

ANALYSIS OF RECURRENT AND TERMINAL EVENTS 11

let α = (0.5, 0.5)′, β = (0.6, 1)′, θ = 1 and σ2 = 0.8. For the given frailty vari-

able, we considered two scenarios where baseline intensity functions for recurrent

and terminal event processes follow (i) an exponential (“Exp”) distribution with

R0(x) = Λ0(x) = x, and (ii) a standard log-logistic (“SL”) distribution with

R0(x) = Λ0(x) = log(1 + x). Of note, the marginal model given the frailty in (i)

is equivalent to

log Tik = log ξ1 − α′zi + log νi + ηik, logDi = log ξ2 − β′zi + log νi + εi,

where the respective error terms (ηik, εi) have an extreme-value distribution and

the model falls in the class of frailty proportional hazard models. We varied the

values of ξ1 and ξ2 to retain a 35% censoring rate for the terminal event and

to allow for about three recurrent events on average under the noninformative

censoring scheme from the uniform (0.5) distribution.

In Table 1, we summarize the results of the proposed NPMLEs, obtained

from 1,000 simulation runs with the sample sizes n = 100 and 200. Overall, the

proposed method performs well in all cases. The estimators for the regression

parameters are virtually unbiased, the standard error estimators accurately re-

flect the true variations and the confidence intervals have reasonable coverage

probabilities. The standard errors for the frailty parameter are underestimated,

resulting in lower coverage probabilities, but show improved accuracy as the sam-

ple size increases. We chose the kernel function K(·) to be the standard normal

density for convenience and tractability. For bandwidth, we used the optimal

bandwidth (Jones (1990)), given by (4/n)1/3σ̃R and (4/n)1/3σ̃D for models in-

volving recurrent and terminal events, respectively, where σ̃R and σ̃D represent

the sample standard deviation of {log Tik + α(0)′zi} and {logXi + β(0)′zi}. An-

other choice of bandwidth was considered and our limited experience reveals that

the proposed method is not very sensitive to bandwidth selection and generally

works well in all scenarios for the gamma and log-normal frailties.

We performed a sensitivity analysis to examine the effect of misspecification

of the frailty distribution. With the specification R0(x) = x2 and Λ0(x) = x3,

the simulated data involved one covariate z from the Bernoulli (0.5) distribution.

The frailty variable followed (a) gamma and (b) log-normal distributions that

have both mean 1 and variance θ = 0.8 or 1.5 to reflect small and moderate vari-

ations in the frailty distribution. The variance of the log-normal frailty variable

is θ = eσ
2 − 1. We then applied the gamma-frailty model and the log-normal

frailty model, respectively, as a working model to the simulated datasets. Table 2

presents the simulation results from 500 replications with n = 100. We observe

that the variance estimates are seriously biased when the model is not correctly

specified. When the true frailty distribution is gamma, the log-normal working
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∑n

i=1 S̃iS̃ ′
i. Finally, we approximate the variance-covariance matrix of
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event times from the frailty models
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able, we considered two scenarios where baseline intensity functions for recurrent

and terminal event processes follow (i) an exponential (“Exp”) distribution with

R0(x) = Λ0(x) = x, and (ii) a standard log-logistic (“SL”) distribution with

R0(x) = Λ0(x) = log(1 + x). Of note, the marginal model given the frailty in (i)

is equivalent to

log Tik = log ξ1 − α′zi + log νi + ηik, logDi = log ξ2 − β′zi + log νi + εi,

where the respective error terms (ηik, εi) have an extreme-value distribution and

the model falls in the class of frailty proportional hazard models. We varied the

values of ξ1 and ξ2 to retain a 35% censoring rate for the terminal event and

to allow for about three recurrent events on average under the noninformative

censoring scheme from the uniform (0.5) distribution.

In Table 1, we summarize the results of the proposed NPMLEs, obtained

from 1,000 simulation runs with the sample sizes n = 100 and 200. Overall, the

proposed method performs well in all cases. The estimators for the regression

parameters are virtually unbiased, the standard error estimators accurately re-

flect the true variations and the confidence intervals have reasonable coverage

probabilities. The standard errors for the frailty parameter are underestimated,

resulting in lower coverage probabilities, but show improved accuracy as the sam-

ple size increases. We chose the kernel function K(·) to be the standard normal

density for convenience and tractability. For bandwidth, we used the optimal

bandwidth (Jones (1990)), given by (4/n)1/3σ̃R and (4/n)1/3σ̃D for models in-

volving recurrent and terminal events, respectively, where σ̃R and σ̃D represent

the sample standard deviation of {log Tik + α(0)′zi} and {logXi + β(0)′zi}. An-

other choice of bandwidth was considered and our limited experience reveals that

the proposed method is not very sensitive to bandwidth selection and generally

works well in all scenarios for the gamma and log-normal frailties.

We performed a sensitivity analysis to examine the effect of misspecification

of the frailty distribution. With the specification R0(x) = x2 and Λ0(x) = x3,

the simulated data involved one covariate z from the Bernoulli (0.5) distribution.

The frailty variable followed (a) gamma and (b) log-normal distributions that

have both mean 1 and variance θ = 0.8 or 1.5 to reflect small and moderate vari-

ations in the frailty distribution. The variance of the log-normal frailty variable

is θ = eσ
2 − 1. We then applied the gamma-frailty model and the log-normal

frailty model, respectively, as a working model to the simulated datasets. Table 2

presents the simulation results from 500 replications with n = 100. We observe

that the variance estimates are seriously biased when the model is not correctly

specified. When the true frailty distribution is gamma, the log-normal working
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Table 1. Summary statistics for the simulation studies under (a) gamma
frailty distribution and (b) log-normal frailty distribution.

(a) Gramma frailty (b) Log-normal frailty

n Dist Parameter Est SE SEE CP Parameter Est SE SEE CP

100 Exp α1 = 0.5 0.490 0.344 0.328 0.938 α1 = 0.5 0.532 0.287 0.304 0.944

α2 = 0.5 0.448 0.415 0.392 0.942 α2 = 0.5 0.478 0.356 0.327 0.945

β1 = 0.6 0.626 0.461 0.461 0.954 β1 = 0.6 0.637 0.393 0.415 0.961

β2 = 1.0 1.110 0.601 0.585 0.944 β2 = 1.0 1.088 0.542 0.530 0.949

θ = 1.0 1.096 0.266 0.198 0.885 σ2 = 0.8 0.738 0.283 0.198 0.892

SL α1 = 0.5 0.452 0.306 0.289 0.936 α1 = 0.5 0.485 0.261 0.266 0.939

α2 = 0.5 0.558 0.304 0.294 0.946 α2 = 0.5 0.506 0.333 0.345 0.956

β1 = 0.6 0.607 0.552 0.548 0.951 β1 = 0.6 0.588 0.478 0.481 0.947

β2 = 1.0 1.025 0.660 0.671 0.952 β2 = 1.0 1.069 0.606 0.601 0.935

θ = 1.0 1.104 0.324 0.244 0.896 σ2 = 0.8 0.724 0.285 0.213 0.906

200 Exp α1 = 0.5 0.492 0.185 0.176 0.941 α1 = 0.5 0.498 0.179 0.191 0.956

α2 = 0.5 0.486 0.229 0.210 0.944 α2 = 0.5 0.514 0.239 0.237 0.948

β1 = 0.6 0.574 0.310 0.311 0.961 β1 = 0.6 0.629 0.271 0.281 0.944

β2 = 1.0 1.063 0.400 0.378 0.944 β2 = 1.0 1.072 0.359 0.351 0.958

θ = 1.0 1.072 0.166 0.131 0.911 σ2 = 0.8 0.764 0.168 0.133 0.901

SL α1 = 0.5 0.533 0.155 0.152 0.937 α1 = 0.5 0.503 0.156 0.158 0.948

α2 = 0.5 0.531 0.202 0.186 0.943 α2 = 0.5 0.487 0.212 0.211 0.954

β1 = 0.6 0.625 0.363 0.363 0.945 β1 = 0.6 0.636 0.329 0.336 0.964

β2 = 1.0 1.103 0.445 0.455 0.955 β2 = 1.0 1.031 0.408 0.395 0.944

θ = 1.0 1.089 0.196 0.176 0.904 σ2 = 0.8 0.785 0.194 0.163 0.903

Note: Est and SE are the estimate and standard error of the parameter estimator, SEE is the

mean of the standard error estimator, and CP is the coverage probability of the 95% confi-

dence interval. “Exp” and “SL” represent exponential and standard log-logistic distributions,

respectively, for the baseline hazard function.

model overestimates the frailty variance. Such biasedness seems amplified to an

extent as θ increases. When the frailty is obtained from the log-normal distri-

bution but the gamma model is applied, the frailty variance is underestimated.

Nonetheless, the estimators of the regression parameters seem unbiased in nearly

all cases and the proposed variance estimation gives proper coverage probabili-

ties. In the supplementary material, we also display true and estimated frailty

distributions that are fairly similar under model misspecification. This may in-

dicate that the performance of the NPMLEs is robust to the choice of frailty

distribution if the primary focus is assessing the covariate effects and such an

approximation will not lessen the value of our method.

In a similar set-up as above, we conducted simulation studies to compare

ANALYSIS OF RECURRENT AND TERMINAL EVENTS 13

Table 2. Simulation studies for sensitivity analysis under a misspecified
frailty assumption with the underlying model having (a) gamma frailty with
mean 1 and variance θ and (b) log-normal frailty with mean 1 and variance

θ = eσ
2 − 1.

Working models

Frailty Gamma Log-normal

Distribution Par True Est SE SEE CP Est SE SEE CP

Gamma

α -0.2 -0.198 0.108 0.104 0.948 -0.196 0.116 0.111 0.965

β -1.0 -0.997 0.088 0.085 0.950 -1.009 0.094 0.089 0.954

θ 0.8 0.820 0.109 0.114 0.920 2.089 0.600 0.574 0.222

Gamma

α -0.2 -0.198 0.108 0.104 0.948 -0.196 0.116 0.111 0.965

β -1.0 -0.997 0.088 0.085 0.950 -1.009 0.094 0.089 0.924

θ 1.5 1.488 0.191 0.181 0.907 8.533 4.438 4.200 0.116

Log-normal

α -0.2 -0.187 0.093 0.089 0.939 -0.192 0.092 0.089 0.940

β –1.0 -0.992 0.077 0.076 0.942 -1.006 0.075 0.075 0.952

θ 0.8 0.465 0.072 0.080 0.020 0.789 0.182 0.192 0.922

Log-normal

α -0.2 -0.187 0.093 0.089 0.939 -0.192 0.092 0.089 0.940

β -1.0 -0.992 0.077 0.076 0.942 -1.006 0.075 0.075 0.952

θ 1.5 0.689 0.100 0.104 0.000 1.481 0.384 0.384 0.936

Table 3. Simulation studies for sensitivity analysis between joint and reduced
models. The joint model and the reduced model are a correct model in
scenario (I) and (II), respectively. Gamma frailty distribution is assumed in
all cases.

Joint model Reduced model

Scenario Par True Est SE SEE CP Est SE SEE CP RE

(I) α 1.0 0.995 0.215 0.220 0.952 0.974 0.225 0.232 0.942 1.09
β 1.0 0.991 0.318 0.308 0.940 0.917 0.317 0.306 0.926 1.01
θ 0.5 0.494 0.111 0.111 0.944 0.531 0.136 0.141 0.971 1.49

α 1.0 1.035 0.295 0.287 0.965 1.024 0.306 0.300 0.945 1.10
β 1.0 1.041 0.364 0.366 0.958 0.919 0.366 0.371 0.951 1.05
θ 1.0 0.994 0.187 0.189 0.934 1.070 0.229 0.233 0.950 1.49

(II) α 1.0 1.028 0.238 0.183 0.902 1.016 0.236 0.211 0.938 0.98
β 1.0 1.007 0.242 0.253 0.966 1.004 0.224 0.232 0.962 0.86
θ 0.5 0.243 0.069 0.071 0.126 0.481 0.145 0.137 0.914 4.38

α 1.0 1.018 0.259 0.219 0.918 1.008 0.257 0.271 0.958 0.99
β 1.0 0.974 0.265 0.268 0.946 0.982 0.243 0.231 0.943 0.79
θ 1.0 0.413 0.088 0.098 0.000 0.991 0.228 0.232 0.940 7.14
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model overestimates the frailty variance. Such biasedness seems amplified to an

extent as θ increases. When the frailty is obtained from the log-normal distri-

bution but the gamma model is applied, the frailty variance is underestimated.

Nonetheless, the estimators of the regression parameters seem unbiased in nearly

all cases and the proposed variance estimation gives proper coverage probabili-
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our joint model (2.1) with the reduced model

ri(t|νi, zi) = νie
αzir0(te

αzi), λi(t|νi, zi) = eβziλ0(te
βzi). (3.2)

Here the random effect appears only in the recurrent event model that is equiv-
alent to that of Liu, Lu and Zhang (2014), and recurrent and terminal event
processes are independent. We considered two scenarios (I) and (II), where the
data sets were simulated according to models (2.1) and (3.2), respectively, and
these models were used as a working model. The joint and reduced models were
correct under scenario (I) and (II), respectively. Gamma frailty distribution was
assumed in all cases. This study aimed to check the effect of model misspecifi-
cation and parameter efficiency. We let α = β = 1 and assumed a gamma frailty
distribution with θ ∈ {0.5, 1}. As seen in Table 3, the frailty parameter estima-
tors appear to be biased to an extent under model misspecification, while the
regression parameter estimators are relatively consistent. We also give the “rela-
tive efficiency (RE)”, the mean square error of the reduced model divided by that
of the joint model. The joint model gains more efficiency under case (I) but not
under case (II), as expected. Efficiency loss becomes large when θ increases. The
degree of sensitivity is more severe when the joint model is applied to the data
from the reduced model, as a single frailty variable in the joint model accounts for
the association among recurrent event processes as well as that between recurrent
and terminal event processes. The joint modeling approach seems ineffective in
the independent cases, and may require separate frailty formulations for different
types of association.

4. Application to a Soft Tissue Sarcoma Study

We applied our method to the data set from a soft tissue sarcoma study
(Cormier et al. (2004), Huang, Cormier and Pisters (2006)), in which patients
may experience local recurrence of sarcoma (in the same or nearby part of the
body where the primary cancer occurred), distant recurrence (in a different part
of the body), and death. A cohort of 679 patients was identified from two major
cancer centers. In their initial treatments, all patients received definitive surgi-
cal resection of the tumor. The objective of this analysis was to evaluate the
impact of chemotherapy and radiation while accounting for known prognostic
variables. Among the 679 patients, 228 received adjuvant radiation alone, 109
received adjuvant chemotherapy alone, 207 received both, and 135 received none
of these treatments. Of the 316 patients treated with adjuvant chemotherapy, 148
(46.8%) died from sarcomas; and of the 363 patients not treated with adjuvant
chemotherapy, 140 (38.6%) died from sarcomas. The maximum number of tumor
recurrences in one patient was three. The total number of tumor recurrences was
537, and 350 patients had at least one local or distant sarcoma recurrence. The
median follow-up time was 6.87 years.

ANALYSIS OF RECURRENT AND TERMINAL EVENTS 15

Table 4. Soft tissue sarcoma study: parameter estimate and inference.

Cancer recurrence Death

Model Effect Est SE P-value Est SE P-value

Gamma Chemotherapy -0.046 0.170 0.786 -0.055 0.125 0.661
Radiation -0.326 0.177 0.067 -0.313 0.130 0.016
Tumor size 0.063 0.016 <0.001 0.054 0.011 <0.001

θ 3.042 0.243 <0.001

Log-normal Chemotherapy 0.128 0.187 0.496 0.031 0.133 0.811
Radiation -0.372 0.193 0.055 -0.344 0.138 0.013
Tumor size 0.072 0.016 <0.001 0.060 0.011 <0.001

σ2 3.632 0.385 <0.001

In the treatment of sarcomas, chemotherapy is used to destroy cancer cells

and prevent distant recurrences, while radiation is used to shrink the tumor and

prevent local recurrences. Although this effect of radiation is well accepted, the

effect of adjuvant chemotherapy remains uncertain. It has been explored in sev-

eral studies that have compared outcomes for patients who have received adjuvant

chemotherapy with those of patients who have not received adjuvant chemother-

apy. We are interested in evaluating the effects of adjuvant chemotherapy and

radiation on cancer recurrence and survival using the proposed method for the

joint semiparametric accelerated intensity model (2.1). In each submodel, we in-

cluded three covariates: the indicators of receiving chemotherapy and radiation

and the maximum tumor size at baseline, which ranges from 5 to 41 cm.

Table 4 summarizes the estimation results under the proposed model with

gamma and log-normal frailty distributions. In both models, radiation is sig-

nificant in reducing the risks of death and shows a moderate effect in decreas-

ing sarcoma recurrence. The regression parameter estimators associated with

chemotherapy showed opposite signs, depending on the choice of frailty distribu-

tion, but there is no treatment difference with chemotherapy for either disease

recurrence or death. Not surprisingly, the patients who had a large tumor size

tended to experience disease recurrence more frequently and to die earlier. The

estimated variance being significantly greater than zero indicates that after ad-

justing for treatments and clinical factors, there appears to be a strong association

between cancer recurrence and death due to unknown factors. Figure 1 displays

estimated cumulative rate functions of sarcoma recurrences for (a) patients who

received radiation and (b) patients who did not receive radiation, along with non-

parametric curves that are estimated by
∑n

i=1 I(Xi ≥ t)NR
i (t)/

∑n
i=1 I(Xi ≥ t)

for each group. The proposed estimates reasonably follow the nonparametric

estimates, supporting the choice of the method.

638



14 SANGBUM CHOI, XUELIN HUANG, HYUNSU JU AND JING NING

our joint model (2.1) with the reduced model

ri(t|νi, zi) = νie
αzir0(te

αzi), λi(t|νi, zi) = eβziλ0(te
βzi). (3.2)

Here the random effect appears only in the recurrent event model that is equiv-
alent to that of Liu, Lu and Zhang (2014), and recurrent and terminal event
processes are independent. We considered two scenarios (I) and (II), where the
data sets were simulated according to models (2.1) and (3.2), respectively, and
these models were used as a working model. The joint and reduced models were
correct under scenario (I) and (II), respectively. Gamma frailty distribution was
assumed in all cases. This study aimed to check the effect of model misspecifi-
cation and parameter efficiency. We let α = β = 1 and assumed a gamma frailty
distribution with θ ∈ {0.5, 1}. As seen in Table 3, the frailty parameter estima-
tors appear to be biased to an extent under model misspecification, while the
regression parameter estimators are relatively consistent. We also give the “rela-
tive efficiency (RE)”, the mean square error of the reduced model divided by that
of the joint model. The joint model gains more efficiency under case (I) but not
under case (II), as expected. Efficiency loss becomes large when θ increases. The
degree of sensitivity is more severe when the joint model is applied to the data
from the reduced model, as a single frailty variable in the joint model accounts for
the association among recurrent event processes as well as that between recurrent
and terminal event processes. The joint modeling approach seems ineffective in
the independent cases, and may require separate frailty formulations for different
types of association.

4. Application to a Soft Tissue Sarcoma Study

We applied our method to the data set from a soft tissue sarcoma study
(Cormier et al. (2004), Huang, Cormier and Pisters (2006)), in which patients
may experience local recurrence of sarcoma (in the same or nearby part of the
body where the primary cancer occurred), distant recurrence (in a different part
of the body), and death. A cohort of 679 patients was identified from two major
cancer centers. In their initial treatments, all patients received definitive surgi-
cal resection of the tumor. The objective of this analysis was to evaluate the
impact of chemotherapy and radiation while accounting for known prognostic
variables. Among the 679 patients, 228 received adjuvant radiation alone, 109
received adjuvant chemotherapy alone, 207 received both, and 135 received none
of these treatments. Of the 316 patients treated with adjuvant chemotherapy, 148
(46.8%) died from sarcomas; and of the 363 patients not treated with adjuvant
chemotherapy, 140 (38.6%) died from sarcomas. The maximum number of tumor
recurrences in one patient was three. The total number of tumor recurrences was
537, and 350 patients had at least one local or distant sarcoma recurrence. The
median follow-up time was 6.87 years.

ANALYSIS OF RECURRENT AND TERMINAL EVENTS 15

Table 4. Soft tissue sarcoma study: parameter estimate and inference.

Cancer recurrence Death

Model Effect Est SE P-value Est SE P-value

Gamma Chemotherapy -0.046 0.170 0.786 -0.055 0.125 0.661
Radiation -0.326 0.177 0.067 -0.313 0.130 0.016
Tumor size 0.063 0.016 <0.001 0.054 0.011 <0.001

θ 3.042 0.243 <0.001

Log-normal Chemotherapy 0.128 0.187 0.496 0.031 0.133 0.811
Radiation -0.372 0.193 0.055 -0.344 0.138 0.013
Tumor size 0.072 0.016 <0.001 0.060 0.011 <0.001

σ2 3.632 0.385 <0.001

In the treatment of sarcomas, chemotherapy is used to destroy cancer cells

and prevent distant recurrences, while radiation is used to shrink the tumor and

prevent local recurrences. Although this effect of radiation is well accepted, the

effect of adjuvant chemotherapy remains uncertain. It has been explored in sev-

eral studies that have compared outcomes for patients who have received adjuvant

chemotherapy with those of patients who have not received adjuvant chemother-

apy. We are interested in evaluating the effects of adjuvant chemotherapy and

radiation on cancer recurrence and survival using the proposed method for the

joint semiparametric accelerated intensity model (2.1). In each submodel, we in-

cluded three covariates: the indicators of receiving chemotherapy and radiation

and the maximum tumor size at baseline, which ranges from 5 to 41 cm.

Table 4 summarizes the estimation results under the proposed model with

gamma and log-normal frailty distributions. In both models, radiation is sig-

nificant in reducing the risks of death and shows a moderate effect in decreas-

ing sarcoma recurrence. The regression parameter estimators associated with

chemotherapy showed opposite signs, depending on the choice of frailty distribu-

tion, but there is no treatment difference with chemotherapy for either disease

recurrence or death. Not surprisingly, the patients who had a large tumor size

tended to experience disease recurrence more frequently and to die earlier. The

estimated variance being significantly greater than zero indicates that after ad-

justing for treatments and clinical factors, there appears to be a strong association

between cancer recurrence and death due to unknown factors. Figure 1 displays

estimated cumulative rate functions of sarcoma recurrences for (a) patients who

received radiation and (b) patients who did not receive radiation, along with non-

parametric curves that are estimated by
∑n

i=1 I(Xi ≥ t)NR
i (t)/

∑n
i=1 I(Xi ≥ t)

for each group. The proposed estimates reasonably follow the nonparametric

estimates, supporting the choice of the method.

639



16 SANGBUM CHOI, XUELIN HUANG, HYUNSU JU AND JING NING

Figure 1. Estimated cumulative rate functions of sarcoma recurrences for (a)
patients who received radiation and (b) patients who did not receive radia-
tion. The solid, dashed and dotted lines pertain to the nonparametric and
semiparametric estimates from the gamma and log-normal frailty models,
respectively.

5. Discussion

In this paper, we propose a joint accelerated intensity model for correlated

recurrent and terminal event data. The approach directly deals with the asso-

ciation between recurrent events and terminal events while allowing each event

time to have an arbitrary residual error distribution. A latent frailty variable,

gamma or log-normally distributed, is assumed to explain the dependency. For

the estimation, we developed the EM algorithm that extends the method by Liu,

Lu and Zhang (2014) for univariate recurrent event data, in which the regres-

sion parameters of interest are estimated by maximizing the kernel-smoothed

profile likelihood functions. One advantage of the proposed model is that it

preserves a direct relationship between the event time and covariates for both

recurrent/terminal events even after the frailty variable is integrated out, and

thus regression parameters still have a marginal interpretation as in univariate

AFT models. In many public health and biomedical studies, this approach may

be preferred for analysis, especially in identifying treatment effects and risk fac-

tors. Moreover, compared to the marginal approach (Lin, Wei and Ying (1998)),

the joint frailty approach offers the additional ability to quantify the dependence

ANALYSIS OF RECURRENT AND TERMINAL EVENTS 17

between different types of event processes and the efficiency gain via likelihood-

based estimation.

Simulation studies demonstrated that the proposed method works well and

the regression estimators do not seem to be very sensitive to the choice of the

frailty distribution. As shown in Table 3, however, the joint model performs

unsatisfactorily when the recurrent event processes are correlated within subject

but not with the terminal event process. In the situation, we can consider the

modification

ri(t|νi, zi) = νiri(t|zi), λi(t|νi, zi) = νγi λi(t|zi),

which is the analogue of the frailty model of Liu, Wolfe and Huang (2004). An

additional parameter γ ∈ R controls the degree of dependence between two event

processes and alleviates potential misspecification issues, including the reduced

model (3.2) with γ = 0. The proposed EM algorithm can be modified to accom-

modate such extra parametrization.

We applied our joint analysis approach to data from a sarcoma cancer study

in which patients may experience local and distant tumor recurrences. Although

we do not distinguish local versus distant recurrences, they may indicate different

levels of risk and associations with death. If this is the case, it is desirable to

incorporate a series of frailty variables into the model to adjust the individual

recurrence intensities and account for the dependence among different types of

recurrent events and that between the recurrent events and the terminal event.

Recently, Ning et al. (2015) proposed a time-dependent measure to assess the

local dependence between two types of recurrent event processes. They modeled

the rate ratio as a parametric function of time, leaving unspecified all other

aspects of the distribution, and applied their methods to the same sarcoma data.

This may provide additional insight and facilitate a better understanding of the

interactive associations between different types of cancer recurrences.
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