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Abstract: The paper proposes a sequential monitoring scheme for detecting changes

in parameter values for general time series models using pairwise likelihood. Un-

der this scheme, a change-point is declared when the cumulative sum of the first

derivatives of pairwise likelihood exceeds a certain boundary function. The scheme

is shown to have asymptotically zero Type II error with a prescribed level of Type

I error. With the use of pairwise likelihood, the scheme is applicable to many com-

plicated time series models in a computationally efficient manner. For example,

the scheme covers time series models involving latent processes, such as stochastic

volatility models and Poisson regression models with log link function.
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1. Introduction

Let {Xt} be a stochastic process given by a certain statistical model with

parameter θ ∈ Θ. We say that there is a change-point at t∗ if the model for

X1, X2, . . . , Xt∗−1 has parameter θ0, but the model for Xt∗ , Xt∗+1, . . . has pa-

rameter θ1. Suppose that {Xt} is observed sequentially and the change-point

t∗ is unknown. The problem of declaring whether the change t∗ has occurred is

called the sequential monitoring or on-line monitoring problem.

Since Page (1954), sequential monitoring schemes for time series data have

been restricted to a few specific models. Lai (1995) proposed the window limited

GLR scheme for detecting changes in time series models when the conditional

log-likelihoods given all the past observations are available. Gut and Steinebach

(2002) developed a truncated sequential change-point detection scheme in re-

newal counting process. Berkes et al. (2004) used quasi-likelihood scores to mon-

itor changes in GARCH(p,q) models. Fuh (2006) considered change point de-

tection in state space models. Gombay and Serban (2009) monitored changes in

parameters of AR models using CUSUM methods. Na, Lee and Lee (2011) pro-

posed estimates-based and residual-based monitoring schemes for general time
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series model. Na, Lee and Lee (2012) considered monitoring changes for coupula

ARMA-GARCH Models. Kirch and Tadjuidje (2015) developed a general se-

quential change-point test for time series based on estimating functions. For a

recent overview of sequential change-point methods in time series, we refer to

Aue and Horváth (2013). For more general time series models, the conditional

likelihood may not be readily available. For example, for such nonlinear time se-

ries models as the Poisson regression models with log link function and stochastic

volatility models, it is infeasible to compute the likelihood functions. Therefore,

it will be useful to develop a sequential monitoring procedure that is applicable

to more general time series models.

Composite likelihood, which is constructed by combining marginal likeli-

hoods of small subsets of data, has been employed for statistical inference for

complicated models in various fields, for example, correlated binary data (Kuk

and Nott (2000)), image analysis (Nott and Ryden (1999)), binary spatial data

(Heagerty and Lele (1998)), survival data (Paik and Ying (2012)), and model

selection (Varin and Vidoni (2005)). One widely used special case of composite

likelihood is the pairwise likelihood, which is a product of bivariate likelihoods

from various pairs of observations. As an illustrative example, consider a sample

X = (x1, . . . , xn) from the stochastic volatility model

xt = zte
1/2(αt+β) , where αt = ηαt−1 + σϵt, zt, ϵt

i.i.d.∼ N(0, 1) . (1.1)

The series α := (α1, . . . , αn) is unobserved and {αt}t=1,..., is known as the latent

process.

Let θ = (η, σ2, β) be the parameter vector, fθ(X) and gθ(α) be the joint

density of X and α, respectively, and fθ(X|α) be the condition density of X

given α. With the presence of the latent process, the log-likelihood of the sample

involves an n-dimensional integral

log fθ(X) = log

(∫
· · ·

∫
fθ(X|α)gθ(α)dα1 · · · dαn

)
,

that is computationally infeasible. In this case, the so-called consecutive pairwise

likelihood, which combines likelihoods from consecutive pairs of observations, is

given by

CPL(θ,X) =

n−1∑
t=1

log

(∫∫
fθ(xt, xt+1|αt, αt+1)gθ(αt, αt+1)dαtdαt+1

)
.

The CPL(θ,X) involves n− 1 two-dimensional integrals and is feasible for com-

putation. It is found that pairwise likelihood yields consistent and asymptotic
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normal estimators with reasonable efficiency (see, e.g., Davis and Yau (2011) and

Ng et al. (2011)).

In this paper, we propose a sequential monitoring scheme for general time

series models based on pairwise likelihood. The scheme is based on the changes in

the behavior of the score function of pairwise likelihood upon changes in param-

eter values. Specifically, it monitors the cumulative sum of the score function of

pairwise likelihood when data-points are observed sequentially. A change-point

is declared when the cumulative sum exceeds a pre-determined boundary func-

tion. With the specific structure of the pairwise likelihood, asymptotic results

can be readily established. In particular, it is shown that the cumulative sum

process converges to a functional of a multi-dimensional Wiener processes. Thus,

a boundary function can be obtained such that the scheme has asymptotically

correct size with power approaching 1. The use of pairwise likelihood allows

the scheme to be implemented efficiently, and is applicable to many complicated

time series models. Simulation studies demonstrate that the scheme has higher

detection power than existing non-parametric monitoring schemes.

This paper is organized as follows. Section 2 describes the problem setting

and assumptions. Section 3 presents the sequential monitoring scheme under

general conditions. In Section 4, we show that the general conditions given in

Section 2 cover the class of time series models with a latent autoregressive process,

which includes the Poisson regression models with log link function and stochastic

volatility models. Simulation experiments and data examples are given in Section

5 and 6, respectively. Proofs and technical details are given in the Appendix.

2. Problem Setting and Assumptions

2.1. Settings

Let {Xt} be a stationary and ergodic sequence of random variables following

a model with joint density fθ where θ is the parameter vector in a compact

space Θ. Suppose that, before we begin to monitor changes in the sequence, a

sample of m historical data points {x1, x2, . . . , xm} is observed. Starting from

time t = m+ 1 onwards, we observe {Xt} sequentially. We wish to test whether

or not a change has occurred in θ using the null hypothesis:

H0 : θ = θ0 for t = 1, 2, . . . ,m+mT

against the alternative hypothesis
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HA : θ =

{
θ0 for t = 1, 2, . . . , t∗ − 1,

θ1 for t = t∗, t∗ + 1, . . . ,m+mT,

where θ0 ̸= θ1, t
∗ > m is the unknown change-point, and mT the maximum

number of observations that are to be inspected. A similar setting has been

discussed in Gut and Steinebach (2002) and Gombay and Horváth (2009).

Let fXt,Xt+j
(xt, xt+j ;θ) be the bivariate density of the observations xt and

xt+j . The l-th order consecutive pairwise likelihood for the data (X1, . . . , Xm) is

defined by

CPLm(l;θ) =

m−l∑
t=1

Lt(l;θ) ,

where Lt(l;θ) =
∑l

j=1 pt(j,θ) and pt(j;θ) = log fXt,Xt+j
(xt, xt+j ;θ). Thus,

CPLm(l;θ) collects the likelihood of the pairs of observations that are within

a time lag of l. Given the historical sample (x1, . . . , xm), the parameter θ can be

estimated by

θ̂m = argmax
θ∈Θ

CPLm(l, θ) .

In practice, l has to be chosen such that the model is identifiable. When the

number of model parameters involved in serial dependency is d, it is usually

sufficient to choose l ≥ d, see Davis and Yau (2011) and Ng et al. (2011). As

an illustrative example, consider the stochastic volatility model (1.1). To ensure

identifiability, it is sufficient to take the lag l greater than or equal to the order

of the latent AR process, l ≥ d = 1, see Assumption B1 of Ng et al. (2011). From

the simulation experiments in Davis and Yau (2011) and Ng et al. (2011), it is

found that l = d usually gives satisfactory results for time series data. Variously,

l can be chosen by information criteria, see Lindsay, Yi and Sun (2011).

Suppose that θ0 is the true parameter value and L′
t(l;θ) = ∂Lt(l;θ)/∂θ =∑l

j=1 ∂pt(j;θ)/∂θ is the sum of score functions of pairwise likelihoods at time t

up to lag l. Since each pt(j;θ) is an exact likelihood function, it will be shown

in Lemma 1 that θ̂m
p→ θ0 and {L′

t(l;θ0)}t=m+1,m+2,... is a sequence of random

variables with zero-mean under H0. Also, with proper standardizations, the

cumulative sum S′
m(k, l, θ̂m) :=

∑m+k
t=m+1 L

′
t(l; θ̂m) converges to a Wiener process

under some mixing conditions. Thus, sequential monitoring of changes can be

developed based on these asymptotic results.

To standardize S′
m(k, l, θ̂m) by its variance, define the long-run covariance

matrix M(l;θ0) by
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M(l;θ0) = lim
n→∞

Var

(
1√
n

n−l∑
t=1

L′
t(l;θ0)

)
=

∞∑
j=−∞

E
[
L′
0(l;θ0)(L

′
j(l;θ0))

T
]
.

Following Andrews (1991), M(l;θ0) can be estimated by

�Mm(l) =

⌈m1/3⌉∑
j=−⌈m1/3⌉

(
1− |j|⌈

m1/3
⌉
)
γ̂l(j) ,

where γ̂l(j) = 1/m
∑m

t=j+1 L
′
t(l; θ̂m)(L′

t−j(l; θ̂m))T and ⌈x⌉ is the smallest integer

greater than x. In Section 3, we develop a sequential monitoring scheme for

changes in θ based on the sequence
{∑m+k

t=m+1
�Mm(l)−1/2L′

t(l; θ̂m)
}
k=1,2,...

.

2.2. Assumptions

The α-mixing coefficient between two σ-fields F1,F2 is defined by

α(F1,F2) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ F1, B ∈ F2} .

We say that a process {Zt} is geometrically strongly mixing if α(k) := α(A0,Bk) =

O(ak) for some a ∈ (0, 1), where A0 and Bk are the σ-field generated by {Zt; t ≤
0} and {Zt; t ≥ k}, respectively.

We need some assumptions for the properties of the sequential monitoring

scheme. Let ∥c∥ be the supremum norm of a vector c. When A is a matrix, let

∥A∥ = supx:∥x∥=1 ∥Ax∥.

Assumption A:

(A1) The true parameter θ0 under H0 is in the interior of Θ, where Θ is a

compact subset of Rd.

(A2) E∥L′
t(l;θ0)∥4v < ∞ for some v > 1.

(A3) For every θ ∈ Θ, E∥L′′
t (l;θ)∥2 < ∞.

(A4) Lt(l;θ), L
′
t(l;θ) and L′′

t (l;θ) are continuous in θ.

(A5) The model is identifiable: θ1 = θ2 if and only if Lt(l;θ1) = Lt(l;θ2) a.e.

(A6) {Xt} is a sequence of geometrically strongly mixing random variables.

(A7) The change occurs after m, t∗ > m.

(A8) When HA is true, E [L′
t(l;θ0)] ̸= 0, where the expectation is evaluated under θ1.
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Assumptions (A1) to (A6) are required to obtain the following results for

the derivation of the monitoring scheme. The results are standard, and so the

proofs are omitted. See Ng et al. (2011) and Andrews (1991).

Lemma 1.

a) Under Assumptions (A1), (A4), (A5) and (A6), we have θ̂m
p→ θ0.

b) Under Assumptions (A2), (A3), (A4) and (A6), we have �Mm(l)
p→ M(l;θ0).

c) Under Assumptions (A2) and (A6), we have

m−1/2

⌊mt⌋∑
t=1

L′
t(l;θ0)

D[0,T ]−→ WM(t) as m → ∞ ,

where t ∈ [0, T ], ⌊x⌋ is the largest integer smaller than x and
D[0,T ]−→ denotes

weak convergence in D[0, T ], the space of right-continuous function with

left limit on [0, T ], WM(s) is a Gaussian process with EWM(s) = 0 and

covariance function EWM(s)WT
M(s′) = min(s, s′)M(l;θ0).

Assumption (A7) ensures that the change occurs after m, and hence the pre-

change parameters can be consistently estimated. Assumption (A8) is needed to

ensure that when there is a change-point, the cumulative sum process
m+k∑

t=m+1
L′
t(l;

θ̂m) has a drift. Hence, the change in θ can be detected. This assumption is true

when θ0 is not a local maximizer of the expected Lt(l;θ) under HA.

3. Monitoring Scheme

3.1. Pairwise likelihood sequential monitoring scheme (PLSMS)

As E[L′
t(l;θ0)] = 0 under H0 and E[L′

t(l;θ0)] ̸= 0 under HA, by Lemma 1,

the cumulative sum process m−1/2
∑m+k

t=m+1
�Mm(l)−1/2L′

t(l; θ̂m) is approximately

a Wiener process under H0 but, when HA is true, the cumulative sum process

diverges. Therefore, it is natural to declare that a change has occurred when

m−1/2
���∑m+k

t=m+1
�Mm(l)−1/2L′

t(l; θ̂m)
��� exceeds some threshold or boundary. De-

fine the stopping time

Tm(l)=min

{
min

{
k :

�����
m+k∑

t=m+1

�Mm(l)−1/2L′
t(l; θ̂m)

����� > m1/2

(
1+

k

m

)
c

}
,mT+1

}
,

(3.1)

where c is a constant, the decision boundary, and mT is the pre-specified max-

imum inspection time. We can also take T to infinite if we wish the inspection
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to continue until a change is declared. In this case, the stopping time is

T ∗
m(l) = min

{
k :

�����
m+k∑

t=m+1

�Mm(l)−1/2L′
t(l; θ̂m)

����� > m1/2

(
1 +

k

m

)
c

}
. (3.2)

For notational simplicity, suppose that the data {Xt} arrive sequentially

in a way that Xt+m+l is observed at time t, the pairwise likelihood sequential

monitoring scheme (PLSMS) is as follows:

For the case in which T > 0 and T is finite, starting from time k = 1, check

whether
���∑m+k

t=m+1
�Mm(l)−1/2L′

t(l; θ̂m)
��� > m1/2

(
1 + k

m

)
c. If yes, then Tm(l) = k

and the scheme terminates; we reject H0 and declare that a change in parameter

had occurred at some time on or before k. Otherwise, proceed to time k+1 and

repeat the same procedure. If the condition
���∑m+mT

t=m+1
�Mm(l)−1/2L′

t(l; θ̂m)
��� >

m1/2 (1 +mT/m) c has not been met at time mT , then set Tm(l) = mT +1 and

the scheme terminates; we declare that a change in parameter did not occur and

conclude that H0 is not rejected.

If T = ∞, then, starting from time k = 1, we have to check whether���∑m+k
t=m+1

�Mm(l)−1/2L′
t(l; θ̂m)

��� > m1/2
(
1 + k

m

)
c. If yes, then T ∗

m(l) = k and

the scheme terminates; we reject H0 and declare that a change in parameter had

occurred at some time on or before k.

We assess the performance of the proposed sequential monitoring test based

on asymptotic size and power. The size is the probability of declaring an occur-

rence of change when no change has occurred, and the power is the probability

that a change-point is detected before mT given that the change had occurred

at t∗ < mT . We will derive a decision boundary c = c(α, l, T ) such that the

PLSMS has power approaching 1 with a pre-specified size α. Thus, the bound-

ary c = c(α, l, T ) is chosen such that Tm(l) satisfies

lim
m→∞

P (Tm(l) ≤ mT |H0) = α , and (3.3)

lim
m→∞

P (Tm(l) ≤ mT |HA) = 1 , (3.4)

for any fixed 0 < α < 1.

3.2. Asymptotic properties of Tm(l) under H0 and HA

The proofs of results in this section are given in the Appendix.

Theorem 1. (Asymptotic size under H0) Assume (A1) to (A6) hold. Let

{W (t), 0 ≤ t ≤ 1} be a standard Wiener process and θ ∈ Rd. The asymptotic

size of the PLSMS with decision boundary c is given by
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Assumptions (A1) to (A6) are required to obtain the following results for

the derivation of the monitoring scheme. The results are standard, and so the

proofs are omitted. See Ng et al. (2011) and Andrews (1991).

Lemma 1.

a) Under Assumptions (A1), (A4), (A5) and (A6), we have θ̂m
p→ θ0.

b) Under Assumptions (A2), (A3), (A4) and (A6), we have �Mm(l)
p→ M(l;θ0).

c) Under Assumptions (A2) and (A6), we have

m−1/2

⌊mt⌋∑
t=1

L′
t(l;θ0)

D[0,T ]−→ WM(t) as m → ∞ ,

where t ∈ [0, T ], ⌊x⌋ is the largest integer smaller than x and
D[0,T ]−→ denotes

weak convergence in D[0, T ], the space of right-continuous function with

left limit on [0, T ], WM(s) is a Gaussian process with EWM(s) = 0 and

covariance function EWM(s)WT
M(s′) = min(s, s′)M(l;θ0).

Assumption (A7) ensures that the change occurs after m, and hence the pre-

change parameters can be consistently estimated. Assumption (A8) is needed to

ensure that when there is a change-point, the cumulative sum process
m+k∑

t=m+1
L′
t(l;

θ̂m) has a drift. Hence, the change in θ can be detected. This assumption is true

when θ0 is not a local maximizer of the expected Lt(l;θ) under HA.

3. Monitoring Scheme

3.1. Pairwise likelihood sequential monitoring scheme (PLSMS)

As E[L′
t(l;θ0)] = 0 under H0 and E[L′

t(l;θ0)] ̸= 0 under HA, by Lemma 1,

the cumulative sum process m−1/2
∑m+k

t=m+1
�Mm(l)−1/2L′

t(l; θ̂m) is approximately

a Wiener process under H0 but, when HA is true, the cumulative sum process

diverges. Therefore, it is natural to declare that a change has occurred when

m−1/2
���∑m+k

t=m+1
�Mm(l)−1/2L′

t(l; θ̂m)
��� exceeds some threshold or boundary. De-

fine the stopping time

Tm(l)=min

{
min

{
k :

�����
m+k∑

t=m+1

�Mm(l)−1/2L′
t(l; θ̂m)

����� > m1/2

(
1+

k

m

)
c

}
,mT+1

}
,

(3.1)

where c is a constant, the decision boundary, and mT is the pre-specified max-

imum inspection time. We can also take T to infinite if we wish the inspection
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to continue until a change is declared. In this case, the stopping time is

T ∗
m(l) = min

{
k :

�����
m+k∑

t=m+1

�Mm(l)−1/2L′
t(l; θ̂m)

����� > m1/2

(
1 +

k

m

)
c

}
. (3.2)

For notational simplicity, suppose that the data {Xt} arrive sequentially

in a way that Xt+m+l is observed at time t, the pairwise likelihood sequential

monitoring scheme (PLSMS) is as follows:

For the case in which T > 0 and T is finite, starting from time k = 1, check

whether
���∑m+k

t=m+1
�Mm(l)−1/2L′

t(l; θ̂m)
��� > m1/2

(
1 + k

m

)
c. If yes, then Tm(l) = k

and the scheme terminates; we reject H0 and declare that a change in parameter

had occurred at some time on or before k. Otherwise, proceed to time k+1 and

repeat the same procedure. If the condition
���∑m+mT

t=m+1
�Mm(l)−1/2L′

t(l; θ̂m)
��� >

m1/2 (1 +mT/m) c has not been met at time mT , then set Tm(l) = mT +1 and

the scheme terminates; we declare that a change in parameter did not occur and

conclude that H0 is not rejected.

If T = ∞, then, starting from time k = 1, we have to check whether���∑m+k
t=m+1

�Mm(l)−1/2L′
t(l; θ̂m)

��� > m1/2
(
1 + k

m

)
c. If yes, then T ∗

m(l) = k and

the scheme terminates; we reject H0 and declare that a change in parameter had

occurred at some time on or before k.

We assess the performance of the proposed sequential monitoring test based

on asymptotic size and power. The size is the probability of declaring an occur-

rence of change when no change has occurred, and the power is the probability

that a change-point is detected before mT given that the change had occurred

at t∗ < mT . We will derive a decision boundary c = c(α, l, T ) such that the

PLSMS has power approaching 1 with a pre-specified size α. Thus, the bound-

ary c = c(α, l, T ) is chosen such that Tm(l) satisfies

lim
m→∞

P (Tm(l) ≤ mT |H0) = α , and (3.3)

lim
m→∞

P (Tm(l) ≤ mT |HA) = 1 , (3.4)

for any fixed 0 < α < 1.

3.2. Asymptotic properties of Tm(l) under H0 and HA

The proofs of results in this section are given in the Appendix.

Theorem 1. (Asymptotic size under H0) Assume (A1) to (A6) hold. Let

{W (t), 0 ≤ t ≤ 1} be a standard Wiener process and θ ∈ Rd. The asymptotic

size of the PLSMS with decision boundary c is given by
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lim
m→∞

P (Tm(l) ≤ mT |H0) = 1−


P


 sup

0≤t< T

1+T

|W (t)|
c

≤ 1





d

. (3.5)

If T = ∞ and the ρ-mixing coefficient of {Xt} satisfies

ρ(k) := ρ(A0,Bk) = sup
f∈L2(A0),g∈L2(Bk)

|Corr(f, g)| = O(ak), (3.6)

where 0 < a < 1, A0 and Bk are the σ-field generated by {Xt; t ≤ 0} and

{Xt; t ≥ k} respectively, L2(A0) is the space of square-integrable A0-measurable

random variables, and L2(Bk) is defined similarly (Doukhan (1994)), then

lim
m→∞

P (T ∗
m(l) < ∞|H0) = 1−

[
P

(
sup

0≤t<1

|W (t)|
c

≤ 1

)]d
. (3.7)

The ρ-mixing assumption for the case T = ∞ is required to fulfill the condi-

tions for using the ρ-mixing Hajek-Renyi inequality that controls the tail proba-

bility of the monitoring statistics when T goes to infinity. In practice, we always

monitor the process of interest with finite T . Thus, if the ρ-mixing assumption is

violated, we can approximate the decision boundaries using a large T and apply

the monitor scheme in (3.5).

The probabilities in (3.5) and (3.7) can be evaluated explicitly using a result

about the distribution function of sup0≤t<1 |W (t)|.

Lemma 2. (Csorgo and Revesz (1981)) For any b > 0, we have

P

(
sup

0≤t<1
|W (t)| ≤ b

)
=

4

π

∞∑
k=0

(−1)k

2k + 1
exp

(
−π2(2k + 1)2

8b2

)
.

To choose c in (3.5) such that (3.3) holds, we combine Theorem 1 and Lemma

2 to give

lim
m→∞

P (Tm(l) ≤ mT |H0)

= 1−

(
P

{
sup

0≤s<1

√
1 + T

T

����W
(

Ts

1 + T

)���� ≤ c

√
1 + T

T

})d

= 1−

(
P

{
sup

0≤s<1
|W (s)| ≤ c

√
1 + T

T

})d

= 1−

(
4

π

∞∑
k=0

(−1)k

2k + 1
exp

(
−π2(2k + 1)2T

8c2(1 + T )

))d

.

Therefore, for a given significant level α, we can choose c such that
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1−

(
4

π

∞∑
k=0

(−1)k

2k + 1
exp

(
−π2(2k + 1)2T

8c2(1 + T )

))d

= α . (3.8)

A simple grid search or bisection algorithm can be performed to solve (3.8) for c.

Theorem 2. (Asymptotic power underHA) Assume that (A1) to (A8) hold. For

the PLSMS using c that satisfies (3.8) at any given significance level α ∈ (0, 1),

we have

lim
m→∞

P (Tm(l) ≤ mT |HA) = 1 , and (3.9)

lim
m→∞

P (T ∗
m(l) < ∞|HA) = 1 , (3.10)

4. Time Series with a Latent Autoregressive Process

In Sections 2 and 3, general conditions were provided for the consistency

of PLSMS. In this section, we verify these conditions for a class of time series

models that feature a latent autoregressive process. Poisson regression models

with log link function and stochastic volatility models fall into this class.

The process {Xt} is said to be a time series with a latent Gaussian autore-

gressive process if

fXt|λt
(xt) ∼ exp(c1(λt)T (xt) + c2(λt) + g(xt)) , (4.1)

where λt = eβ+αt and {αt} is the latent AR(p) process satisfying

αt = η1αt−1 + . . .+ ηpαt−p + ϵt , {ϵt}
i.i.d.∼ N(0, σ2

ϵ ) .

We also assume that conditioned on {αt}, {Xt} is an independent process. The

parameter for {Xt} is θ = (β, σ2
ϵ , η1, . . . ηp), a d = p+2 dimensional vector. This

definition covers some popular nonlinear time series models, as follows.

(i) The Stochastic volatility model: c1(λt) = −1/(2λt), T (xt) = x2t , c2(λt) =

(− log λt)/2, g(xt) = 0.

(ii) The Poisson regression model with log link function: c1(λt) = log λt, T (xt) =

xt, c2(λt) = λt, g(xt) = − log Γ(xt + 1). The model was proposed by Zeger

(1988) for time series of counts.

(iii) The Bernoulli logit model: c1(λt) = log λt, T (xt) = xt, c2(λt) = log(1 +

λt), g(xt) = 0.

For model (4.1), the bivariate density of the observations (Xt, Xt+j) is given

by
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lim
m→∞

P (Tm(l) ≤ mT |H0) = 1−


P


 sup

0≤t< T

1+T

|W (t)|
c

≤ 1





d

. (3.5)

If T = ∞ and the ρ-mixing coefficient of {Xt} satisfies

ρ(k) := ρ(A0,Bk) = sup
f∈L2(A0),g∈L2(Bk)

|Corr(f, g)| = O(ak), (3.6)

where 0 < a < 1, A0 and Bk are the σ-field generated by {Xt; t ≤ 0} and

{Xt; t ≥ k} respectively, L2(A0) is the space of square-integrable A0-measurable

random variables, and L2(Bk) is defined similarly (Doukhan (1994)), then

lim
m→∞

P (T ∗
m(l) < ∞|H0) = 1−

[
P

(
sup

0≤t<1

|W (t)|
c

≤ 1

)]d
. (3.7)

The ρ-mixing assumption for the case T = ∞ is required to fulfill the condi-

tions for using the ρ-mixing Hajek-Renyi inequality that controls the tail proba-

bility of the monitoring statistics when T goes to infinity. In practice, we always

monitor the process of interest with finite T . Thus, if the ρ-mixing assumption is

violated, we can approximate the decision boundaries using a large T and apply

the monitor scheme in (3.5).

The probabilities in (3.5) and (3.7) can be evaluated explicitly using a result

about the distribution function of sup0≤t<1 |W (t)|.

Lemma 2. (Csorgo and Revesz (1981)) For any b > 0, we have

P

(
sup

0≤t<1
|W (t)| ≤ b

)
=

4

π

∞∑
k=0

(−1)k

2k + 1
exp

(
−π2(2k + 1)2

8b2

)
.

To choose c in (3.5) such that (3.3) holds, we combine Theorem 1 and Lemma

2 to give

lim
m→∞

P (Tm(l) ≤ mT |H0)

= 1−

(
P

{
sup

0≤s<1

√
1 + T

T

����W
(

Ts

1 + T

)���� ≤ c

√
1 + T

T

})d

= 1−

(
P

{
sup

0≤s<1
|W (s)| ≤ c

√
1 + T

T

})d

= 1−

(
4

π

∞∑
k=0

(−1)k

2k + 1
exp

(
−π2(2k + 1)2T

8c2(1 + T )

))d

.

Therefore, for a given significant level α, we can choose c such that
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1−

(
4

π

∞∑
k=0

(−1)k

2k + 1
exp

(
−π2(2k + 1)2T

8c2(1 + T )

))d

= α . (3.8)

A simple grid search or bisection algorithm can be performed to solve (3.8) for c.

Theorem 2. (Asymptotic power underHA) Assume that (A1) to (A8) hold. For

the PLSMS using c that satisfies (3.8) at any given significance level α ∈ (0, 1),

we have

lim
m→∞

P (Tm(l) ≤ mT |HA) = 1 , and (3.9)

lim
m→∞

P (T ∗
m(l) < ∞|HA) = 1 , (3.10)

4. Time Series with a Latent Autoregressive Process

In Sections 2 and 3, general conditions were provided for the consistency

of PLSMS. In this section, we verify these conditions for a class of time series

models that feature a latent autoregressive process. Poisson regression models

with log link function and stochastic volatility models fall into this class.

The process {Xt} is said to be a time series with a latent Gaussian autore-

gressive process if

fXt|λt
(xt) ∼ exp(c1(λt)T (xt) + c2(λt) + g(xt)) , (4.1)

where λt = eβ+αt and {αt} is the latent AR(p) process satisfying

αt = η1αt−1 + . . .+ ηpαt−p + ϵt , {ϵt}
i.i.d.∼ N(0, σ2

ϵ ) .

We also assume that conditioned on {αt}, {Xt} is an independent process. The

parameter for {Xt} is θ = (β, σ2
ϵ , η1, . . . ηp), a d = p+2 dimensional vector. This

definition covers some popular nonlinear time series models, as follows.

(i) The Stochastic volatility model: c1(λt) = −1/(2λt), T (xt) = x2t , c2(λt) =

(− log λt)/2, g(xt) = 0.

(ii) The Poisson regression model with log link function: c1(λt) = log λt, T (xt) =

xt, c2(λt) = λt, g(xt) = − log Γ(xt + 1). The model was proposed by Zeger

(1988) for time series of counts.

(iii) The Bernoulli logit model: c1(λt) = log λt, T (xt) = xt, c2(λt) = log(1 +

λt), g(xt) = 0.

For model (4.1), the bivariate density of the observations (Xt, Xt+j) is given

by
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fXt,Xt+j
(xt, xt+j ;θ) =

1

2π |Σj |1/2

∫
fXt|λt

(xt)fXt+j |λt+j
(xt+j)

exp
{
−0.5αT

j Σ
−1
j αj

}
dαj ,

where αj = (αt, αt+j) and

Σj = Σj(θ) =

(
γ0 γj
γj γ0

)

is the covariance matrix of αj , where γk = γk(θ) is the autocovariance function

of {αt} at lag k which depends on the parameter θ.

Some assumptions on the model (4.1) are required for applying PLSMS.

Assumption B:

(B1) The true parameter θ0 under H0 is in the interior Θ, which is a compact

set in Rd.

(B2) For 1 ≤ j ≤ l, ∥Σj∥ > a for some a > 0.

(B3) For all θ ∈ Θ and some v > 1, both Σ−1
0,j ± 8v

(
Σ−1

0,j −Σ−1
j

)
are positive

definite, where Σj = Σj(θ) is the covariance matrix of the latent process

αj under parameter value θ and Σ0,j = Σj(θ0).

(B4) The model is identifiable: θ1 = θ2 if and only if Lt(l;θ1) = Lt(l;θ2) a.e..

(B5) When HA is true, t∗ > m and E [L′
t(l;θ0)] ̸= 0, where the expectation is

evaluated under θ1.

We show that Assumption A is satisfied for model (4.1) under Assumption

B, which establishes the applicability of PLSMS. First, note that (A1), (A5),

(A7), and (A8) are guaranteed by (B4) and (B5). Also, that (A4) follows from

Lemma A.1 of Ng et al. (2011).

To show (A6), we can write

Xt = F−1
Xt|αt

(Ut;αt,θ0) , (4.2)

where {Ut} is an independent sequence of uniform random variables, and F−1
Xt|αt

is

the inverse of the cumulative distribution function corresponding to fXt|λt
(x) in

(4.1). From Theorem 1 of Mokkadem (1988), the stationary ARMA process {αt}
is geometrically completely regular. That is, the β-mixing coefficient defined by

β(A0,Bk) = sup
1

2

I∑
i=1

J∑
j′=1

|P(AiBj′)− P(Ai)P(Bj′)| ,
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satisfies β(k) = β(A0,Bk) = O(ak) for some 0 < a < 1, where A0 and Bk

are the σ-field generated by {αt; t ≤ 0} and {αt; t ≥ k} respectively, and the

supremum is taken all over finite partitions (A1, A2, . . . , AI) and (B1, B2, . . . , BJ)

of the probability space Ω, with {Ai} ∈ A0 and {Bj} ∈ Bk. Since {Ut} is

an independent process, (αt, Ut) is also geometrically completely regular. From

(4.2), Xt is a measurable transform of (αt, Ut). Therefore, the σ fields σ{Xt; t ≤
0} and σ{Xt; t ≥ k} are proper subsets of σ{(αt, Ut); t ≤ 0} and σ{(αt, Ut); t ≥
k}, respectively, and the β-mixing coefficient of {Xt} is not greater than that of

{(αt, Ut)}. Thus, the process {Xt} is also geometrically completely regular. Since

the mixing coefficients satisfy α(k) < β(k) by Doukhan (1994), {Xt} is strongly

mixing with geometrical rate and (A6) is verified. On the other hand, model

(4.1) is a Gaussian process, and we have ρ(k) ≤ 2πα(k) for any Gaussian process

by Kolmogorov and Rozanov (1960). Hence, {Xt} is ρ-mixing with geometrical

rate, and (3.6) is verified. Therefore, the PLSMS monitoring time T can be

chosen to be infinite, and the inspection can continue until a change is declared.

The verification of (A2) and (A3) are more technical. We put this as a lemma

and provide the proof in the Appendix.

Lemma 3. For all t > 0 and θ ∈ Θ, we have

a) E ∥L′
t(l;θ)∥

4v < ∞ for some v > 1.

b) E ∥L′′
t (l;θ)∥

2 < ∞.

5. Simulation Experiments

We studied the finite sample performance of the proposed monitoring scheme

through simulations. We focused on the stochastic volatility models with autore-

gressive order p, SV(p), given by

xt = zte
1/2(αt+β) , (5.1)

αt = η1αt−1 + η2αt−2 + . . .+ ηpαt−p + ϵt ,

where {zt}
i.i.d.∼ N(0, 1), {ϵt}

i.i.d.∼ N(0, σ2) and |ηi| < 1 for i = 1, . . . , p. For

simplicity, we considered the SV(1) with parameter vector θ = (η, σ, β) and

|η| < 1. For the lag of the consecutive pairwise likelihood l, it was sufficient to

choose l = 1 for model identifiability (see Ng et al. (2011) or Davis and Yau

(2011)). The pre-change historical data were taken to be m = 500, 1,000 and

5,000 for a reasonably accurate estimate of θ and the long run covariance matrix

M(l;θ0). In practice, we recommend that m ≥ 500 should be used since time
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fXt,Xt+j
(xt, xt+j ;θ) =

1

2π |Σj |1/2

∫
fXt|λt

(xt)fXt+j |λt+j
(xt+j)

exp
{
−0.5αT

j Σ
−1
j αj

}
dαj ,

where αj = (αt, αt+j) and

Σj = Σj(θ) =

(
γ0 γj
γj γ0

)

is the covariance matrix of αj , where γk = γk(θ) is the autocovariance function

of {αt} at lag k which depends on the parameter θ.

Some assumptions on the model (4.1) are required for applying PLSMS.

Assumption B:

(B1) The true parameter θ0 under H0 is in the interior Θ, which is a compact

set in Rd.

(B2) For 1 ≤ j ≤ l, ∥Σj∥ > a for some a > 0.

(B3) For all θ ∈ Θ and some v > 1, both Σ−1
0,j ± 8v

(
Σ−1

0,j −Σ−1
j

)
are positive

definite, where Σj = Σj(θ) is the covariance matrix of the latent process

αj under parameter value θ and Σ0,j = Σj(θ0).

(B4) The model is identifiable: θ1 = θ2 if and only if Lt(l;θ1) = Lt(l;θ2) a.e..

(B5) When HA is true, t∗ > m and E [L′
t(l;θ0)] ̸= 0, where the expectation is

evaluated under θ1.

We show that Assumption A is satisfied for model (4.1) under Assumption

B, which establishes the applicability of PLSMS. First, note that (A1), (A5),

(A7), and (A8) are guaranteed by (B4) and (B5). Also, that (A4) follows from

Lemma A.1 of Ng et al. (2011).

To show (A6), we can write

Xt = F−1
Xt|αt

(Ut;αt,θ0) , (4.2)

where {Ut} is an independent sequence of uniform random variables, and F−1
Xt|αt

is

the inverse of the cumulative distribution function corresponding to fXt|λt
(x) in

(4.1). From Theorem 1 of Mokkadem (1988), the stationary ARMA process {αt}
is geometrically completely regular. That is, the β-mixing coefficient defined by

β(A0,Bk) = sup
1

2

I∑
i=1

J∑
j′=1

|P(AiBj′)− P(Ai)P(Bj′)| ,
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satisfies β(k) = β(A0,Bk) = O(ak) for some 0 < a < 1, where A0 and Bk

are the σ-field generated by {αt; t ≤ 0} and {αt; t ≥ k} respectively, and the

supremum is taken all over finite partitions (A1, A2, . . . , AI) and (B1, B2, . . . , BJ)

of the probability space Ω, with {Ai} ∈ A0 and {Bj} ∈ Bk. Since {Ut} is

an independent process, (αt, Ut) is also geometrically completely regular. From

(4.2), Xt is a measurable transform of (αt, Ut). Therefore, the σ fields σ{Xt; t ≤
0} and σ{Xt; t ≥ k} are proper subsets of σ{(αt, Ut); t ≤ 0} and σ{(αt, Ut); t ≥
k}, respectively, and the β-mixing coefficient of {Xt} is not greater than that of

{(αt, Ut)}. Thus, the process {Xt} is also geometrically completely regular. Since

the mixing coefficients satisfy α(k) < β(k) by Doukhan (1994), {Xt} is strongly

mixing with geometrical rate and (A6) is verified. On the other hand, model

(4.1) is a Gaussian process, and we have ρ(k) ≤ 2πα(k) for any Gaussian process

by Kolmogorov and Rozanov (1960). Hence, {Xt} is ρ-mixing with geometrical

rate, and (3.6) is verified. Therefore, the PLSMS monitoring time T can be

chosen to be infinite, and the inspection can continue until a change is declared.

The verification of (A2) and (A3) are more technical. We put this as a lemma

and provide the proof in the Appendix.

Lemma 3. For all t > 0 and θ ∈ Θ, we have

a) E ∥L′
t(l;θ)∥

4v < ∞ for some v > 1.

b) E ∥L′′
t (l;θ)∥

2 < ∞.

5. Simulation Experiments

We studied the finite sample performance of the proposed monitoring scheme

through simulations. We focused on the stochastic volatility models with autore-

gressive order p, SV(p), given by

xt = zte
1/2(αt+β) , (5.1)

αt = η1αt−1 + η2αt−2 + . . .+ ηpαt−p + ϵt ,

where {zt}
i.i.d.∼ N(0, 1), {ϵt}

i.i.d.∼ N(0, σ2) and |ηi| < 1 for i = 1, . . . , p. For

simplicity, we considered the SV(1) with parameter vector θ = (η, σ, β) and

|η| < 1. For the lag of the consecutive pairwise likelihood l, it was sufficient to

choose l = 1 for model identifiability (see Ng et al. (2011) or Davis and Yau

(2011)). The pre-change historical data were taken to be m = 500, 1,000 and

5,000 for a reasonably accurate estimate of θ and the long run covariance matrix

M(l;θ0). In practice, we recommend that m ≥ 500 should be used since time
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series with latent process are difficult to estimate. Given α and T , the boundary

function c for the stopping time Tm(l) in (3.1) was obtained by solving (3.8) with

d = 3.

Due to the difficulty in evaluating the full likelihood function, one can re-

sort to non-parametric methods that focus on the changes in mean or covariance

structure. Standard procedures that detect changes in mean or covariance struc-

ture are not applicable to SV models and, since a change in parameter values

in (5.1) induces a change in the variance of {xt}, sequential monitoring can be

based on cumulative sum of the squared data. We call this monitoring scheme

the cusum sequential monitoring scheme (CSSMS).

The CSSMS is based on the stopping time

Nm = min

{
min

{
k :

m+k∑
t=m+1

(X2
t − µ̂m)σ̂−1/2

m > m1/2

(
1 +

k

m

)
c

}
,mT + 1

}
,

where

µ̂m =
1

m

m∑
t=1

X2
t , and σ̂2

m = γ̂m(0) + 2

⌈m1/3⌉∑
j=1

γ̂m(j) ,

and γ̂m(j) is the sample auto-covariance function of {X2
t } with lag j. We reject

the null hypothesis of no change point when Nm < mT+1. Similar to PLSMS,

for given T and α, the decision boundary c can be obtained by solving (3.8) with

d = 1. See Gombay and Horváth (2009) for details.

In financial time series, the GARCH model is commonly used as an alterna-

tive to stochastic volatility models, see Tsay (2010, 2012). In particular, Berkes

et al. (2004) proposed a monitoring scheme for GARCH(p,q) models. For sim-

plicity, we call it the GARCH(p,q) sequential monitoring scheme (GASMS). The

GASMS is based on the stopping time

Gm=min

{
min

{
k :

�����
m+k∑

t=m+1

�Dm(θ̂m)−1/2p′t(θ̂m)

����� > m1/2

(
1+

k

m

)
c

}
,mT+1

}
,

where

pt(θ) = −1

2

{
log �wt(θ) +

X2
t

�wt(θ)

}
and �Dm(θ̂m) =

1

m

m∑
t=2

p′t(θ̂m)p′t(θ̂m)T .

Here, pt(θ) is the conditional likelihood at θ and �Dm is the covariance matrix

estimate for pt(θ̂m). For the definition of �wt(θ) and the asymptotic results, see

Berkes et al. (2004). We reject the null hypothesis of no change point when Gm <

mT+1. For given T and α, the decision boundary c is the same as PLSMS since
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Table 1. Decision boundaries c under different α and T for Tm(1) in PLSMS and Gm in
GASMS (The numbers with brackets are for Nm in CSSMS and Rm in RVSMS).

α T = 1 T = 2 T = ∞
0.05 1.861(1.585) 2.149(1.83) 2.632(2.241)
0.1 1.684(1.386) 1.944(1.6) 2.382(1.96)

they have the same asymptotic distribution.

Besides GASMS, Na, Lee and Lee (2011) proposed another monitoring pro-

cedure for GARCH(p,q) models by using a residual variance approach. For sim-

plicity, we call it the Residual Variance sequential monitoring scheme (RVSMS).

The RVSMS for the GARCH(1,1) model is based on the stopping time

Rm = min

{
min

{
k :

1

s2m

�����
1

m+ k

m+k∑
t=1

ϵ̂2t −
1

m

m∑
t=1

ϵ̂2t

����� >
c√
m

}
,mT + 1

}
,

where

ϵ̂t =
Xt

σ̃t
and s2m =

1

m

m∑
t=1

ϵ̂4t −

(
1

m

m∑
t=1

ϵ̂2t

)2

.

Here, the σ̃2
t are defined recursively by σ̃2

t = σ̃2
t (ω̂, α̂, β̂) = ω̂ + α̂X2

t−1 + β̂σ̃2
t−1,

where (ω̂, α̂, β̂) is the QMLE of the parameters of GARCH(1,1) models. See Na,

Lee and Lee (2011) for details. We reject the null hypothesis of no change point

when Rm < mT+1. For given T and α, the decision boundary c is the same as

CSSMS since they have the same asymptotic distribution.

Since GASMS and RVSMS are derived for sequential change-point detection

in GARCH(p,q) models, one is not theoretically justified in applying them to

data following stochastic volatility models. Nevertheless, in view of the similarity

between GARCH and stochastic volatility models, it was of interest to explore

the performance of GASMS and RVSMS in our simulations.

We compared the asymptotic sizes and power of PLSMS, CSSMS, GASMS,

and RVSMS on SV models. Table 1 summarizes the decision boundaries c for

PLSMS, CSSMS, GASMS, and RVSMS.

5.1. Simulation results under H0

To investigate the empirical sizes of PLSMS, CSSMS, GASMS, and RVSMS

under H0, we carried out simulations based on the SV(1) models

Model 1: η = 0.6, β = 3.5, σϵ = 1, 2 and 3;

Model 2: η = 0.3, β = 3, σϵ = 1, 2 and 3;

Model 3: η = 0.15, β = 2.5, σϵ = 1, 2 and 3.
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series with latent process are difficult to estimate. Given α and T , the boundary

function c for the stopping time Tm(l) in (3.1) was obtained by solving (3.8) with

d = 3.

Due to the difficulty in evaluating the full likelihood function, one can re-

sort to non-parametric methods that focus on the changes in mean or covariance

structure. Standard procedures that detect changes in mean or covariance struc-

ture are not applicable to SV models and, since a change in parameter values

in (5.1) induces a change in the variance of {xt}, sequential monitoring can be

based on cumulative sum of the squared data. We call this monitoring scheme

the cusum sequential monitoring scheme (CSSMS).

The CSSMS is based on the stopping time

Nm = min

{
min

{
k :

m+k∑
t=m+1

(X2
t − µ̂m)σ̂−1/2

m > m1/2

(
1 +

k

m

)
c

}
,mT + 1

}
,

where

µ̂m =
1

m

m∑
t=1

X2
t , and σ̂2

m = γ̂m(0) + 2

⌈m1/3⌉∑
j=1

γ̂m(j) ,

and γ̂m(j) is the sample auto-covariance function of {X2
t } with lag j. We reject

the null hypothesis of no change point when Nm < mT+1. Similar to PLSMS,

for given T and α, the decision boundary c can be obtained by solving (3.8) with

d = 1. See Gombay and Horváth (2009) for details.

In financial time series, the GARCH model is commonly used as an alterna-

tive to stochastic volatility models, see Tsay (2010, 2012). In particular, Berkes

et al. (2004) proposed a monitoring scheme for GARCH(p,q) models. For sim-

plicity, we call it the GARCH(p,q) sequential monitoring scheme (GASMS). The

GASMS is based on the stopping time

Gm=min

{
min

{
k :

�����
m+k∑

t=m+1

�Dm(θ̂m)−1/2p′t(θ̂m)

����� > m1/2

(
1+

k

m

)
c

}
,mT+1

}
,

where

pt(θ) = −1

2

{
log �wt(θ) +

X2
t

�wt(θ)

}
and �Dm(θ̂m) =

1

m

m∑
t=2

p′t(θ̂m)p′t(θ̂m)T .

Here, pt(θ) is the conditional likelihood at θ and �Dm is the covariance matrix

estimate for pt(θ̂m). For the definition of �wt(θ) and the asymptotic results, see

Berkes et al. (2004). We reject the null hypothesis of no change point when Gm <

mT+1. For given T and α, the decision boundary c is the same as PLSMS since
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Table 1. Decision boundaries c under different α and T for Tm(1) in PLSMS and Gm in
GASMS (The numbers with brackets are for Nm in CSSMS and Rm in RVSMS).

α T = 1 T = 2 T = ∞
0.05 1.861(1.585) 2.149(1.83) 2.632(2.241)
0.1 1.684(1.386) 1.944(1.6) 2.382(1.96)

they have the same asymptotic distribution.

Besides GASMS, Na, Lee and Lee (2011) proposed another monitoring pro-

cedure for GARCH(p,q) models by using a residual variance approach. For sim-

plicity, we call it the Residual Variance sequential monitoring scheme (RVSMS).

The RVSMS for the GARCH(1,1) model is based on the stopping time

Rm = min

{
min

{
k :

1

s2m

�����
1

m+ k

m+k∑
t=1

ϵ̂2t −
1

m

m∑
t=1

ϵ̂2t

����� >
c√
m

}
,mT + 1

}
,

where

ϵ̂t =
Xt

σ̃t
and s2m =

1

m

m∑
t=1

ϵ̂4t −

(
1

m

m∑
t=1

ϵ̂2t

)2

.

Here, the σ̃2
t are defined recursively by σ̃2

t = σ̃2
t (ω̂, α̂, β̂) = ω̂ + α̂X2

t−1 + β̂σ̃2
t−1,

where (ω̂, α̂, β̂) is the QMLE of the parameters of GARCH(1,1) models. See Na,

Lee and Lee (2011) for details. We reject the null hypothesis of no change point

when Rm < mT+1. For given T and α, the decision boundary c is the same as

CSSMS since they have the same asymptotic distribution.

Since GASMS and RVSMS are derived for sequential change-point detection

in GARCH(p,q) models, one is not theoretically justified in applying them to

data following stochastic volatility models. Nevertheless, in view of the similarity

between GARCH and stochastic volatility models, it was of interest to explore

the performance of GASMS and RVSMS in our simulations.

We compared the asymptotic sizes and power of PLSMS, CSSMS, GASMS,

and RVSMS on SV models. Table 1 summarizes the decision boundaries c for

PLSMS, CSSMS, GASMS, and RVSMS.

5.1. Simulation results under H0

To investigate the empirical sizes of PLSMS, CSSMS, GASMS, and RVSMS

under H0, we carried out simulations based on the SV(1) models

Model 1: η = 0.6, β = 3.5, σϵ = 1, 2 and 3;

Model 2: η = 0.3, β = 3, σϵ = 1, 2 and 3;

Model 3: η = 0.15, β = 2.5, σϵ = 1, 2 and 3.
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Table 2. Empirical sizes for Model 1 of PLSMS, CSSMS, GASMS, and RVSMS in
different SV(1) models with m = 500, 1,000 and 5,000 when l = 1.300 replications were
carried out for each pair (α, T ).

Model 1
σϵ = 1 σϵ = 2 σϵ = 3

α T Method m=500 1,000 5,000 m=500 1,000 5,000 m=500 1,000 5,000
0.05 1 PLSMS 0.13 0.1 0.03 0.113 0.11 0.06 0.123 0.09 0.07

1 CSSMS 0.131 0.12 0.065 0.253 0.239 0.21 0.306 0.03 0.266
1 GASMS 0.31 0.3 0.173 0.557 0.51 0.473 0.673 0.677 0.58
1 RVSMS 0.213 0.157 0.08 0.29 0.263 0.18 0.383 0.253 0.267
2 PLSMS 0.147 0.137 0.06 0.14 0.1 0.073 0.117 0.137 0.07
2 CSSMS 0.155 0.131 0.09 0.322 0.294 0.24 0.43 0.406 0.353
2 GASMS 0.357 0.333 0.177 0.617 0.63 0.603 0.767 0.763 0.713
2 RVSMS 0.253 0.133 0.087 0.373 0.31 0.243 0.47 0.363 0.37
∞ PLSMS 0.107 0.083 0.063 0.12 0.08 0.043 0.107 0.1 0.06
∞ CSSMS 0.173 0.132 0.064 0.419 0.382 0.3 0.596 0.555 0.513
∞ GASMS 0.477 0.363 0.17 0.83 0.757 0.733 0.897 0.88 0.843
∞ RVSMS 0.257 0.14 0.067 0.523 0.393 0.27 0.643 0.58 0.493

0.1 1 PLSMS 0.243 0.16 0.147 0.183 0.123 0.123 0.167 0.187 0.103
1 CSSMS 0.198 0.156 0.106 0.293 0.261 0.243 0.34 0.344 0.306
1 GASMS 0.413 0.303 0.24 0.56 0.613 0.57 0.69 0.667 0.673
1 RVSMS 0.29 0.183 0.127 0.367 0.317 0.213 0.38 0.39 0.323
2 PLSMS 0.253 0.14 0.113 0.23 0.177 0.1 0.17 0.153 0.137
2 CSSMS 0.176 0.17 0.097 0.353 0.331 0.289 0.447 0.453 0.401
2 GASMS 0.443 0.397 0.24 0.687 0.697 0.657 0.78 0.73 0.81
2 RVSMS 0.293 0.24 0.143 0.47 0.367 0.247 0.483 0.447 0.37
∞ PLSMS 0.19 0.11 0.1 0.203 0.16 0.103 0.177 0.127 0.073
∞ CSSMS 0.223 0.173 0.107 0.437 0.444 0.322 0.625 0.6 0.52
∞ GASMS 0.473 0.407 0.237 0.843 0.833 0.817 0.897 0.87 0.877
∞ RVSMS 0.34 0.227 0.113 0.54 0.467 0.34 0.65 0.577 0.543

The models with different values of η represent different degrees of correla-

tion in the latent autoregressive process. Within each model, different values of

σϵ represent different volatilities of the latent autoregressive process. We also

considered the combinations of α = 0.05, 0.1 and T = 1, 2,∞. For T = ∞, since

it is impossible to monitor the scheme for an unlimited time horizon, the inspec-

tion time was chosen to be 10m. Figure 1(a) provides time series plots of some

realizations of these three models with σϵ = 1. Figure 1(b) provides time series

plots of some realizations of Model 2 with different σϵ values. Notice that spikes

occur more frequently under larger variance in the latent process. Tables 2 to

4 report the proportion of rejection of H0 for the models when m = 500, 1,000,

and 5,000.
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Table 3. Empirical sizes for Model 2 of PLSMS, CSSMS, GASMS, and RVSMS in
different SV(1) models with m = 500, 1,000 and 5,000 when l = 1.300 replications were
carried out for each pair (α, T ).

Model 2
σϵ = 1 σϵ = 2 σϵ = 3

α T Method m=500 1,000 5,000 m=500 1,000 5,000 m=500 1,000 5,000
0.05 1 PLSMS 0.107 0.1 0.073 0.1 0.07 0.043 0.113 0.093 0.057

1 CSSMS 0.095 0.077 0.045 0.211 0.201 0.148 0.29 0.259 0.252
1 GASMS 0.253 0.25 0.157 0.557 0.463 0.317 0.697 0.587 0.533
1 RVSMS 0.117 0.083 0.053 0.277 0.213 0.203 0.36 0.327 0.223
2 PLSMS 0.097 0.83 0.05 0.08 0.08 0.077 0.093 0.077 0.06
2 CSSMS 0.13 0.075 0.05 0.258 0.266 0.177 0.396 0.343 0.282
2 GASMS 0.31 0.22 0.18 0.58 0.447 0.373 0.757 0.727 0.643
2 RVSMS 0.163 0.147 0.07 0.35 0.287 0.21 0.41 0.34 0.323
∞ PLSMS 0.087 0.063 0.05 0.077 0.063 0.033 0.08 0.06 0.057
∞ CSSMS 0.113 0.091 0.052 0.363 0.299 0.2222 0.553 0.499 0.422
∞ GASMS 0.3 0.203 0.107 0.727 0.59 0.48 0.883 0.857 0.767
∞ RVSMS 0.22 0.163 0.053 0.453 0.36 0.243 0.57 0.543 0.44

0.1 1 PLSMS 0.153 0.143 0.1 0.15 0.163 0.137 0.143 0.14 0.09
1 CSSMS 0.121 0.134 0.093 0.231 0.232 0.188 0.318 0.31 0.258
1 GASMS 0.297 0.227 0.177 0.5 0.433 0.36 0.667 0.677 0.533
1 RVSMS 0.143 0.16 0.127 0.31 0.287 0.23 0.373 0.303 0.267
2 PLSMS 0.163 0.16 0.13 0.137 0.127 0.113 0.153 0.14 0.09
2 CSSMS 0.167 0.109 0.097 0.303 0.31 0.197 0.318 0.31 0.258
2 GASMS 0.347 0.287 0.18 0.59 0.52 0.44 0.827 0.72 0.673
2 RVSMS 0.223 0.173 0.15 0.433 0.317 0.263 0.45 0.437 0.403
∞ PLSMS 0.153 0.13 0.127 0.137 0.097 0.08 0.113 0.097 0.107
∞ CSSMS 0.164 0.136 0.075 0.393 0.329 0.273 0.558 0.52 0.477
∞ GASMS 0.363 0.207 0.167 0.76 0.65 0.533 0.92 0.833 0.837
∞ RVSMS 0.257 0.19 0.083 0.497 0.4 0.263 0.57 0.583 0.433

From Tables 2 to 4, the size distortion of PLSMS is reduced if a larger m

or larger T is chosen. It can also be seen that the size distortion of PLSMS

increases with η, which represents the correlation of the latent autoregressive

process. This is consistent with the observation in Ng et al. (2011) that pairwise

likelihood estimation is less efficient when there is a high latent correlation.

Comparing PLSMS, CSSMS, GASMS, and RVSMS, Tables 2 to 4 suggest

that the proposed PLSMS generally has a empirical size closest to the significance

level α, and GASMS has the heaviest size distortion. In particular, the size

distortions of CSSMS, GASMS, and RVSMS increase with the variance of latent

AR(p) processes, σ2
ϵ . This may be related to the rapid change in variability of

the sequence {X2
t } due to the occurrence of spikes. On the other hand, the size
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Table 2. Empirical sizes for Model 1 of PLSMS, CSSMS, GASMS, and RVSMS in
different SV(1) models with m = 500, 1,000 and 5,000 when l = 1.300 replications were
carried out for each pair (α, T ).

Model 1
σϵ = 1 σϵ = 2 σϵ = 3

α T Method m=500 1,000 5,000 m=500 1,000 5,000 m=500 1,000 5,000
0.05 1 PLSMS 0.13 0.1 0.03 0.113 0.11 0.06 0.123 0.09 0.07

1 CSSMS 0.131 0.12 0.065 0.253 0.239 0.21 0.306 0.03 0.266
1 GASMS 0.31 0.3 0.173 0.557 0.51 0.473 0.673 0.677 0.58
1 RVSMS 0.213 0.157 0.08 0.29 0.263 0.18 0.383 0.253 0.267
2 PLSMS 0.147 0.137 0.06 0.14 0.1 0.073 0.117 0.137 0.07
2 CSSMS 0.155 0.131 0.09 0.322 0.294 0.24 0.43 0.406 0.353
2 GASMS 0.357 0.333 0.177 0.617 0.63 0.603 0.767 0.763 0.713
2 RVSMS 0.253 0.133 0.087 0.373 0.31 0.243 0.47 0.363 0.37
∞ PLSMS 0.107 0.083 0.063 0.12 0.08 0.043 0.107 0.1 0.06
∞ CSSMS 0.173 0.132 0.064 0.419 0.382 0.3 0.596 0.555 0.513
∞ GASMS 0.477 0.363 0.17 0.83 0.757 0.733 0.897 0.88 0.843
∞ RVSMS 0.257 0.14 0.067 0.523 0.393 0.27 0.643 0.58 0.493

0.1 1 PLSMS 0.243 0.16 0.147 0.183 0.123 0.123 0.167 0.187 0.103
1 CSSMS 0.198 0.156 0.106 0.293 0.261 0.243 0.34 0.344 0.306
1 GASMS 0.413 0.303 0.24 0.56 0.613 0.57 0.69 0.667 0.673
1 RVSMS 0.29 0.183 0.127 0.367 0.317 0.213 0.38 0.39 0.323
2 PLSMS 0.253 0.14 0.113 0.23 0.177 0.1 0.17 0.153 0.137
2 CSSMS 0.176 0.17 0.097 0.353 0.331 0.289 0.447 0.453 0.401
2 GASMS 0.443 0.397 0.24 0.687 0.697 0.657 0.78 0.73 0.81
2 RVSMS 0.293 0.24 0.143 0.47 0.367 0.247 0.483 0.447 0.37
∞ PLSMS 0.19 0.11 0.1 0.203 0.16 0.103 0.177 0.127 0.073
∞ CSSMS 0.223 0.173 0.107 0.437 0.444 0.322 0.625 0.6 0.52
∞ GASMS 0.473 0.407 0.237 0.843 0.833 0.817 0.897 0.87 0.877
∞ RVSMS 0.34 0.227 0.113 0.54 0.467 0.34 0.65 0.577 0.543

The models with different values of η represent different degrees of correla-

tion in the latent autoregressive process. Within each model, different values of

σϵ represent different volatilities of the latent autoregressive process. We also

considered the combinations of α = 0.05, 0.1 and T = 1, 2,∞. For T = ∞, since

it is impossible to monitor the scheme for an unlimited time horizon, the inspec-

tion time was chosen to be 10m. Figure 1(a) provides time series plots of some

realizations of these three models with σϵ = 1. Figure 1(b) provides time series

plots of some realizations of Model 2 with different σϵ values. Notice that spikes

occur more frequently under larger variance in the latent process. Tables 2 to

4 report the proportion of rejection of H0 for the models when m = 500, 1,000,

and 5,000.
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∞ RVSMS 0.22 0.163 0.053 0.453 0.36 0.243 0.57 0.543 0.44

0.1 1 PLSMS 0.153 0.143 0.1 0.15 0.163 0.137 0.143 0.14 0.09
1 CSSMS 0.121 0.134 0.093 0.231 0.232 0.188 0.318 0.31 0.258
1 GASMS 0.297 0.227 0.177 0.5 0.433 0.36 0.667 0.677 0.533
1 RVSMS 0.143 0.16 0.127 0.31 0.287 0.23 0.373 0.303 0.267
2 PLSMS 0.163 0.16 0.13 0.137 0.127 0.113 0.153 0.14 0.09
2 CSSMS 0.167 0.109 0.097 0.303 0.31 0.197 0.318 0.31 0.258
2 GASMS 0.347 0.287 0.18 0.59 0.52 0.44 0.827 0.72 0.673
2 RVSMS 0.223 0.173 0.15 0.433 0.317 0.263 0.45 0.437 0.403
∞ PLSMS 0.153 0.13 0.127 0.137 0.097 0.08 0.113 0.097 0.107
∞ CSSMS 0.164 0.136 0.075 0.393 0.329 0.273 0.558 0.52 0.477
∞ GASMS 0.363 0.207 0.167 0.76 0.65 0.533 0.92 0.833 0.837
∞ RVSMS 0.257 0.19 0.083 0.497 0.4 0.263 0.57 0.583 0.433

From Tables 2 to 4, the size distortion of PLSMS is reduced if a larger m

or larger T is chosen. It can also be seen that the size distortion of PLSMS

increases with η, which represents the correlation of the latent autoregressive

process. This is consistent with the observation in Ng et al. (2011) that pairwise

likelihood estimation is less efficient when there is a high latent correlation.

Comparing PLSMS, CSSMS, GASMS, and RVSMS, Tables 2 to 4 suggest

that the proposed PLSMS generally has a empirical size closest to the significance

level α, and GASMS has the heaviest size distortion. In particular, the size

distortions of CSSMS, GASMS, and RVSMS increase with the variance of latent

AR(p) processes, σ2
ϵ . This may be related to the rapid change in variability of

the sequence {X2
t } due to the occurrence of spikes. On the other hand, the size
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Table 4. Empirical sizes for Model 3 of PLSMS, CSSMS, GASMS, and RVSMS in
different SV(1) models with m = 500, 1,000 and 5,000 when l = 1.300 replications were
carried out for each pair (α, T ).

Model 3
σϵ = 1 σϵ = 2 σϵ = 3

α T Method m=500 1,000 5,000 m=500 1,000 5,000 m=500 1,000 5,000
0.05 1 PLSMS 0.087 0.083 0.07 0.077 0.077 0.087 0.093 0.083 0.57

1 CSSMS 0.112 0.087 0.051 0.178 0.203 0.149 0.282 0.271 0.232
1 GASMS 0.2 0.15 0.123 0.413 0.33 0.25 0.64 0.58 0.47
1 RVSMS 0.12 0.097 0.073 0.253 0.23 0.14 0.31 0.313 0.223
2 PLSMS 0.083 0.093 0.07 0.093 0.08 0.053 0.083 0.09 0.063
2 CSSMS 0.117 0.079 0.051 0.268 0.2 0.173 0.35 0.337 0.298
2 GASMS 0.243 0.18 0.093 0.467 0.48 0.337 0.717 0.687 0.553
2 RVSMS 0.167 0.137 0.053 0.303 0.273 0.183 0.393 0.33 0.277
∞ PLSMS 0.087 0.07 0.037 0.077 0.05 0.053 0.073 0.047 0.057
∞ CSSMS 0.114 0.092 0.05 0.358 0.287 0.186 0.497 0.471 0.432
∞ GASMS 0.223 0.167 0.08 0.62 0.497 0.43 0.863 0.847 0.727
∞ RVSMS 0.193 0.087 0.04 0.393 0.377 0.163 0.52 0.543 0.43

0.1 1 PLSMS 0.143 0.157 0.093 0.173 0.14 0.107 0.117 0.11 0.12
1 CSSMS 0.141 0.134 0.1 0.224 0.218 0.197 0.311 0.314 0.255
1 GASMS 0.237 0.2 0.133 0.45 0.38 0.343 0.68 0.623 0.477
1 RVSMS 0.143 0.123 0.12 0.327 0.21 0.217 0.39 0.32 0.233
2 PLSMS 0.143 0.15 0.093 0.147 0.12 0.127 0.133 0.107 0.12
2 CSSMS 0.142 0.14 0.087 0.315 0.259 0.218 0.398 0.376 0.339
2 GASMS 0.247 0.197 0.16 0.61 0.487 0.35 0.73 0.713 0.563
2 RVSMS 0.193 0.197 0.113 0.347 0.297 0.253 0.43 0.423 0.34
∞ PLSMS 0.143 0.137 0.093 0.12 0.123 0.087 0.13 0.123 0.107
∞ CSSMS 0.143 0.141 0.082 0.382 0.338 0.235 0.542 0.51 0.425
∞ GASMS 0.283 0.193 0.103 0.653 0.567 0.38 0.867 0.847 0.793
∞ RVSMS 0.277 0.127 0.063 0.483 0.383 0.3 0.553 0.5 0.537

of PLSMS is not sensitive to changes in σϵ. One possible reason is that the use

of likelihood accounts for the effect of σϵ and gives accurate critical values for

the test.

5.2. Simulation results under HA

To investigate the empirical power under HA, we carried out simulations

based on three change-point models:

Model 1: η0 = 0.2, σϵ,0 = 1.2, β0 = −0.45, changed to ηA = 0.6, σϵ,A = 1.2,

βA = −0.45 at t∗;

Model 2: η0 = 0.7, σϵ,0 = 0.2, β0 = −0.1, changed to ηA = 0.5, σϵ,A = 0.7,

βA = −0.3 at t∗;
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(a) Realizations of Model 1, 2 and 3 with σϵ = 1 in Section 5.1.
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(b) Realizations of Model 2 with σϵ = 1, 2 and 3 in Section 5.1.

Figure 1. Realizations for Models in Section 5.1 with m = 1, 000 and T = 1 without any
change-points.

Model 3: η0 = 0.2, σϵ,0 = 1, β0 = 0.1, changed to ηA = 0.65, σϵ,A = 0.7756,

βA = 0.1 at t∗.

Model 2 has all parameters changed, while only η is changed in Model 1. In
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Table 4. Empirical sizes for Model 3 of PLSMS, CSSMS, GASMS, and RVSMS in
different SV(1) models with m = 500, 1,000 and 5,000 when l = 1.300 replications were
carried out for each pair (α, T ).

Model 3
σϵ = 1 σϵ = 2 σϵ = 3

α T Method m=500 1,000 5,000 m=500 1,000 5,000 m=500 1,000 5,000
0.05 1 PLSMS 0.087 0.083 0.07 0.077 0.077 0.087 0.093 0.083 0.57

1 CSSMS 0.112 0.087 0.051 0.178 0.203 0.149 0.282 0.271 0.232
1 GASMS 0.2 0.15 0.123 0.413 0.33 0.25 0.64 0.58 0.47
1 RVSMS 0.12 0.097 0.073 0.253 0.23 0.14 0.31 0.313 0.223
2 PLSMS 0.083 0.093 0.07 0.093 0.08 0.053 0.083 0.09 0.063
2 CSSMS 0.117 0.079 0.051 0.268 0.2 0.173 0.35 0.337 0.298
2 GASMS 0.243 0.18 0.093 0.467 0.48 0.337 0.717 0.687 0.553
2 RVSMS 0.167 0.137 0.053 0.303 0.273 0.183 0.393 0.33 0.277
∞ PLSMS 0.087 0.07 0.037 0.077 0.05 0.053 0.073 0.047 0.057
∞ CSSMS 0.114 0.092 0.05 0.358 0.287 0.186 0.497 0.471 0.432
∞ GASMS 0.223 0.167 0.08 0.62 0.497 0.43 0.863 0.847 0.727
∞ RVSMS 0.193 0.087 0.04 0.393 0.377 0.163 0.52 0.543 0.43

0.1 1 PLSMS 0.143 0.157 0.093 0.173 0.14 0.107 0.117 0.11 0.12
1 CSSMS 0.141 0.134 0.1 0.224 0.218 0.197 0.311 0.314 0.255
1 GASMS 0.237 0.2 0.133 0.45 0.38 0.343 0.68 0.623 0.477
1 RVSMS 0.143 0.123 0.12 0.327 0.21 0.217 0.39 0.32 0.233
2 PLSMS 0.143 0.15 0.093 0.147 0.12 0.127 0.133 0.107 0.12
2 CSSMS 0.142 0.14 0.087 0.315 0.259 0.218 0.398 0.376 0.339
2 GASMS 0.247 0.197 0.16 0.61 0.487 0.35 0.73 0.713 0.563
2 RVSMS 0.193 0.197 0.113 0.347 0.297 0.253 0.43 0.423 0.34
∞ PLSMS 0.143 0.137 0.093 0.12 0.123 0.087 0.13 0.123 0.107
∞ CSSMS 0.143 0.141 0.082 0.382 0.338 0.235 0.542 0.51 0.425
∞ GASMS 0.283 0.193 0.103 0.653 0.567 0.38 0.867 0.847 0.793
∞ RVSMS 0.277 0.127 0.063 0.483 0.383 0.3 0.553 0.5 0.537

of PLSMS is not sensitive to changes in σϵ. One possible reason is that the use

of likelihood accounts for the effect of σϵ and gives accurate critical values for

the test.

5.2. Simulation results under HA

To investigate the empirical power under HA, we carried out simulations

based on three change-point models:

Model 1: η0 = 0.2, σϵ,0 = 1.2, β0 = −0.45, changed to ηA = 0.6, σϵ,A = 1.2,

βA = −0.45 at t∗;

Model 2: η0 = 0.7, σϵ,0 = 0.2, β0 = −0.1, changed to ηA = 0.5, σϵ,A = 0.7,

βA = −0.3 at t∗;
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Figure 1. Realizations for Models in Section 5.1 with m = 1, 000 and T = 1 without any
change-points.

Model 3: η0 = 0.2, σϵ,0 = 1, β0 = 0.1, changed to ηA = 0.65, σϵ,A = 0.7756,

βA = 0.1 at t∗.

Model 2 has all parameters changed, while only η is changed in Model 1. In
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Figure 2. Realizations for Model 1, 2 and 3 in Section 5.2 with m = 1, 000 and t∗ = 50.
The change-points are represented by the vertical dash lines.

Model 3, the parameters are restricted to change in a way such that the variance

of the observed process {Xt} remains unchanged. Tables 5 and 6 report the

empirical power for Model 1 to 3 with t∗ = 50 and 250 when m = 500 and 1,000,

respectively. The numbers in the table are the proportion of simulation trials

that PLSMS/CSSMS/GASMS/RVSMS rejects H0. Figure 2 provides time series

plots of some realizations of the three change point models with m = 1, 000 and

t∗ = 50.

From Tables 5 and 6, PLSMS generally outperforms CSSMS, GASMS, and

RVSMS for all three models. The change-points in Model 1 are well-detected by

PLSMS with power greater than 0.7 in general for m = 500, and greater than

0.9 in general for m = 1, 000. For Model 2, the change-points are well-detected

by PLSMS with power greater than 0.9 in general, while the power of CSSMS

and RVSMS are below 0.6 and the power of GASMS is below 0.7 in general. By

construction, the change-point in Model 3 is difficult to be detected since the

parameters change in a way such that the variance stays constant. Nevertheless,

the performance of PLSMS and GASMS are comparable with power exceeding

0.5, much higher than the power of CSSMS and RVSMS.

Overall, the detection rule based on PLSMS has a higher empirical power in

all the three models compared with that of CSSMS, GASMS, and RVSMS.
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Table 5. Empirical power for Model 1 to 3 with m=500 and t∗=50 and 250.

Model 1 Model 2 Model 3
α T Method t∗ = 50 t∗ = 250 t∗ = 50 t∗ = 250 t∗ = 50 t∗ = 250

0.05 1 PLSMS 0.777 0.437 0.98 0.773 0.41 0.233
1 CSSMS 0.557 0.365 0.308 0.142 0.139 0.127
1 GASMS 0.787 0.6 0.56 0.357 0.48 0.35
1 RVSMS 0.56 0.35 0.323 0.193 0.163 0.16
2 PLSMS 0.883 0.787 0.993 0.967 0.523 0.373
2 CSSMS 0.64 0.512 0.331 0.254 0.144 0.149
2 GASMS 0.87 0.827 0.667 0.513 0.533 0.46
2 RVSMS 0.673 0.553 0.36 0.31 0.153 0.193
∞ PLSMS 0.97 0.97 1 1 0.58 0.54
∞ CSSMS 0.807 0.778 0.379 0.317 0.156 0.142
∞ GASMS 0.943 0.937 0.713 0.62 0.69 0.617
∞ RVSMS 0.77 0.753 0.467 0.37 0.183 0.187

0.1 1 PLSMS 0.833 0.503 0.963 0.837 0.51 0.313
1 CSSMS 0.583 0.384 0.333 0.206 0.172 0.151
1 GASMS 0.807 0.647 0.617 0.33 0.533 0.397
1 RVSMS 0.62 0.43 0.413 0.26 0.227 0.213
2 PLSMS 0.913 0.833 0.99 0.973 0.627 0.46
2 CSSMS 0.693 0.573 0.413 0.319 0.184 0.202
2 GASMS 0.903 0.83 0.697 0.583 0.607 0.527
2 RVSMS 0.733 0.58 0.483 0.363 0.243 0.223
∞ PLSMS 0.98 0.973 1 1 0.693 0.637
∞ CSSMS 0.821 0.811 0.47 0.389 0.178 0.206
∞ GASMS 0.97 0.937 0.717 0.687 0.737 0.697
∞ RVSMS 0.77 0.77 0.513 0.48 0.383 0.313

6. Data Examples

6.1. Sequential monitoring of the S&P 500 log-return series

We applied PLSMS, CSSMS, GASMS, and RVSMS to the S&P 500 index

data and compared their performances. Figure 3 plots the daily closing values

and daily log returns of the S&P 500 index from January 2004 to December 2009.

In applying the PLSMS, CSSMS, GASMS, and RVSMS, the daily log return

series from January 2004 to December 2005, which has 504 observations (m =

504), is used as the training data. From the time series plot of the daily log

return data in Figure 3, the 504 training data points appear to be stationary and

free from structural break. We then fit an ARSV(1) model to the training data

and used maximum lag l = 1 to apply PLSMS. From January 2006 to December

2009, the total number of observations in the daily log return series was 1,006,

about twice the number of observations in the training data set. Therefore, we
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Figure 2. Realizations for Model 1, 2 and 3 in Section 5.2 with m = 1, 000 and t∗ = 50.
The change-points are represented by the vertical dash lines.

Model 3, the parameters are restricted to change in a way such that the variance

of the observed process {Xt} remains unchanged. Tables 5 and 6 report the

empirical power for Model 1 to 3 with t∗ = 50 and 250 when m = 500 and 1,000,

respectively. The numbers in the table are the proportion of simulation trials

that PLSMS/CSSMS/GASMS/RVSMS rejects H0. Figure 2 provides time series

plots of some realizations of the three change point models with m = 1, 000 and

t∗ = 50.

From Tables 5 and 6, PLSMS generally outperforms CSSMS, GASMS, and

RVSMS for all three models. The change-points in Model 1 are well-detected by

PLSMS with power greater than 0.7 in general for m = 500, and greater than

0.9 in general for m = 1, 000. For Model 2, the change-points are well-detected

by PLSMS with power greater than 0.9 in general, while the power of CSSMS

and RVSMS are below 0.6 and the power of GASMS is below 0.7 in general. By

construction, the change-point in Model 3 is difficult to be detected since the

parameters change in a way such that the variance stays constant. Nevertheless,

the performance of PLSMS and GASMS are comparable with power exceeding

0.5, much higher than the power of CSSMS and RVSMS.

Overall, the detection rule based on PLSMS has a higher empirical power in

all the three models compared with that of CSSMS, GASMS, and RVSMS.
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Table 5. Empirical power for Model 1 to 3 with m=500 and t∗=50 and 250.

Model 1 Model 2 Model 3
α T Method t∗ = 50 t∗ = 250 t∗ = 50 t∗ = 250 t∗ = 50 t∗ = 250

0.05 1 PLSMS 0.777 0.437 0.98 0.773 0.41 0.233
1 CSSMS 0.557 0.365 0.308 0.142 0.139 0.127
1 GASMS 0.787 0.6 0.56 0.357 0.48 0.35
1 RVSMS 0.56 0.35 0.323 0.193 0.163 0.16
2 PLSMS 0.883 0.787 0.993 0.967 0.523 0.373
2 CSSMS 0.64 0.512 0.331 0.254 0.144 0.149
2 GASMS 0.87 0.827 0.667 0.513 0.533 0.46
2 RVSMS 0.673 0.553 0.36 0.31 0.153 0.193
∞ PLSMS 0.97 0.97 1 1 0.58 0.54
∞ CSSMS 0.807 0.778 0.379 0.317 0.156 0.142
∞ GASMS 0.943 0.937 0.713 0.62 0.69 0.617
∞ RVSMS 0.77 0.753 0.467 0.37 0.183 0.187

0.1 1 PLSMS 0.833 0.503 0.963 0.837 0.51 0.313
1 CSSMS 0.583 0.384 0.333 0.206 0.172 0.151
1 GASMS 0.807 0.647 0.617 0.33 0.533 0.397
1 RVSMS 0.62 0.43 0.413 0.26 0.227 0.213
2 PLSMS 0.913 0.833 0.99 0.973 0.627 0.46
2 CSSMS 0.693 0.573 0.413 0.319 0.184 0.202
2 GASMS 0.903 0.83 0.697 0.583 0.607 0.527
2 RVSMS 0.733 0.58 0.483 0.363 0.243 0.223
∞ PLSMS 0.98 0.973 1 1 0.693 0.637
∞ CSSMS 0.821 0.811 0.47 0.389 0.178 0.206
∞ GASMS 0.97 0.937 0.717 0.687 0.737 0.697
∞ RVSMS 0.77 0.77 0.513 0.48 0.383 0.313

6. Data Examples

6.1. Sequential monitoring of the S&P 500 log-return series

We applied PLSMS, CSSMS, GASMS, and RVSMS to the S&P 500 index

data and compared their performances. Figure 3 plots the daily closing values

and daily log returns of the S&P 500 index from January 2004 to December 2009.

In applying the PLSMS, CSSMS, GASMS, and RVSMS, the daily log return

series from January 2004 to December 2005, which has 504 observations (m =

504), is used as the training data. From the time series plot of the daily log

return data in Figure 3, the 504 training data points appear to be stationary and

free from structural break. We then fit an ARSV(1) model to the training data

and used maximum lag l = 1 to apply PLSMS. From January 2006 to December

2009, the total number of observations in the daily log return series was 1,006,

about twice the number of observations in the training data set. Therefore, we
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Table 6. Empirical power for Model 1 to 3 with m = 1,000 and t∗ = 50 and 250.

Model 1 Model 2 Model 3
α T Method t∗ = 50 t∗ = 250 t∗ = 50 t∗ = 250 t∗ = 50 t∗ = 250

0.05 1 PLSMS 0.96 0.867 1 0.997 0.573 0.423
1 CSSMS 0.686 0.567 0.384 0.264 0.121 0.112
1 GASMS 0.897 0.807 0.667 0.533 0.56 0.46
1 RVSMS 0.72 0.563 0.353 0.307 0.16 0.13
2 PLSMS 0.977 0.917 1 1 0.713 0.63
2 CSSMS 0.787 0.732 0.44 0.362 0.13 0.117
2 GASMS 0.927 0.92 0.777 0.723 0.653 0.583
2 RVSMS 0.793 0.737 0.48 0.39 0.13 0.163
∞ PLSMS 1 1 1 1 0.89 0.863
∞ CSSMS 0.896 0.881 0.504 0.47 0.127 0.103
∞ GASMS 0.983 0.983 0.803 0.797 0.81 0.777
∞ RVSMS 0.847 0.873 0.447 0.467 0.15 0.12

0.1 1 PLSMS 0.973 0.953 1 0.993 0.667 0.527
1 CSSMS 0.743 0.617 0.459 0.324 0.144 0.143
1 GASMS 0.9 0.817 0.737 0.597 0.613 0.52
1 RVSMS 0.68 0.62 0.433 0.373 0.217 0.207
2 PLSMS 1 0.977 1 1 0.81 0.707
2 CSSMS 0.853 0.793 0.508 0.436 0.158 0.159
2 GASMS 0.957 0.957 0.833 0.767 0.73 0.707
2 RVSMS 0.837 0.827 0.543 0.477 0.207 0.18
∞ PLSMS 1 1 1 1 0.927 0.903
∞ CSSMS 0.925 0.916 0.616 0.567 0.166 0.155
∞ GASMS 0.983 0.99 0.873 0.88 0.847 0.877
∞ RVSMS 0.907 0.88 0.517 0.583 0.193 0.177

Table 7. Performance of the different monitoring schemes for the S&P 500 index.

T = 2
PLSMS (Tm(1)) CSSMS (Nm) GASMS (Gm) RVSMS (Rm)

α
0.05 229 460 59 406
0.1 204 428 54 402

chose T = 2. We performed the detection schemes under α = 0.05 and 0.1.

In Table 7, Tm represents the time point where a change in parameter was

declared by PLSMS. Similarly, Nm, Gm, and Rm represent the time point where a

change in parameter was declared by CSSMS, GASMS, and RVSMS, respectively.

By visual inspection of the daily log return data in Figure 3, a change is likely

to occur at some moment prior to the dotted line when a steady increase of the

daily closing index is observed. The steady, non-volatile growth in mid 2006,

in contrast to the volatile daily return during 2004 to 2005, matched with the
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Figure 3. Plots of daily closing index and daily log return of the S&P 500 from 2004 to 2009,
the observations on the left-hand side of the solid line are the training data. The dotted, dashed,
dot-dashed and two-dashed line represent the time points at which Tm, Nm, Gm and Rm declare
a change at α = 0.1, respectively.

stable market condition in US and the low volatility phenomenon reflected by

the CBOE Volatility Index, which was as low as 8.6 in 2006, preceded the 2007

crash. Thus, the change point was quickly detected by PLSMS. On the other

hand, both CSSMS and RVSMS had detected another change point at time

around 900, August 2007. This change can be attributed to the beginning of

the subprime mortgage hedge fund crisis, with the major investment bank Bear

Stearns revealing, in July 2007, that their two subprime hedge funds had lost

nearly all of their value. Also, it can be seen that GASMS declared a change

much earlier than PLSMS, CSSMS, and RVSMS. Based on visual inspection

and the large size distortions in simulation in Section 5.1, we suspected that

the change point detected by GASMS was probably a false alarm. Overall, the

PLSMS gave the quickest detection of the change in the log-return series.

6.2. Sequential monitoring time series of counts

In recent years, the modeling of integer-valued time series has received con-

siderable attention. For example, Kang and Lee (2009, 2014) studied retrospec-

tive change point analysis for time series of counts. However, the literature on

sequential change-point detection in time series of counts remains unexplored.

To demonstrate the usefulness and generality of the use of pairwise likelihood
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Table 6. Empirical power for Model 1 to 3 with m = 1,000 and t∗ = 50 and 250.

Model 1 Model 2 Model 3
α T Method t∗ = 50 t∗ = 250 t∗ = 50 t∗ = 250 t∗ = 50 t∗ = 250

0.05 1 PLSMS 0.96 0.867 1 0.997 0.573 0.423
1 CSSMS 0.686 0.567 0.384 0.264 0.121 0.112
1 GASMS 0.897 0.807 0.667 0.533 0.56 0.46
1 RVSMS 0.72 0.563 0.353 0.307 0.16 0.13
2 PLSMS 0.977 0.917 1 1 0.713 0.63
2 CSSMS 0.787 0.732 0.44 0.362 0.13 0.117
2 GASMS 0.927 0.92 0.777 0.723 0.653 0.583
2 RVSMS 0.793 0.737 0.48 0.39 0.13 0.163
∞ PLSMS 1 1 1 1 0.89 0.863
∞ CSSMS 0.896 0.881 0.504 0.47 0.127 0.103
∞ GASMS 0.983 0.983 0.803 0.797 0.81 0.777
∞ RVSMS 0.847 0.873 0.447 0.467 0.15 0.12

0.1 1 PLSMS 0.973 0.953 1 0.993 0.667 0.527
1 CSSMS 0.743 0.617 0.459 0.324 0.144 0.143
1 GASMS 0.9 0.817 0.737 0.597 0.613 0.52
1 RVSMS 0.68 0.62 0.433 0.373 0.217 0.207
2 PLSMS 1 0.977 1 1 0.81 0.707
2 CSSMS 0.853 0.793 0.508 0.436 0.158 0.159
2 GASMS 0.957 0.957 0.833 0.767 0.73 0.707
2 RVSMS 0.837 0.827 0.543 0.477 0.207 0.18
∞ PLSMS 1 1 1 1 0.927 0.903
∞ CSSMS 0.925 0.916 0.616 0.567 0.166 0.155
∞ GASMS 0.983 0.99 0.873 0.88 0.847 0.877
∞ RVSMS 0.907 0.88 0.517 0.583 0.193 0.177

Table 7. Performance of the different monitoring schemes for the S&P 500 index.

T = 2
PLSMS (Tm(1)) CSSMS (Nm) GASMS (Gm) RVSMS (Rm)

α
0.05 229 460 59 406
0.1 204 428 54 402

chose T = 2. We performed the detection schemes under α = 0.05 and 0.1.

In Table 7, Tm represents the time point where a change in parameter was

declared by PLSMS. Similarly, Nm, Gm, and Rm represent the time point where a

change in parameter was declared by CSSMS, GASMS, and RVSMS, respectively.

By visual inspection of the daily log return data in Figure 3, a change is likely

to occur at some moment prior to the dotted line when a steady increase of the

daily closing index is observed. The steady, non-volatile growth in mid 2006,

in contrast to the volatile daily return during 2004 to 2005, matched with the
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−

Figure 3. Plots of daily closing index and daily log return of the S&P 500 from 2004 to 2009,
the observations on the left-hand side of the solid line are the training data. The dotted, dashed,
dot-dashed and two-dashed line represent the time points at which Tm, Nm, Gm and Rm declare
a change at α = 0.1, respectively.

stable market condition in US and the low volatility phenomenon reflected by

the CBOE Volatility Index, which was as low as 8.6 in 2006, preceded the 2007

crash. Thus, the change point was quickly detected by PLSMS. On the other

hand, both CSSMS and RVSMS had detected another change point at time

around 900, August 2007. This change can be attributed to the beginning of

the subprime mortgage hedge fund crisis, with the major investment bank Bear

Stearns revealing, in July 2007, that their two subprime hedge funds had lost

nearly all of their value. Also, it can be seen that GASMS declared a change

much earlier than PLSMS, CSSMS, and RVSMS. Based on visual inspection

and the large size distortions in simulation in Section 5.1, we suspected that

the change point detected by GASMS was probably a false alarm. Overall, the

PLSMS gave the quickest detection of the change in the log-return series.

6.2. Sequential monitoring time series of counts

In recent years, the modeling of integer-valued time series has received con-

siderable attention. For example, Kang and Lee (2009, 2014) studied retrospec-

tive change point analysis for time series of counts. However, the literature on

sequential change-point detection in time series of counts remains unexplored.

To demonstrate the usefulness and generality of the use of pairwise likelihood
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Figure 4. Plots of trading volume (per 100,000) of 0388.HK from November 2011 to September
2015, the observations on the left-hand side of the solid line are the training data. The dotted
and the dashed line represent the time points at which Tm declare a change at α = 0.05 and
α = 0.1, respectively.

in change-point analysis, we applied PLSMS to the daily trading volume (per

100,000) of Hong Kong Exchanges and Clearing Limited (0388.HK) from Novem-

ber 2011 to September 2015, which is depicted in Figure 4. The series is a se-

quence of integers with a majority of observations less than 30 and a few values

as large as hundreds, which lead to some spikes in the time series plot. This

spiky structure motivates the use of a latent process model, such as the Poisson

regression model with AR(1) log link function.

From November 2011 to September 2015, the total number of observations

in the dataset was 956 and we used the first 500 data points, which seemed

stationary, as training dataset. Therefore, we chose T = 0.912. We then fit a

Poisson regression model with AR(1) log link function to the training data and

used maximum lag l = 1 in our monitoring scheme.

PLSMS based on Tm declares a change at time 699 under significance level

α = 0.05 and at time 676 under significance level α = 0.1. Both are detected

after a sudden large trading volume. On the other hand, by visual inspection

of the daily trading volume in Figure 4, a change is likely to occur at some

moment after time 600 prior to the dotted line in which a more volatile trading

volume is observed. This change could be attributed to the announcement of the

establishment of the Shanghai-Hong Kong Stock Connect at time 602, i.e., April

10th, 2014. The change point is quickly detected by PLSMS.
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7. Conclusion

The paper proposes a sequential monitoring scheme for detecting changes in

parameter values using pairwise likelihood. The scheme is shown to have asymp-

totically zero Type II error for any prescribed level of Type I error. With the use

of pairwise likelihood, the scheme is applicable to many complicated time series

models in a computationally efficient manner. For example, the scheme covers

time series models involving latent processes, such as stochastic volatility models

and Poisson regression models with log link function, in which the evaluation

of full likelihood is computationally inefficient or intractable. Simulation and

empirical studies show that the proposed monitoring scheme works well.
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Appendix

A. Proofs of Lemmas and Theorems

Proof of Theorem 1. Using a Taylor series expansion, we have���∑m+k
t=m+1 L

′
t(l; θ̂m)−

(∑m+k
t=m+1 L

′
t(l;θ0) +

∑m+k
t=m+1 L

′′
t (l;θc)(θ̂m − θ0)

)���
m1/2

(
1 + k/m

)
c

= 0 ,

(A.1)

where θc is between θ0 and θ̂m. By Assumptions (A3), (A4), (A7), and Lemma

1, we have

sup
1≤k≤mT

���
[∑m+k

t=m+1 L
′′
t (l;θc)− kEL′′

t (l;θ0)
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(θ̂m − θ0)
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(
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t (l;θc)− kEL′′
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m+ k

√
m(θ̂m − θ0)
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p→ 0 , (A.2)

as m → ∞. Combining (A.1) and (A.2), we have, as m → ∞,

sup
1≤k<mT

���∑m+k
t=m+1 L

′
t(l; θ̂m)−

(∑m+k
t=m+1 L

′
t(l;θ0) + kEL′′

t (θ0)(θ̂m − θ0)
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m1/2
(
1 + k/m

)
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p→ 0 .

(A.3)
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Figure 4. Plots of trading volume (per 100,000) of 0388.HK from November 2011 to September
2015, the observations on the left-hand side of the solid line are the training data. The dotted
and the dashed line represent the time points at which Tm declare a change at α = 0.05 and
α = 0.1, respectively.

in change-point analysis, we applied PLSMS to the daily trading volume (per

100,000) of Hong Kong Exchanges and Clearing Limited (0388.HK) from Novem-

ber 2011 to September 2015, which is depicted in Figure 4. The series is a se-

quence of integers with a majority of observations less than 30 and a few values

as large as hundreds, which lead to some spikes in the time series plot. This

spiky structure motivates the use of a latent process model, such as the Poisson

regression model with AR(1) log link function.

From November 2011 to September 2015, the total number of observations

in the dataset was 956 and we used the first 500 data points, which seemed

stationary, as training dataset. Therefore, we chose T = 0.912. We then fit a

Poisson regression model with AR(1) log link function to the training data and

used maximum lag l = 1 in our monitoring scheme.

PLSMS based on Tm declares a change at time 699 under significance level

α = 0.05 and at time 676 under significance level α = 0.1. Both are detected

after a sudden large trading volume. On the other hand, by visual inspection

of the daily trading volume in Figure 4, a change is likely to occur at some

moment after time 600 prior to the dotted line in which a more volatile trading

volume is observed. This change could be attributed to the announcement of the

establishment of the Shanghai-Hong Kong Stock Connect at time 602, i.e., April

10th, 2014. The change point is quickly detected by PLSMS.
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totically zero Type II error for any prescribed level of Type I error. With the use

of pairwise likelihood, the scheme is applicable to many complicated time series

models in a computationally efficient manner. For example, the scheme covers
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A. Proofs of Lemmas and Theorems
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= 0 ,

(A.1)

where θc is between θ0 and θ̂m. By Assumptions (A3), (A4), (A7), and Lemma

1, we have
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as m → ∞. Combining (A.1) and (A.2), we have, as m → ∞,

sup
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By a Taylor series expansion, we have that for some θc̃ between θ0 and θ̂m,�����
∑m

t=1 L
′
t(l; θ̂m)

m
−
(∑m

t=1 L
′
t(l;θ0)

m
+

∑m
t=1 L

′′
t (l;θc̃)

m
(θ̂m − θ0)

)����� = 0 . (A.4)

As
∑m

t=1 L
′
t(l; θ̂m) = 0 by definition, combining with Assumptions (A1) and (A4),

(A.4) is

m1/2

����θ̂m − θ0 + (E(L′′
t (l;θ0))

−1

∑m
t=1 L

′
t(l;θ0)

m

����
a.s.→ 0, (A.5)

as m → ∞. Multiplying (EL′′
t (θ0)k/m)/(

(
1 + k/m

)
c) on both sides of (A.5) and

taking supremum over k, we obtain

sup
1≤k<mT

���
(
kEL′′

t (θ0)
)
(θ̂m − θ0) + (k/m)

∑m
t=1 L

′
t(l;θ0)

���
m1/2

(
1 + k/m

)
c

p→ 0. (A.6)

Hence, combining (A.3) and (A.6), we have

sup
1≤k<mT

���∑m+k
t=m+1 L

′
t(l; θ̂m)−

(∑m+k
t=m+1 L

′
t(l;θ0)− (k/m)

∑m
t=1 L

′
t(l;θ0)

)���
m1/2

(
1 + k/m

)
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(A.7)

Using Lemma 1c), we have(
m−1/2

∑m(1+t)
t=m L′

t(l;θ0)

m−1/2t
∑m

t=1 L
′
t(l;θ0)

)
D[0,T ]−→

(
WM(1 + t)−WM(1)

tWM(1)

)
.

By the Continuous Mapping Theorem, we have

m−1/2





m(1+t)∑
t=m

L′
t(l;θ0)− t

m∑
t=1

L′
t(l;θ0)





D[0,T ]→ WM(1 + t)− (1 + t)WM(1) .

(A.8)

Combining (A.7) and (A.8), we have

sup
1≤k≤mT

���∑m+k
t=m+1

�Mm(l)−1/2L′
t(l; θ̂m)

���
m1/2

(
1 + k/m

)
c

D→ sup
0<t<T

��M−1/2 (WM(1 + t)− (1 + t)WM(1))
��

(1 + t)c
, (A.9)

as m → ∞. Next, the covariance of WM(1 + t) − (1 + t)WM(1) is t(1 + t)M,

which implies that for t ≥ 0,{
M−1/2 (WM(1 + t)− (1 + t)WM(1))

}
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D
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{
(1 + t)W1

(
t

1 + t

)
, (1 + t)W2
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t

1 + t

)
, . . . , (1 + t)Wd

(
t

1 + t

)}T

,

where W1,W2, . . . ,Wd are independent standard Wiener processes. Thus, we

have

sup
0<t<T

��M−1/2 (WM(1 + t)− (1 + t)WM(1))
��

(1 + t)c

D
= max

1≤i≤d
sup

0<s< T

1+T

|Wi(s)|
c

.

(A.10)

From (A.9) and (A.10), we obtain
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as m → ∞. Finally,

lim
m→∞

P (Tm(l) ≤ mT |H0)
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yielding (3.5).

To prove (3.7), similar to (A.9), we have to show that
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By the ρ-mixing Hajek-Renyi inequality, Theorem 1 of Wan (2013) and (3.6), we

get for ϵ > 0 and {cj} a sequence of non-decreasing real numbers,
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By a Taylor series expansion, we have that for some θc̃ between θ0 and θ̂m,�����
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By the ρ-mixing Hajek-Renyi inequality, Theorem 1 of Wan (2013) and (3.6), we

get for ϵ > 0 and {cj} a sequence of non-decreasing real numbers,
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Replacingm bym+mT , n by n+m, and then taking limT→∞ limm→∞ limn→∞
on both sides of (A.13), and putting ck = m1/2(1 + k−m

m )c, we get for ϵ > 0,

lim
T→∞

lim
m→∞

lim
n→∞

P

(
sup

mT≤k≤n

�����
1

m1/2(1 + k/m)c

m+k∑
t=1

L′
t(l; θ)

����� ≥ ϵ

)
= 0. (A.14)

By the Law of Iterated Logarithm, we have

sup
T≤t<∞

∥WM(1 + t)∥
(1 + t)c

a.s.→ 0, as T → ∞. (A.15)

From Berkes et al. (2004), we have that (A.12) follows from (A.8), (A.14),

and (A.15).

Our proof of Theorem 2 is based on Berkes et al. (2004).

Proof of Theorem 2. Since

lim
m→∞

P (Tm(l) ≤ mT |HA)

= lim
m→∞

P

(
sup
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�����
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)
c

�����HA

)
,

it suffices to show that

sup
1≤k≤mT

����Mm(l)−1/2
∑m+k

t=m+1 L
′
t(l; θ̂m)

���
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(
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)
c
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When k < t∗ −m, we have θ = θ0. Thus, (A.11) implies that

sup
1≤k<t∗−m
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t=m+1

�Mm(l)−1/2L′
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���
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(
1 + k/m

)
c

= Op(1). (A.17)

On the other hand, as θ̂m − θ0 = op(1) and, for sufficiently large k ≥ t∗ −m, we

have θ = θ1. Thus, the Ergodic Theorem implies that

m+k∑
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L′
t(l; θ̂m) = (m+ k − t∗ + 1)

[
Eθ1
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]
.

Hence, taking k = mT , we have���∑m+mT
t=t∗

�Mm(l)−1/2L′
t(l; θ̂m)

���
m1/2

(
1 +mT/m

)
c

=

����Mm(l)−1/2 [(m+mT − t∗ + 1)Eθ1
[L′

t(l;θ0)] + op(m)]
���

m1/2
(
1 +mT/m

)
c
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≥ c1m
1/2 p→ ∞, (A.18)

for some c1 > 0, since Eθ1
(L′

t(l;θ0)) ̸= 0 by Assumption (A8). Combining (A.17)

and (A.18), we have
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≥ c2m
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for some c2 > 0, yielding (A.16). A similar argument can be applied for the case

of T ∗
m(l).

Proof of Lemma 3. For a), let u(at, at+1) be a polynomial in (at, at+1), and
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∫ ∫
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,

where kβ(xt;αt) = fXt|λt
(xt) and λt = eβ+αt . Take θ = (β, σϵ, η1, . . . ηp). Let

∂(·)/∂θi, i = 1, 2, . . . , p+2, be the partial derivative operator with respect to the
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, (A.19)

where fαt,αt+1
(at, at+1) is the joint density of (αt, αt+1) and pi(at, at+1) is a poly-

nomial in (at, at+1).

To simplify the notation, let (x, x̃, a, ã) = (xt, xt+1, at, at+1),
∫
[k] be the

k-th folded integral on the real line, Kβ = Kβ(x, x̃, a, ã) = kβ(x, a)kβ(x̃, ã),

fµ,Σ(·, ·) be the bivariate normal density function with mean µ and variance Σ,

and gβ,µ,Σ(x, x̃) =
∫
[2]Kβfµ,Σ(a, ã)dadã. Then (A.19) reduces to

E
(
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)
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Replacingm bym+mT , n by n+m, and then taking limT→∞ limm→∞ limn→∞
on both sides of (A.13), and putting ck = m1/2(1 + k−m
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By the Law of Iterated Logarithm, we have
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From Berkes et al. (2004), we have that (A.12) follows from (A.8), (A.14),
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where fαt,αt+1
(at, at+1) is the joint density of (αt, αt+1) and pi(at, at+1) is a poly-

nomial in (at, at+1).

To simplify the notation, let (x, x̃, a, ã) = (xt, xt+1, at, at+1),
∫
[k] be the

k-th folded integral on the real line, Kβ = Kβ(x, x̃, a, ã) = kβ(x, a)kβ(x̃, ã),

fµ,Σ(·, ·) be the bivariate normal density function with mean µ and variance Σ,

and gβ,µ,Σ(x, x̃) =
∫
[2]Kβfµ,Σ(a, ã)dadã. Then (A.19) reduces to
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=

∫
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where
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fβ0,Σ0
(a, ã)

]8v
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]8v
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(a, ã)dadã.

The two inequalities follow from the Holder’s inequality. The integrand of A

can be expressed as[
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(a, ã)

]8v
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(
exp

(
−1/2aTΣ−1a

))8v
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2
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0 a

)

= C |pi(a, ã)|8v exp
(
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2
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(
Σ−1
0 − 8v

(
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0 − Σ−1

))
a

)
, (A.20)

for some constant C, where a = (a, ã)T . Similarly, the integrand of B can be
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expressed as

C2 exp

(
−1

2
aT

(
Σ−1
0 + 8v

(
Σ−1
0 − Σ−1

))
a

)
(A.21)

for some constant C2. Combining (A.20), (A.21), and Assumption (B3), both A

and B are integrable, implying that E∥L′
t(1;θ)∥4v exists for all θ ∈ Θ, and is

finite.

Similar arguments can be employed to show E
(
|∂/(∂θi)pt(j;θ)|4v

)
< ∞ for

any fixed j ≥ 1. Thus, for l ≥ 1, we have E
[
∥L′

t(l;θ)∥4v
]
≤

∑l
j=1 E

[
∥l′t(j;θ)∥4v

]
<

∞, completing the proof of part a).

For b), from Ng et al. (2011), for l = 1, we have

E
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Lt(l;θ)

����
2
]
= E

(
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4
)
+ E

(
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4
)

< ∞ ,

where pi,j,1(at, at+1) and pi,j,2(at, at+1) are two polynomials in (at, at+1) and

the last inequality is established in the proof of a). Similar arguments yield

E
[
|∂Lt(l;θ)/(∂θi∂θj)|2

]
< ∞ for l > 1. Thus, the proof of Lemma 3 is com-

plete.
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(a, ã)dadã,
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