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Appendix

A.1 Lemmas
Lemmas A.1-A.3 are from |[Ichimura| (1993). We include them here for the

reader’s easy reference. Lemmas from A.4 onwards are specific to our paper.

Lemma A.1. Let f be the density of a random variable U and function g be a
function R — R. Assume that E{g(U)/hnK[(u —U)/hy)} exists. If function gf
is twice continuously differentiable, the second derivative satisfies the Lipschitz
condition, K satisfies Assumption A7, and u is an interior point of the support
of U, then for h, >0 and h,, — 0,

|E{g(U)/h K [(u = U) /] } = g(u) f ()] = O(h7).

Lemma A.2. Let f be the density of a random variable U and function g be a
function R — R. Assume that E{g(U)/h2K'[(u—U)/hy|} ewists. If function gf
is twice continuously differentiable, the second derivative satisfies the Lipschitz
condition, K satisfies Assumption A7, and u is an interior point of the support
of U, then for h, >0 and h,, — 0,

|E{g(U)/h; K" [(u = U)/ha]} = [g(u) f(w)]| = O(h7,).
Lemma A.3. Let f be the density of a random variable U and function g be a
function R — R. Assume that E{g(U)/h3 K" [(w — U)/h,]} ezists. If function
gf s three times continuously differentiable, the third derivative satisfies the
Lipschitz condition, K satisfies Assumption A7, and u is an interior point of the
support of U, then for hy, >0 and h, — 0,

| E{g(@) /B K [(u = U) /hal} = [9(u) f ()]

"

= O(h2).
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Lemma A.4. Under Assumptions A1-A7, as n — oo, hy, — 0 and nh? — oo,

1
sup sup

1Bl=1seWn | Walhn Y K{Z(t)'B—z(s)" Bl/hn}

teXNWy,
- /W K{ 20" B—Z(s)" B1/hn} % p(Z(1)" Bo) dt| = 0,(1).

Proof of Lemma . Without loss of generality, assume that W,, = [-n,n) x
[-n,n) and partition it into 4n? small windows Wi = [i,i+ 1) x [4,7 + 1),
i,j=—n,---,n—1 Let NJ) = X(W}). Partition {8 : || 8| = 1} into n*~! non-
overlapped small regions I}’, k =1, -- ,nP~1 such that the length of each region
is C'/n. Select one point 8} from I}! and denote U]) = {Z(s)" B} : s € W, }.
Further partition U}’ into n small, non-overlapping intervals U[;, [ = 1,---n,
such that the length of each interval is C'//n. Select one point uy; from U};. Then
there are n? small regions I;' x U}, and point (8}, u};) is selected from each
region.

Denote S,(Z()" 8: 8) = ki Svexeur, KA Z(6)B—2(s)" B1/hn} and it
suffices to show that, for any ¢ > 0 and 5 > 0, when n is large,

Pr{ sup sup |Sy(Z(s)" B;B) — Ez{Sn(Z(s)" B; B)}| > e} <,
| BlI=1s€Wn

where Ey is expectation given Z(-). Let M, = n'/3. The left-hand side of the
above is less than

Pr{ sup sup [Sn(Z(s)" B;B) — Ez{Sn(Z(s)" B; B)}| > €, max Nj; < M} (A.1)
18=15€Wn i

—l—Pr{mi?xNZ} > My} (A.2)

The term (A.2) is less than 3, Pr{N]; > My}, which is less than /2 when n
is large, by Markov inequality and Assumption A2. Now we show (A.1]) is less
than 7/2 when n is large. Note that for each 8 and s, (3,Z(s)” 3) belongs to a
small region, say I}’ x U}}. Let

h(,@, u) = ]Sn(u,,B) - EZ{Sn(uuB)H
Then the supremum of the term (A.1]) is less than

max sup sup |h(8, u) — h(By, ugy)| + max [h(By, ug)|-
kl gelp ueUy, kil
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Because the size of these small regions is C'/n, maxy SUPgerp SUPyern |h(B,u)—
h(BE, uy)| = Op((nh2)~1), which is 0,(1) if nh2 — co. Hence, it suffices to show

that, when n is large enough,

Pr{max|h(ﬁk,ukl)| > €, maxN" < M,} <n/2. (A.3)
Note that h(By, up;) = | 2245 Zijl/(|Walhn), where

Zij= Y K(Z()" B —ul/hn) = E{ Y K(Z(5)"Br — wnal/hn)}-

SEXNW] SEXNW}

Also note that under max; ; NZ»’JL» < M, Z;; is bounded by C'M,,. Therefore, under
the mixing condition stated in Assumption A5, by the Bernstein’s inequality
developed in Lemma 4.7 of Zhu and Lahiri | (2007), we have

CQ<)‘n/bn)4§r2L
M7 + (An/ bn>Mn£n>

+C1(An/bn) (M, /€2) 2 (Caby; A2).

P{|ZZZJ|>£n|W ||maX §Mn}§01exp<—

7]

If M, is chosen as n/3, \,, as n, b, as n'/3, and &, = hpe, the above upper-bound
becomes Cy exp(—Con'/?) + Cn?n~"/31n?%. Then we have

Pr{|h(B%,uy)| > e‘ maxN" < Mp}Cn?n~ 1% and thus

Pr{max\h(,@k,ukl | > € maxN” < M,} < Cn*pt20,=7/3,
Hence, (A.3) holds for 7 > 6 4+ 6 + 3p and thus Lemma is proved. B

Lemma A.5. Under Assumptions A1, A3, A6 and A7, as n — oo, h, — 0 and

nh? — oo,

sup sup
| Bl=1s€Wn

|Wj|hn /W K(|Z(t)" B—2Z(s)" B/hn) dt — f(Z(s)" ﬁ;ﬁ)’ = 0p(1).

Proof of Lemma[A.5 By Assumption Al and Lemma we have

By | K207 8-l | - )| = 002

n

Under the strong mixing assumption A6 of Z(-), Lemma can be proved
following arguments similar to those in the proof of Lemma |
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Lemma A.6. Under Assumptions A1, A3, A6 and A7, as n — oo, hy, — 0 and

nh? — oo,

sup sup
[ Bl=1s€Wn

1 ) ) )
G L K020 =206 Bzt By
—E{p(Z(s)"By)| Z(s)" B} f(Z(s)" B; 5)‘ = 0,(1).

Proof of Lemma[A.6. By Assumption Al and Lemma we have
'E{1 (200" 8l )07 B0 1| ~ p*(wﬁ)f(wﬁ)‘ —o(2).
’Wn’hn Whn

Under the strong mixing Assumption A6 of Z(-), Lemma can be proved
following arguments similar to those in the proof of Lemma [

Lemma A.7. Under Assumptions A1-A7, if n — oo, hy, — 0 and nh? — oo,

sup sup [p"(Z(s)"; B) — p"(Z(s)" B: B)| — 0.

[Bll=1s€Wn

Proof of Lemma[A7] It suffices to show that

sup sup |p*(Z(s)" B; B) — Ez{p*(Z(s)" B; B)}| = 0,

18=1 €W,
sup sup |Ez{p"(Z(s)" B;8)} — p*(Z(s)" B; B)| — 0.
18l=15€Wn

The first result follows from Lemmasand noting inf} g =1 f(Z(s)" B; B) >

¢ > 0 in Assumption A3. The second result is equivalent to

Jw, K ﬁ Z(s)" B1/hn)p(Z(1)"By) di
sup sup

I Bll=1s€Wn fW (t)"B—Z(s)"B|/hn) dt — E{p(Z(s)"Bo)| Z(s)" B}

converging to 0, which follows from Lemmas and [ |
Lemma A.8. Under Assumptions A1-A7,

Pr{ e 12(8) — E{l.(B)} > ¢} — 0.
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Proof of Lemma[A.8 Let

Qu(B) = i S logs" (@) B:0)
Wl SEXNWy
QB = o . sw g (Z(s)BiB), and
Wl seXNW,, BEB(B,b)

QuiBY) = G Sl logs(2()° BB,

sexnw, BEB(B:D)

where B(8,b) = {B8:||8]| = 1,8 — 8] < b}. By Assumptions Al and A4, we
have

limy sup |E{Q7(8,0)} — E{Qn(B)}| =0, for any B,

noting that | E{Q%(8,0)} — E{Qu(8)}| < E{|Q5(8,b) — Qu(B)|}, which is con-
trolled by

sup | log p*(Z(s)"B: B) — log p*(Z(s)" B: B)|} < C.

|W | sEXNW,, BEB(B,b)

Likewise, limy 0 sup,>1 | E{Qn+(8,0)} — E{Qn(B)}] = 0.
Given € > 0, for any 3, there exists b(3) > 0 such that for n > 1,

E{Qn(B)} — € < E{Qn:(8,0(8))} < E{Q;,(8,b(8))} < E{@n(B)} + €.

The collection of balls {B(8,b(8)) : || 8] = 1} is an open cover of the compact
set {B: ]| B3| = 1}, and hence, has a finite subcover {B(3;,b(3;)) : l =1,--- ,L}.
For any 3 € B(3;,b(3;)), we have

Qn(By, b(B1) — E{QL(By, b(By)) } + 2,

and likewise, Q,,(8)—E{Qn(8)} > Qn«(8;,b(8;)) — E{Qn+(B;,b(3;))} —2¢. Then,
for any 3,

mln [Qn*(ﬂlv ( )) E{Qn*(ﬂlv (ﬂl))}] —2e < Qn(l@) _ E{Qn(ﬁ)}
< min [Q;,(81,b(8) — E{QA(8,.b(8)}] + 2.

Lemma results if we prove, for each [, that

Qn=(81,b(81)) — E{Qn«(8y,6(8))) } = 0p(1) and Q;,(8;,b(81)) — E{Q5(8,b(8;))} = 0p(1).
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To prove this, it suffices to prove Var(Qn«(8;,b(8;))) — 0and Var(Q:(8,,b(3;))) —
0. If we let h(s) = SUD5c (g, b(3,)) 108 " (Z(s)"B; B), where |h(s)| < log(C), then,
by Campbell’s Theorem,

Vcw“(QiZ(Bz,b(ﬁz)))ZL2 h(s)R(OXS)AD)[g(s, 1) =1 dsdt+ [ [h(s)]*A(s) ds p,
‘Wn‘ Wi xW,

n

where A(s) = E{\(s|Z(s))} and g(s,t) is the pair correlation function of X.
Assumption A5 implies that

sup |g(s,t)] < C and sup lg(s,t) —1|dt < C.

s,tER2 seR2 JRR2
These assure that Var(Q;(8;,b(8;))) — 0. Likewise, Var(Qn«(8;,b(8;))) — 0
[ |

Lemma A.9. Under Assumptions Al, A3, A6 and A7, as n — oo, hy, — 0 and
nh3 — oo,

a5 (Z(s)" B:8) _ dp*(2(s)" B: B)

\\Zlﬁlilsse%vpn dg a0 ‘ = 0p(1),
where
dp*(Z(s)" B; B) _ 9p*(u; B)

a3 = [Z(S) — E{Z(s)| Z(s)" B} |-

Proof of Lemma[A.9 Note that

A (Z(s)" B;B)  Lvexew, i (K (Z()" B—Z(s)" B)/hn)/d B
(

{u=Z(s)" B}

(
i3 mfwn @O Bz By e

Siexw, W K(Z(0) B~ 2(s)" B)/hn)

- wn S K(Z(t)" B—2(s)" B)/hn) dt

" \Wn|hn Jw, AK(Z()" B—Z(s)" B)/hn)/d B dt
W |hn Jw, K(Z(#)* B—Z(s)* B)/hn) dt

By Lemma[A 5| the denominator of (A.4)-(A.6]) converges uniformly to f(Z(s)" B; 3).
The numerate of (A.4]) equals

> WK’((Z(S)T B—7(t)" B)/ha)[Z(s) — Z(t)],

teXNWy,

(A.5)

(A.6)
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which, by Lemma [A-2] and the arguments in the proof of Lemma [A74] converges

uniformly to

O f(u; B)p* (u; B)|Z(s) — E{Z(5)| Z(s)" B = u}]}

du {u=2(s)" B}
Similarly, the numerator of (A.6)) converges uniformly to
O{ f(u; B)[Z(s) — E{Z(s)| Z(5)" B = u}]}
du {u=2(s)" B}’

By Lemma and the arguments in the proof of Lemma (A.5)) converges
uniformly to p*(Z(s)* B;3). Combining these three results completes the proof

of Lemma[A-0l W

Lemma A.10. Under Assumptions A1, A8, A6 and A7, asn — oo, hy, = 0

and nhi — oo,

PP (Z(s)" B; B)  d*p*(2(s)" B; B)
- = 1).
o, [~ ipap @Ol 50| _ oy

Proof of Lemma[A.10. By Lemma following similar arguments as in the
proof Lemma we can show Lemma,

Lemma A.11. Under Assumptions A1, A3, A6 and A7, as n — oo, h, — 0

and nh} — oo,

1 Z dp*(Z(s)"Bo; By)/d B
Wl [p*(Z(5)™Bo; Bo)]?

5" (2(5)Bos Bo)—p" (2(5)"Bui Bo) | = op(1).

seXNWy,

Lemma A.12. Let A, (s) = dp*(Z(s)"By; Bo)/d B —dp*(Z(s)"By; By)/dB. Un-
der Assumptions A1, A8, A6 and A7, asn — oo, hy, — 0 and nhi — oo,

R _Bals) _,
T e sty S0 <o

Proofs of Lemmas [A.11] and |A.12 The proofs of Lemmas [A.11] and [A.12] are

tedious, but not difficult since the convergence is at the true parameter 3, instead

of uniformly over the parameter space. They can be shown following arguments

similar to those in the proofs of Lemmas 5.8 and 5.9 in Ichimura/ (1993). B
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Lemma A.13. Let Z(s) = Z(s) — E{Z(s)| Z(s)" By}. Under Assumptions A1,
A8, A6 and A7, as n — o0, hy, — 0 and nh: — oo,

1/2[ P (Z(s)"By)Z(s)
F s XAWo p(Z(s)*Bo)

Proof of Lemma [A.15 Note that this result is stated for the case where p is

known. This result was proved in Waagepetersen and Guan| (2009)), where p was

—/ 0 (Z(t)"By)Z(t) dt| -2 MVN(0, I).

assumed to be known. B

Lemma A.14. Under Assumptions A1, A8, A6 and A7, asn — oo, h, = 0

and nht — oo,
dly,
\/\Wn\zglﬂﬂ 25 MVN(0, T).
g
Proof of Lemma[A.1]. Note that

dl(Bo) _ 1 [ Y ZE) By B)/AB
g Wl P*(Z(s)"Bo;: Bo) W,

Then the lemma follows from Lemmas [A.11] and[A.12] W

dﬁk(z(t)TﬁOQ ﬁo)/d/@ dt|.

seXNWh,

Lemma A.15. Under Assumptions A1, A8, A6 and A7, asn — oo, hyy, = 0
and nh} — oo,

B d1,(By)
dBdgs”
Proof of Lemma[A.15. Note that

1n(Bo) _ 1 [ S LI BBy /ABAB" / 0" (Z(t)" Bo; Bo) dt}
dpdp” Wl mw,  P7(Z(5)"B0i Bo) . dBdp

1 dp*(Z(s)"Bo; By)/d B p*(Z(s)"Bo; By)/d B
Z ( P*(Z(s)"By; Bo) )( P*(Z(s)"By; By) )

The first term on the right-hand-side converges to zero following Lemma

and the second term converges to V,, following Lemma [ |

=V, +0p(1).

Wl SEXNW,

Lemma A.16. Under Assumptions A1, A8, A6 and A7, asn — oo, hy, = 0
and nht — oo, for any € > 0 there exists a neighborhood of By, Bo, such that

P (8) &1 (By)
dBdB*  dBdsT

Pr{ sup > z—:} — 0.

BeBy
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Proof of Lemma[A.16. The lemma follows from Lemmas [A.9] and [A10] and the
continuity stated in Assumption A4. B

A.2 Proof that D,, is non-negative
For an arbitrary set of locations in W,, J = {s1,---,J}, let I(ds;) be
the indicator that there is an event in region dsj, j = 1,---,J. Denote vector
(I(ds1), -+ ,I(dsy))" as Y(J). Then given covariate process Z, the covariance
matrix of Y(J) is Cov(Y (J)) =
Sst = p(Z(s)" Bo)p(Z(t)" By)lg(s,t) — 1]. Hence, for any function function h(s),
)

we have Yo 7 Yye 7 ()Rt p(Z(s)" B)p(Z(1)" Bo)lg(s.t) — 1] > 0. Further,
1

’Wn’ Wi x Wy,

(Ss,t)s,te, which is positive semi-definite, where

R()h(£)p(Z(5)" Bo)o(Z(t) Bo)lg(s, ) — 1] ds dt > 0.
Letting h(s) = p'(Z(s)"By)Z(5)/p(Z(5)"By), it shows that D,, > 0. B
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