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Abstract: We introduce a single index model for the intensity of an inhomogeneous

spatial point process, relating the intensity function to an unknown function ρ of

a linear combination of measurements of a p-dimensional spatial covariate process.

Such a model extends and generalizes a commonly used model where ρ is known.

We derive an estimating procedure for ρ and the coefficient parameters β and show

consistency and asymptotic normality of estimates of β under some regularity as-

sumptions. We present results of some simulation studies showing the effectiveness

of the procedure. Finally, we apply the procedure to a dataset of fast food restau-

rant locations in New York City.
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1. Introduction

In the analysis of inhomogeneous spatial point patterns, a common interest

is the study of the relationship between the intensity function λ and various

measured spatial covariates Z. For example, Waagepetersen and Guan (2009)

examined the intensity of trees in a plot of land in relation to land and soil

characteristics, and Illian et al. (2012) modeled the locations of muskoxen herds

with an index of vegetation productivity and other spatial covariates such as

altitude.

To be more specific, let X represent an inhomogeneous spatial point process

defined on R2 that is observed within a finite observation window Wn, and let

X(B) denote the number of events observed in a Borel set B ⊂ R2 and |B| the
area of B. The intensity function of X is defined as

λ(s|Z(s) = Z) =
lim|ds|→0E{X(ds)|Z(s) = Z}

|ds|
, (1.1)

which incorporates the dependence of the intensity function on a p-dimensional

stationary covariate process Z(·). See, e.g. Diggle (2003).
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Recent work on the modeling of λ as a function of Z has been based on

assuming

λ(s|Z(s)) = exp(Z(s)
Tβ0), (1.2)

and estimating the parameter β0 using the estimating equation derived from

maximizing the Poisson process log-likelihood,

�ln(β) = 1

|Wn|

[ ∑
s∈X∩Wn

Z(s)
Tβ −

∫

Wn

exp(Z(t)
Tβ) dt

]
. (1.3)

It is important to point out that, although the estimating equation is derived

from the Poisson process log-likelihood, Schoenberg (2004) showed that estimates

obtained this way are still consistent even when the underlying point process is

non-Poisson, under some regularity conditions. Schoenberg (2016) showed fur-

ther that estimates may be consistent even when some covariates are excluded

from the model, provided that the effect of the excluded covariates on the in-

tensity is small. Waagepetersen and Guan (2009) further established asymptotic

normality for estimates of β obtained from the Poisson estimating equations

as part of a two-step procedure introduced by Waagepetersen (2007) for fitting

Neyman-Scott models to inhomogeneous spatial point processes.

In this paper, we generalize the model (1.2), replacing the exponential func-

tion with an unknown function ρ, so that

λ(s|Z(s)) = ρ(Z(s)
Tβ0), (1.4)

where ∥β0 ∥ = 1. In regular regression settings, this is known as a single-index

model (Ichimura (1993)) and has been used in such areas as econometrics and bio-

metrics. As a semi-parametric model, the single-index model (1.4) is more flexible

than the parametric model (1.2). By using only one nonparametric dimension,

the single-index model avoids computational difficulties that are common with

fully nonparametric models.

We expect the single-index model (1.4) to be more useful than the log-linear

model (1.2) for predicting the intensity, even if the two models perform sim-

ilarly for estimating coefficients β0. We give an estimating procedure for the

single-index model applied to spatial point patterns and show its effectiveness.

We hope this will motivate more research on the use of other semi-parametric

models, such as generalized additive models (Hastie and Tibshirani (1990)) and

generalized additive partial linear models (Wang et al. (2011)) to model the in-

tensity function.

The single-index model (1.4) can be estimated using either iterative or direct
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methods (Horowitz (1998, Ch. 2)). We consider the iterative method, and show

consistency and asymptotic normality of the estimators. Guan (2008) studied a

more general model, the sliced inverse regression (SIR) model (Li (1991)), and

considered the direct method of estimation. The iterative method is appealing

for investigating theoretical properties, while the direct method is appealing for

high-dimensional data analysis as it is more computationally efficient.

The rest of the paper is organized as follows. In Section 2, we describe

the estimation procedure for ρ and β0. In Section 3, we derive consistency and

asymptotic normality of the estimates of β0, while the implementation of the

procedure is described in Section 4. In Section 5, we illustrate the procedure

using a simulation study and an application to data. The Appendix in the online

Supplementary Materials contains the lemmas and some of the more detailed

proofs.

2. Method

With the single-index model (1.4) for the intensity function, the Poisson

process log-likelihood (1.3) is

�ln(β) = 1

|Wn|

[ ∑
s∈X∩Wn

log ρ(Z(s)
Tβ)−

∫

Wn

ρ(Z(t)
Tβ) dt

]
. (2.1)

Since ρ is an unknown function, β0 cannot be estimated by maximizing �ln directly.

Instead, following Ichimura (1993), we estimate ρ using kernel regression with

kernel function K(·) and bandwidth hn,

�ρ∗(u;β) =
∑

s∈X∩Wn
K(|Z(s)Tβ − u|/hn)∫

Wn
K(|Z(t)Tβ − u|/hn) dt

, (2.2)

and estimate β0 using
�βn = argmax∥β ∥=1

�ln(β), (2.3)

where

�ln(β) = 1

|Wn|

[ ∑
s∈X∩Wn

log �ρ∗(Z(s)Tβ;β)−
∫

Wn

�ρ∗(Z(t)Tβ;β) dt
]
. (2.4)

Here �ρ∗ estimates the conditional intensity function given Z(s)T β = u,

ρ∗(u;β) =
lim|ds|→0E{X(ds)

��Z(s)T β = u}
|ds|

=
lim|ds|→0E

{
E[X(ds)|Z(s)]

��Z(s)T β = u
}

|ds|
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= E{ρ(Z(s)Tβ0)|Z(s)T β = u}. (2.5)

The estimating procedure (2.3) can also be obtained by minimizing the

Kullback-Leibler (KL) distance between the conditional intensity function and

the true intensity function, ρ∗(u;β) and ρ(u). Since λ(s|Z(s)) = ρ(Z(s)T β0) =

ρ∗(Z(s)Tβ0;β0), the KL distance between it and ρ∗(Z(s)T β;β) is given by

d(β,β0) =
1

|Wn|
E

{[ ∑
s∈X∩Wn

log ρ∗(Z(s)
Tβ0;β0)−

∫

Wn

ρ∗(Z(t)
Tβ0;β0) dt

]

−
[ ∑
s∈X∩Wn

log ρ∗(Z(s)
T β;β)−

∫

Wn

ρ∗(Z(t)
T β;β) dt

]}
. (2.6)

By the property of the KL distance, d(β,β0) = 0 implies that ρ∗(Z(s)Tβ;β) =

ρ(Z(s)T β0). Under some regularity conditions on Z(·) and ρ(·), such as Assump-

tions 4.1 and 4.2 in Ichimura (1993), this in turn implies that β = β0, suggesting

that the model is identifiable using (1.4). Next, the KL distance d(β,β0) between

ρ∗(Z(s)Tβ;β) and ρ∗(Z(s)Tβ0;β0) can be estimated by

�d(β,β0) =
1

|Wn|

{[ ∑
s∈X∩Wn

log ρ∗(Z(s)
Tβ0;β0)−

∫

Wn

ρ∗(Z(t)
Tβ0;β0) dt

]

−
[ ∑
s∈X∩Wn

log �ρ∗(Z(s)T β;β)−
∫

Wn

�ρ∗(Z(t)T β;β) dt
]}

. (2.7)

Ignoring the constant terms not depending on β, the minimizer of (2.7) is equiv-

alent to that of (2.4). Finally, ρ(u) can be estimated by

�ρ(u) = �ρ∗(u; �βn). (2.8)

3. Theoretical Results

In this section we show the consistency and asymptotic normality of �β. Be-
fore stating the assumptions needed for the results, we need to define a mixing co-

efficient to specify the dependence structure of the point process X. Since we ap-

ply a spatial version of Bernstein’s inequality developed in Zhu and Lahiri (2007),

we adopt the definition of the mixing coefficient used there. For S1, S2 ∈ B(R2),

let α1(S1, S2) = sup
{
|Pr(A1 ∩ A2) − Pr(A1)Pr(A2)| : A1 ∈ FX(S1), A2 ∈

FX(S2)
}
, where S1 and S2 are any two subsets in R2 and FX(S) is the σ-algebra

generated by the variables {X(s) : s ∈ S}. Then the α-mixing coefficient is

α(m; b) = sup
{
α1(S1, S2) : |S1| ≤ b, |S2| ≤ b, d(S1, S2) ≥ m

}
,

where |S| is the area of S, d(S1, S2) is the minimal distance between S1 and S2.

SINGLE-INDEX MODEL FOR INHOMOGENEOUS SPATIAL POINT PROCESSES 5

3.1. Assumptions

We require some assumptions. In them, c and C are generic positive con-

stants.

A1. Covariate {Z(s) : s ∈ R2} is a stationary process and ∥Z(s)∥ ≤ C.

A2. The observable window Wn is of the form [a1n, a2n] × [b1n, b2n], where

a2 > a1 and b2 > b1. For sufficient large k > 0, E{Xk(W1)} < ∞, where

X(W ) is the number of events in window W .

A3. For any ∥β ∥ = 1, the density of Z(s)T β, denoted as f(u;β), is three times

continuously differentiable with respect to u. Also, inf∥β ∥=1 f(Z(s)
T β;β) ≥

c > 0.

A4. The function ρ∗(u;β) is continuously differentiable with respect to u and

β, 0 < c ≤ ρ∗(u;β) ≤ C, and ∥(∂ρ∗(u;β)/∂u, ∂ρ∗(u;β)/∂ βT)∥ ≤ C.

A5. The α-mixing coefficient α(m; b) of X(·) satisfies α(m; b) ≤ Cm−τ bδ, for

some τ > 0 and δ > 0.

A6. The α-mixing coefficient α̃(m; b) of Z(·) satisfies α̃(m; b) ≤ Cm−τ bδ, for

some τ > 0 and δ > 0.

A7. The kernel K(u) is symmetric, twice continuously differentiable and the

second derivative satisfies a Lipschitz condition;
∫
K(u)du = 1 and K(u) =

0 for |u| > 1.

Remark 1. In Assumption A1, the stationarity of the covariate process is

added for mathematical convenience in stating some of the limits, such as the

last term in (3.2).

Remark 2. The boundedness assumption A1 for the covariate process is

also for convenience; it was also assumed in Waagepetersen and Guan (2009) and

in Ichimura (1993).

Remark 3. The form of the window Wn in Assumption A2 was assumed

in Waagepetersen and Guan (2009). The results can be easily generalized to any

window [a1λn, a2λn] × [b1λn, b2λn], where λn → ∞ as n → ∞. In addition, the

moment assumption is satisfied if the distribution of X(W1) is light-tailed. We

determine the value of k in the proof.

Remark 4. The Assumptions A3, A4 and A7 are standard for single-index

models. Similar assumptions were made in Ichimura (1993).
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Remark 5. The mixing coefficient of X is needed only for using the spa-

tial version of Bernstein’s inequality given in Lemma 4.7 of Zhu and Lahiri

(2007). Assumptions A5 and A6 are needed in order to apply this inequality. We

determine the values of m and b in the proof.

3.2. Consistency

Theorem 1. Under Assumptions A1-A7, if n → ∞, hn → 0 and nh2n → ∞,

then �βn → β0 in probability.

Proof. Take

ln(β) =
1

|Wn|
[

∑
s∈X∩Wn

log ρ∗(Z(s)
Tβ;β)−

∫

Wn

ρ∗(Z(t)
Tβ;β) dt]. (3.1)

Then, under Assumption A1,

E{ln(β)} =
1

|Wn|
E

{∫

Wn

log ρ∗(Z(t)
Tβ;β)ρ(Z(t)

Tβ0)dt−
∫

Wn

ρ∗(Z(t)
Tβ;β) dt

}

=
1

|W1|
E

{∫

W1

log ρ∗(Z(t)
Tβ;β)ρ(Z(t)

Tβ0)dt−
∫

W1

ρ∗(Z(t)
Tβ;β) dt

}
.

(3.2)

By definition, Pr
{�ln(�βn) ≥ �ln(β0)

}
= 1. So, since we have

1 = Pr
{�ln(�βn) ≥ �ln(β0) and

�βn ∈ B(β0)
}
+ Pr

{�ln(�βn) ≥ �ln(β0)

and �βn ̸∈ B(β0)
}
≤ Pr

{�βn ∈ B(β0)
}
+ Pr

{
sup

β ̸∈B(β0)

�ln(β) ≥ �ln(β0)
}
,

for any small open ball B(β0) that includes β0, Theorem 1 follows if

Pr
{

sup
β ̸∈B(β0)

�ln(β) ≥ �ln(β0)
}
→ 0. (3.3)

With the identifiability, E{ln(β0)} − supβ ̸∈B(β0)
E{ln(β)} > ε, for some ε > 0

and for any n. Now, because

Pr
{

sup
β ̸∈B(β0)

�ln(β) ≥ �ln(β0)
}

= Pr
{

sup
β ̸∈B(β0)

[�ln(β)− ln(β) + ln(β)− E{ln(β)}+ E{ln(β)}] ≥ �ln(β0)
}

≤ Pr
{

sup
β ̸∈B(β0)

[�ln(β)− ln(β)] + sup
β ̸∈B(β0)

[ln(β)− E{ln(β)}]

+ [E{ln(β0)} − �ln(β0)] ≥ E{ln(β0)} − sup
β ̸∈B(β0)

E{ln(β)}
}
,

(3.3) follows if we can show that
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Pr
{

sup
∥β ∥=1

����ln(β)− ln(β)
��� ≥ ε

3

}
→ 0; (3.4)

Pr
{

sup
∥β ∥=1

|ln(β)− E{ln(β)}| ≥
ε

3

}
→ 0; (3.5)

Pr
{ ���E{ln(β0)} − �ln(β0)

��� ≥ ε

3

}
→ 0. (3.6)

Since (3.6) is implied by (3.4) and (3.5), it suffices to prove (3.4) and (3.5), which

are respectively implied by Lemmas A.7 and A.8 in the Appendix available in

the online Supplementary Materials.

3.3. Asymptotic normality

Let β0 = (β01, . . . , β0p)
T, with ∥β0 ∥ = 1. Without loss of generality, as-

sume that β01 ̸= 0. We reparameterize the parameters as βT

0 = β01(1, β̌
T

0) and

ρ(Z(s)Tβ0) = ρ̌(Z1(s) + Ž(s)Tβ̌0), where ZT = (Z1, Ž
T
). In this section, for

notational simplicity, we use β, ρ and Z to refer to β̌, ρ̌ and Ž respectively.

Let ρβ0,2(s, t) denote the second-order product density of X. The second-

order product density describes the behavior of point pairs in X. See, e.g. Diggle

(2003). The pair correlation function is related to the second-order product

density and is defined as

g(s, t) =
ρβ0,2(s, t)

ρ(Z(s)Tβ0)ρ(Z(t)
Tβ0)

. (3.7)

Theorem 2. Under Assumptions A1-A7, if n → ∞, hn → 0 and nh4n → ∞,

then

|Wn|1/2Σ−1/2
n Vn(�βn − β0)

D−→ MVN(0, I);

where

Vn =
1

|Wn|

∫

Wn

[ρ′(Z(s)Tβ0)]
2�Z(s)�Z(s)T

ρ(Z(s)Tβ0)
ds,

Σn = Vn +
1

|Wn|

∫

Wn×Wn

ρ′(Z(s)
Tβ0)ρ

′(Z(t)
Tβ0)�Z(s)�Z(t)T[g(s, t)− 1] ds dt,

where �Z(s) = Z(s)− E{Z(s)|Z(s)Tβ0}.

Proof. By Theorem 1, with probability close to one, for β between �β and β0,

�ln(�βn) =
�ln(β0) +

d�ln(β0)

dβT
(�β − β0) + (�β − β0)

T
d2�ln(β)
dβ dβT

(�β − β0).

Then, by the same arguments used in the proof of Theorem 5.2 in Ichimura

(1993), Theorem 2 follows from Lemmas A.14-A.16.
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Remark 5. The mixing coefficient of X is needed only for using the spa-

tial version of Bernstein’s inequality given in Lemma 4.7 of Zhu and Lahiri

(2007). Assumptions A5 and A6 are needed in order to apply this inequality. We

determine the values of m and b in the proof.

3.2. Consistency

Theorem 1. Under Assumptions A1-A7, if n → ∞, hn → 0 and nh2n → ∞,

then �βn → β0 in probability.

Proof. Take

ln(β) =
1

|Wn|
[

∑
s∈X∩Wn

log ρ∗(Z(s)
Tβ;β)−

∫

Wn

ρ∗(Z(t)
Tβ;β) dt]. (3.1)

Then, under Assumption A1,

E{ln(β)} =
1

|Wn|
E

{∫

Wn

log ρ∗(Z(t)
Tβ;β)ρ(Z(t)

Tβ0)dt−
∫

Wn

ρ∗(Z(t)
Tβ;β) dt

}

=
1

|W1|
E

{∫

W1

log ρ∗(Z(t)
Tβ;β)ρ(Z(t)

Tβ0)dt−
∫

W1

ρ∗(Z(t)
Tβ;β) dt

}
.

(3.2)

By definition, Pr
{�ln(�βn) ≥ �ln(β0)

}
= 1. So, since we have

1 = Pr
{�ln(�βn) ≥ �ln(β0) and

�βn ∈ B(β0)
}
+ Pr

{�ln(�βn) ≥ �ln(β0)

and �βn ̸∈ B(β0)
}
≤ Pr

{�βn ∈ B(β0)
}
+ Pr

{
sup

β ̸∈B(β0)

�ln(β) ≥ �ln(β0)
}
,

for any small open ball B(β0) that includes β0, Theorem 1 follows if

Pr
{

sup
β ̸∈B(β0)

�ln(β) ≥ �ln(β0)
}
→ 0. (3.3)

With the identifiability, E{ln(β0)} − supβ ̸∈B(β0)
E{ln(β)} > ε, for some ε > 0
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Pr
{

sup
β ̸∈B(β0)

�ln(β) ≥ �ln(β0)
}

= Pr
{

sup
β ̸∈B(β0)

[�ln(β)− ln(β) + ln(β)− E{ln(β)}+ E{ln(β)}] ≥ �ln(β0)
}

≤ Pr
{

sup
β ̸∈B(β0)

[�ln(β)− ln(β)] + sup
β ̸∈B(β0)

[ln(β)− E{ln(β)}]

+ [E{ln(β0)} − �ln(β0)] ≥ E{ln(β0)} − sup
β ̸∈B(β0)

E{ln(β)}
}
,
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Pr
{

sup
∥β ∥=1

����ln(β)− ln(β)
��� ≥ ε

3

}
→ 0; (3.4)

Pr
{

sup
∥β ∥=1
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ε

3

}
→ 0; (3.5)

Pr
{ ���E{ln(β0)} − �ln(β0)

��� ≥ ε

3

}
→ 0. (3.6)
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0) and

ρ(Z(s)Tβ0) = ρ̌(Z1(s) + Ž(s)Tβ̌0), where ZT = (Z1, Ž
T
). In this section, for

notational simplicity, we use β, ρ and Z to refer to β̌, ρ̌ and Ž respectively.

Let ρβ0,2(s, t) denote the second-order product density of X. The second-

order product density describes the behavior of point pairs in X. See, e.g. Diggle

(2003). The pair correlation function is related to the second-order product

density and is defined as

g(s, t) =
ρβ0,2(s, t)

ρ(Z(s)Tβ0)ρ(Z(t)
Tβ0)

. (3.7)

Theorem 2. Under Assumptions A1-A7, if n → ∞, hn → 0 and nh4n → ∞,

then

|Wn|1/2Σ−1/2
n Vn(�βn − β0)

D−→ MVN(0, I);

where

Vn =
1

|Wn|

∫

Wn

[ρ′(Z(s)Tβ0)]
2�Z(s)�Z(s)T

ρ(Z(s)Tβ0)
ds,

Σn = Vn +
1

|Wn|

∫

Wn×Wn

ρ′(Z(s)
Tβ0)ρ

′(Z(t)
Tβ0)�Z(s)�Z(t)T[g(s, t)− 1] ds dt,

where �Z(s) = Z(s)− E{Z(s)|Z(s)Tβ0}.

Proof. By Theorem 1, with probability close to one, for β between �β and β0,

�ln(�βn) =
�ln(β0) +

d�ln(β0)

dβT
(�β − β0) + (�β − β0)

T
d2�ln(β)
dβ dβT

(�β − β0).

Then, by the same arguments used in the proof of Theorem 5.2 in Ichimura

(1993), Theorem 2 follows from Lemmas A.14-A.16.
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3.4. Efficiency

Here we discuss without rigorous proof the relative efficiency of the estimator

(2.3). If X is a Poisson process, then �βn is an efficient estimate of β0 in the

sense of asymptotic efficiency in Newey (1994). To see this, assume that the

true unknown nonparametric component ρ(·) is in some compact set. If X is a

Poisson process, the log-likelihood for ρ and β0 is

ln(ϱ,β) =
1

|Wn|
[

∑
s∈X∩Wn

log ϱ(Z(s)
T β)−

∫

Wn

ϱ(Z(t)
T β) dt]. (3.8)

For fixed β, let ϱ(·;β) denote the one that minimizes

E{ln(ϱ,β)} =
1

|Wn|
E[

∫

Wn

log ϱ(Z(t)
T β)ρ(Z(s)

Tβ0) dt−
∫

Wn

ϱ(Z(t)
T β) dt].

(3.9)

The curve {ϱ(·;β) : ∥β ∥ = 1} is a least favorable curve in the sense of Stein

(1956), and it can be shown that ϱ(u;β) = ρ∗(u;β). By Severini and Wong

(1992), since ρ∗(·;β) is a least favorable curve, the profile estimator �βn is an

efficient estimator of β.

If X is not a Poisson process, the efficiency lost resulting from using the

objective function (2.1) instead of its true log-likelihood can be measured using

Dn = Σn − Vn. Following the proof in Appendix A.2, we can show that

Dn =
1

|Wn|

∫

Wn×Wn

ρ′(Z(s)
Tβ0)ρ

′(Z(t)
Tβ0)�Z(s)�Z(t)T[g(s, t)− 1] ds dt ≥ 0.

4. Implementation

The integrals in both (2.2) and (2.4) can be approximated using a method

proposed in Berman and Turner (1992) and Baddeley and Turner (2000). The

same approximation method was also used in Guan (2008). Let w1, · · · , wN be

a set of non-overlapping small windows with ∪N
i=1wi = Wn, such that any point

in X is in {w1, · · · , wN}, and each window contains at most one point in X. Let

ti ∈ wi, i = 1, · · · , N be representative locations of wi, e.g. the centroids of wi.

Then, the integral
∫
Wn

ζ(t)dt, for function ζ : R2 �→ R, can be approximated by

∫

Wn

ζ(t)dt =

N∑
i=1

ζ(ti)|wi|. (4.1)

As pointed out by Guan (2008), the use of (4.1) presents little constraint in

practice since the covariate process Z(·) is often observed only at some discrete

locations. In this case, each ti corresponds to a location where Z(·) is observed
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and wi is chosen to be the set associated with ti. Specifically,
∫

Wn

K(
|Z(t)T β−u|

hn
)dt

.
=

N∑
i=1

K(
|Z(ti)T β−u|

hn
)|wi|, (4.2)

∫

Wn

�ρ∗(Z(t)T β;β)dt .
=

N∑
i=1

�ρ∗(Z(ti)T β;β)|wi|. (4.3)

Based on (4.2) and (4.3), the estimator at (2.3) can be calculated numerically.

The R code implementing the proposed method is available as an online supple-

mentary file.

5. Numerical Results

5.1. Simulation

We performed a simulation study to examine the empirical properties of

our estimators (2.3) and (2.8) for the single-index model (1.4). The point pat-

terns and covariates are simulated using functions available from the R packages

spatstat and RandomFields. R code to estimate β0 and ρ is available from the

authors upon request.

We first obtained three independent covariates Z1, Z2, and Z3 on the 4 × 4

square region using realizations from a Gaussian random field with covariance

function given by σ2 exp(−d/d0). We used (σ2, d0) = (0.05, 0.4), (0.08, 0.8) and

(0.1, 1) respectively for Z1, Z2 and Z3. This was done using the RFsimulate

function in the RandomFields R package. With the covariate vector Z(s) =

(1, Z1(s), Z2(s), Z3(s))
T, we then defined intensity functions corresponding to

three forms for ρ. Specifically,

λ1(s) = exp(Z(s)
Tβ0),

λ2(s) = 10 +
200

1 + b2 exp(−Z(s)Tβ0)
,

λ3(s) = 25
[
Z(s)

Tβ0 + sin
(π
2
Z(s)

Tβ0

)
+ b3

]
.

We considered three different sets of values for β0, specifically βT

0 = (3.5, 3.5, 3.5,

3.5), (1, 2, 4, 8) and (2.5, 8, 4, 2), to form the indices Z(s)Tβ0. For each specific β0,

the values of b2 and b3 were chosen so that inhomogeneous Poisson realizations

generated in the 4 × 4 window from the intensity functions had between 2,500

and 3,000 points. Specifically, we used (b2, b3) = (8, 2.5), (2, 4), (2, 2.5) for βT

0 =

(3.5, 3.5, 3.5, 3.5), (1, 2, 4, 8), (2.5, 8, 4, 2), respectively.

For each combination of β0 value and intensity function λi, i = 1, 2, 3, 100

inhomogeneous Poisson realizations were generated on the 4×4 observation win-
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The integrals in both (2.2) and (2.4) can be approximated using a method

proposed in Berman and Turner (1992) and Baddeley and Turner (2000). The

same approximation method was also used in Guan (2008). Let w1, · · · , wN be

a set of non-overlapping small windows with ∪N
i=1wi = Wn, such that any point

in X is in {w1, · · · , wN}, and each window contains at most one point in X. Let

ti ∈ wi, i = 1, · · · , N be representative locations of wi, e.g. the centroids of wi.

Then, the integral
∫
Wn

ζ(t)dt, for function ζ : R2 �→ R, can be approximated by

∫

Wn

ζ(t)dt =

N∑
i=1

ζ(ti)|wi|. (4.1)

As pointed out by Guan (2008), the use of (4.1) presents little constraint in

practice since the covariate process Z(·) is often observed only at some discrete

locations. In this case, each ti corresponds to a location where Z(·) is observed
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and wi is chosen to be the set associated with ti. Specifically,
∫
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|Z(t)T β−u|

hn
)dt
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=

N∑
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hn
)|wi|, (4.2)

∫
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�ρ∗(Z(t)T β;β)dt .
=
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�ρ∗(Z(ti)T β;β)|wi|. (4.3)

Based on (4.2) and (4.3), the estimator at (2.3) can be calculated numerically.

The R code implementing the proposed method is available as an online supple-

mentary file.

5. Numerical Results

5.1. Simulation

We performed a simulation study to examine the empirical properties of

our estimators (2.3) and (2.8) for the single-index model (1.4). The point pat-

terns and covariates are simulated using functions available from the R packages

spatstat and RandomFields. R code to estimate β0 and ρ is available from the

authors upon request.

We first obtained three independent covariates Z1, Z2, and Z3 on the 4 × 4

square region using realizations from a Gaussian random field with covariance

function given by σ2 exp(−d/d0). We used (σ2, d0) = (0.05, 0.4), (0.08, 0.8) and

(0.1, 1) respectively for Z1, Z2 and Z3. This was done using the RFsimulate

function in the RandomFields R package. With the covariate vector Z(s) =

(1, Z1(s), Z2(s), Z3(s))
T, we then defined intensity functions corresponding to

three forms for ρ. Specifically,

λ1(s) = exp(Z(s)
Tβ0),
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1 + b2 exp(−Z(s)Tβ0)
,

λ3(s) = 25
[
Z(s)
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.

We considered three different sets of values for β0, specifically βT

0 = (3.5, 3.5, 3.5,

3.5), (1, 2, 4, 8) and (2.5, 8, 4, 2), to form the indices Z(s)Tβ0. For each specific β0,

the values of b2 and b3 were chosen so that inhomogeneous Poisson realizations

generated in the 4 × 4 window from the intensity functions had between 2,500

and 3,000 points. Specifically, we used (b2, b3) = (8, 2.5), (2, 4), (2, 2.5) for βT

0 =
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For each combination of β0 value and intensity function λi, i = 1, 2, 3, 100

inhomogeneous Poisson realizations were generated on the 4×4 observation win-
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Figure 1. Plots of the three covariates Z1, Z2 and Z3 used in the simulation study.

−

Figure 2. The intensity functions λ1, λ2 and λ3 when β0 = (1, 2, 4, 8). Note that λ1 is
plotted on the log scale.

dow. We also extracted from these realizations smaller point patterns corre-

sponding to the points that fell within the lower left 2 × 2 and 1 × 1 squares.

With each point pattern, we used (2.3) and (2.8), respectively, to obtain β̂0 and

ρ̂. The bandwidths needed for the kernel regression estimation procedure for ρ

were selected using a dynamic application of the rule of thumb provided in Sil-

verman (1986) as follows. For every new interim value of β̃ in the optimization

procedure, the standard deviation σ̃ of the index Z(s)Tβ̃ for s ∈ X was computed

and a bandwidth h = 1.06σ̃N−1/5 was used with the Gaussian kernel, where N

was the number of points in the point pattern.

Since ρ is non-parametric, our estimate ρ̂ can adapt to any scale of the

estimates β̂. Hence in our fitting procedure, we excluded the intercept and set

the coefficient of Z1 to 1. The resulting estimates of the coefficients of Z2 and Z3

were thus β2/β1 and β3/β1 rather than the original β2 and β3. The initial values

of β used for the procedure were obtained by rescaling the estimates (ignoring the

intercept) obtained from applying the ppm function in the R package spatstat,

which fits the log-linear model to the data.

Figure 1 shows plots of the covariates Z1, Z2, and Z3 and Figure 2 shows the

resulting intensity functions for β0 = (1, 2, 4, 8)T. Plots of the estimates ρ̂ are

shown in Figure 3 for simulated data on the 4× 4 observation window. The left,
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middle and right columns correspond to λ1, λ2, and λ3, respectively, while each

row of plots corresponds to a different value of β0 used. The point-wise mean

and two standard error limits are shown in thin dashed dark gray lines. The solid

black line shows the true function ρ, while the dashed black line shows what the

corresponding exponential function would look like if it replaced ρ directly.

We find that ρ is well estimated for all the three intensity functions considered

in the simulation. There is some, but not very large, variability in performance

between the different true values of β0. Performance is best at the mid-range

values of the index, where there is more information provided by the data. At

the extreme ends of the range of the index, especially at the higher end, there is

much more variability in �ρ.
The intensity function λ2 is rather flat for a significant range of the index

values, as highlighted in the middle plot of Figure 2, which shows large portions of

the region with almost constant intensity. This may make it challenging for any

estimation procedure to capture the relationship to the covariates. The intensity

function λ3 mostly increases with the index, but is not monotone, due to the

sine function in its expression. However, estimates �ρ manage to approximately

capture the functional form of λ2 and λ3.

The estimates �ρ obtained from point data on the smaller window sizes (not

shown) also follow the true ρ pretty well. For these smaller data sizes, perfor-

mance is noticeably better for the exponential function λ1 than for λ2 or λ3, in

the sense that estimates for the latter intensity functions show significantly more

variability. Judging from Figure 2, part of the underperformance may be due to

insufficient structure in the intensity function on the smaller windows, especially

for λ2.

In order to assess the performance of the procedure for estimating the inten-

sity function, we define the integrated square error (ISE) for estimating λ as

ISE =

∫

W

(�λ(s)− λ(s)
)2

ds, (5.1)

where λ(s) is the true value of the intensity function at location s ∈ W and �λ(s)
the corresponding estimate, obtained either from the fitted single-index model

or the fitted log-linear model. Since we only have the intensity values on a grid

in W , we approximate the ISE by replacing the integral in (5.1) with a sum of

the corresponding values over the grid cells. The mean integrated square error

(MISE) is then obtained by averaging the estimated ISE over the 100 realizations

for each set of parameter values.
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dow. We also extracted from these realizations smaller point patterns corre-

sponding to the points that fell within the lower left 2 × 2 and 1 × 1 squares.

With each point pattern, we used (2.3) and (2.8), respectively, to obtain β̂0 and

ρ̂. The bandwidths needed for the kernel regression estimation procedure for ρ

were selected using a dynamic application of the rule of thumb provided in Sil-

verman (1986) as follows. For every new interim value of β̃ in the optimization

procedure, the standard deviation σ̃ of the index Z(s)Tβ̃ for s ∈ X was computed

and a bandwidth h = 1.06σ̃N−1/5 was used with the Gaussian kernel, where N

was the number of points in the point pattern.

Since ρ is non-parametric, our estimate ρ̂ can adapt to any scale of the

estimates β̂. Hence in our fitting procedure, we excluded the intercept and set

the coefficient of Z1 to 1. The resulting estimates of the coefficients of Z2 and Z3

were thus β2/β1 and β3/β1 rather than the original β2 and β3. The initial values

of β used for the procedure were obtained by rescaling the estimates (ignoring the

intercept) obtained from applying the ppm function in the R package spatstat,

which fits the log-linear model to the data.

Figure 1 shows plots of the covariates Z1, Z2, and Z3 and Figure 2 shows the

resulting intensity functions for β0 = (1, 2, 4, 8)T. Plots of the estimates ρ̂ are

shown in Figure 3 for simulated data on the 4× 4 observation window. The left,
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middle and right columns correspond to λ1, λ2, and λ3, respectively, while each

row of plots corresponds to a different value of β0 used. The point-wise mean

and two standard error limits are shown in thin dashed dark gray lines. The solid

black line shows the true function ρ, while the dashed black line shows what the

corresponding exponential function would look like if it replaced ρ directly.

We find that ρ is well estimated for all the three intensity functions considered

in the simulation. There is some, but not very large, variability in performance

between the different true values of β0. Performance is best at the mid-range

values of the index, where there is more information provided by the data. At

the extreme ends of the range of the index, especially at the higher end, there is

much more variability in �ρ.
The intensity function λ2 is rather flat for a significant range of the index

values, as highlighted in the middle plot of Figure 2, which shows large portions of

the region with almost constant intensity. This may make it challenging for any

estimation procedure to capture the relationship to the covariates. The intensity

function λ3 mostly increases with the index, but is not monotone, due to the

sine function in its expression. However, estimates �ρ manage to approximately

capture the functional form of λ2 and λ3.

The estimates �ρ obtained from point data on the smaller window sizes (not

shown) also follow the true ρ pretty well. For these smaller data sizes, perfor-

mance is noticeably better for the exponential function λ1 than for λ2 or λ3, in

the sense that estimates for the latter intensity functions show significantly more

variability. Judging from Figure 2, part of the underperformance may be due to

insufficient structure in the intensity function on the smaller windows, especially

for λ2.

In order to assess the performance of the procedure for estimating the inten-

sity function, we define the integrated square error (ISE) for estimating λ as

ISE =

∫

W

(�λ(s)− λ(s)
)2

ds, (5.1)

where λ(s) is the true value of the intensity function at location s ∈ W and �λ(s)
the corresponding estimate, obtained either from the fitted single-index model

or the fitted log-linear model. Since we only have the intensity values on a grid

in W , we approximate the ISE by replacing the integral in (5.1) with a sum of

the corresponding values over the grid cells. The mean integrated square error

(MISE) is then obtained by averaging the estimated ISE over the 100 realizations

for each set of parameter values.
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Figure 3. Estimates ρ̂ for λ1, λ2 and λ3 (left, middle and right columns respectively)
for β0 = (3.5, 3.5, 3.5, 3.5), (1, 2, 4, 8), (2.5, 8, 4, 2) (top, middle and bottom rows respec-
tively), obtained from inhomogeneous Poisson point data on the 4× 4 observation win-
dow, with point-wise mean and two standard error limits shown in dashed gray lines.
The solid and dashed black curves show the true function and the exponential function
respectively.

Table 1 shows the ratio of MISE values obtained from the single-index model

to the MISE values obtained from the log-linear model, for the three forms

of the intensity function, λ1 to λ3, the three sets of β0 values, and the three

observation window sizes. Values smaller (larger) than 1 correspond to out-

performance (under-performance) of the single-index model compared with the

log-linear model.

Not surprisingly, we find that for λ1, where the log-linear model is the correct

model, using the single-index model yielded a higher MISE. With the other two

intensity functions, however, while there is no clear better performing model for

the 1× 1 window, the single-index model performs better for all three β0 values

with the 2×2 window, with even greater out-performance with the 4×4 window.
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Table 1. Ratio of mean integrated square errors (MISE) obtained from the single-index
model to those from the log-linear model.

Window size
β0 4× 4 2× 2 1× 1

(3.5, 3.5, 3.5, 3.5) λ1 4.26 4.03 2.93
λ2 0.10 0.40 23.36
λ3 0.04 0.27 2.14

(1, 2, 4, 8) λ1 1.75 1.77 2.97
λ2 0.02 0.13 3.06
λ3 0.02 0.20 0.75

(2.5, 8, 4, 2) λ1 2.08 4.86 6.28
λ2 0.04 0.27 1.73
λ3 0.02 0.14 0.29

Table 2. Ratio of median absolute errors for estimates of β2/β1 and β3/β1 in the intensity
functions λ1, λ2 and λ3 obtained using the single-index model estimation procedure to
the corresponding errors obtained from the log-linear model.

True Window λ1 λ2 λ3

values size β2/β1 β3/β1 β2/β1 β3/β1 β2/β1 β3/β1

(3.5, 3.5, 3.5) 4× 4 1.20 1.29 0.93 1.23 0.97 1.12
2× 2 1.20 1.41 1.10 1.02 0.89 1.29
1× 1 1.04 1.24 1.13 1.02 1.29 0.97

(2, 4, 8) 4× 4 2.05 1.41 0.51 0.52 0.59 0.67
2× 2 1.07 1.38 0.91 1.84 1.04 1.20
1× 1 1.46 1.43 1.10 0.98 1.30 1.09

(8, 4, 2) 4× 4 1.47 0.93 0.97 0.79 0.68 0.80
2× 2 1.32 1.20 0.81 1.57 0.73 1.05
1× 1 1.07 1.06 0.95 1.06 1.00 1.08

We also examined the individual grid cell mean square errors, found without

integrating over the window. Figure 4 shows the distributions of these mean

square errors for the different intensity functions and observation windows when

β0 = (3.5, 3.5, 3.5, 3.5)T. The dark gray histograms correspond to the single-index

model, while the light, translucent gray histograms overlaid on top correspond

to the log-linear model. For the exponential function (top row), the histograms

for the log-linear model, the correct model, are located slightly to the left of the

histograms for the single-index model.

The histograms are more interesting for the other two intensity functions.

Focusing on the centers of the histograms, the log-linear model seems to attain

smaller MSEs with the 1×1 window, but the difference decreases with the larger

window sizes. However, the histograms for the log-linear model exhibit a lot
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dow, with point-wise mean and two standard error limits shown in dashed gray lines.
The solid and dashed black curves show the true function and the exponential function
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of the intensity function, λ1 to λ3, the three sets of β0 values, and the three

observation window sizes. Values smaller (larger) than 1 correspond to out-

performance (under-performance) of the single-index model compared with the

log-linear model.

Not surprisingly, we find that for λ1, where the log-linear model is the correct

model, using the single-index model yielded a higher MISE. With the other two

intensity functions, however, while there is no clear better performing model for
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with the 2×2 window, with even greater out-performance with the 4×4 window.
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We also examined the individual grid cell mean square errors, found without

integrating over the window. Figure 4 shows the distributions of these mean

square errors for the different intensity functions and observation windows when

β0 = (3.5, 3.5, 3.5, 3.5)T. The dark gray histograms correspond to the single-index

model, while the light, translucent gray histograms overlaid on top correspond

to the log-linear model. For the exponential function (top row), the histograms

for the log-linear model, the correct model, are located slightly to the left of the

histograms for the single-index model.

The histograms are more interesting for the other two intensity functions.

Focusing on the centers of the histograms, the log-linear model seems to attain

smaller MSEs with the 1×1 window, but the difference decreases with the larger

window sizes. However, the histograms for the log-linear model exhibit a lot
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Figure 4. Distributions of grid cell mean square errors (MSEs) over the spatial locations
of the observation windows. The dark histograms represent MSEs from the single-index
model and the light translucent histograms those from the log-linear model. Overlapping
portions appear as medium gray.

more variability in MSEs across the observation window than those for the single-

index model. We believe this indicates the mis-fit of the log-linear model - the

ppm fitting procedure manages to fit the model to some parts of the intensity

function at the expense of other portions.

Finally, we also computed the errors of β2/β1 and β3/β1 for all three intensity

functions λ1 to λ3 and values of β0 we considered. We note that there is quite

a lot of variability in the coefficient estimates for both the single-index and log-
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linear models, so that some of the absolute errors are very large. Hence we report

the median absolute errors rather than the mean square errors.

Table 2 shows the ratio of the median absolute errors for the single-index

model to the log-linear model. For the intensity function λ1, where the log-linear

model is the correct model, we find, not surprisingly, that the ratios of median

absolute errors are larger than 1 for all observation window sizes and β0 values.

With the other two intensity functions, however, the relative performance of the

single-index model to the log-linear model improves as the observation window

gets larger. There is some variability, however, in the relative performance with

the true β0 values.

In summary, the single-index model is useful when there is reason to believe

that the exponential function in the log-linear model is not the correct function.

In such cases, using the single-index model not only allows estimation of the

unknown function ρ but can improve estimation of the intensity function as well

as of the coefficients, especially when the data size is large. If the resulting esti-

mate of ρ suggests that an exponential function is a reasonable choice, the usual

estimation procedure using ppm for the log-linear model can then be employed.

5.2. Application to fast-food restaurant dataset

We applied the single-index model and its estimation procedure to a dataset

consisting of the locations of fast food restaurants (FFR) in New York City. The

817 FFRs were identified using an on-line directory of restaurant inspections

from the New York City Department of Health and Mental Hygiene. FFRs were

identified as national chains or local establishments that fit a number of criteria,

such as not providing table service, but serving customers at a cash register or

drive-thru window, requiring payment before eating, and with primary menu

items consisting of hamburgers, hot dogs and fried chicken. The identified FFRs

include national chains such as McDonald’s, Burger King, and Wendy’s as well

as local chains such as Crown Fried Chicken and Kennedy Fried Chicken.

Studies have found links between fast food consumption and obesity-related

measures, e.g. Bowman and Vinyard (2004), Alter and Eny (2005), Jeffrey et al.

(2006), and Currie et al. (2009). Kwate et al. (2009) analyzed a FFR dataset

similar to ours, and examined how the prevalence of FFRs varies with NYC

neighborhood demographic variables. They found, in agreement with studies

such as Zenk et al. (2005) and Inagami et al. (2006), that neighborhoods with

higher poverty and/or higher percentage of African Americans tend to have more

FFRs. In addition, studies such as Austin et al. (2005), Simon et al. (2008),

568



14 YIXIN FANG AND JI MENG LOH

−

− −

−

−

−

Figure 4. Distributions of grid cell mean square errors (MSEs) over the spatial locations
of the observation windows. The dark histograms represent MSEs from the single-index
model and the light translucent histograms those from the log-linear model. Overlapping
portions appear as medium gray.
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index model. We believe this indicates the mis-fit of the log-linear model - the

ppm fitting procedure manages to fit the model to some parts of the intensity

function at the expense of other portions.
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a lot of variability in the coefficient estimates for both the single-index and log-
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consisting of the locations of fast food restaurants (FFR) in New York City. The

817 FFRs were identified using an on-line directory of restaurant inspections
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identified as national chains or local establishments that fit a number of criteria,

such as not providing table service, but serving customers at a cash register or

drive-thru window, requiring payment before eating, and with primary menu

items consisting of hamburgers, hot dogs and fried chicken. The identified FFRs

include national chains such as McDonald’s, Burger King, and Wendy’s as well

as local chains such as Crown Fried Chicken and Kennedy Fried Chicken.

Studies have found links between fast food consumption and obesity-related

measures, e.g. Bowman and Vinyard (2004), Alter and Eny (2005), Jeffrey et al.

(2006), and Currie et al. (2009). Kwate et al. (2009) analyzed a FFR dataset

similar to ours, and examined how the prevalence of FFRs varies with NYC

neighborhood demographic variables. They found, in agreement with studies

such as Zenk et al. (2005) and Inagami et al. (2006), that neighborhoods with

higher poverty and/or higher percentage of African Americans tend to have more

FFRs. In addition, studies such as Austin et al. (2005), Simon et al. (2008),
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Table 3. Coefficient estimates for the FFR data, estimated using the log-linear and
single-index models, rescaled so that the coefficient of age is 1.

Age Income Pop Density % Blk Elementary High School
Log−linear 1 0.24 −10.00 −3.96 −6.84 −4.52
Single−index 1 −0.64 −19.94 −2.39 −8.37 −12.78

Sturm (2008), Zenk and Powell (2008), Davis and Carpenter (2009), Kwate and

Loh (2010), and Neckerman et al. (2010) suggest that FFRs may cluster around

schools.

Besides FFR location data, we used 2,000 Census data to provide informa-

tion, at the block group level, of the following: percent Black, median household

income, median age, and population density. Furthermore, we have locations

of public elementary and high schools, obtained from the NYC Department of

Education. As a simple way to incorporate the school location data as covari-

ates, we obtained kernel intensity estimates of the point processes of elementary

schools and high schools, using a value of 250m for the standard deviation of

the isotropic Gaussian smoothing kernel. The values of these kernel estimates at

the FFR locations were then used as covariates in the single-index and log-linear

models. We also set the demographic covariates for each FFR to be the Census

variable values of the block group that the FFR resides in.

We modeled intensity as a function of these covariates using the log-linear

model (with the ppm function in the spatstat R package), and using the single-

index model. Table 3 shows the coefficient estimates obtained with the two

models; we have rescaled them so that the estimate for “Age” is 1 in both cases.

The sizes of these estimates cannot be directly compared since the effect of each

covariate is modulated by the link function. However, with the exception of

“Income”, the estimates from the two models have the same signs. This suggests

that both models find the same directional effects of the covariates on FFR

intensity.

The plot on the left of Figure 5 shows the estimate of the link function ρ

obtained from the single-index model estimation procedure, along with the expo-

nential function of the log-linear model. Since the estimate for Age is negative for

the log-linear model, the exponential function is reversed. The two functions are

similar for positive values of the index down to about −20. With lower values

of the index, the two functions behave differently, with ρ̂ showing a moderate

increase before tapering off while the exponential function has a much steeper

increase.
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Figure 5. Left: estimate of ρ obtained from the FFR data set using the single-index
model. The dashed line is the corresponding exponential function. Right: scatter-plot
of intensity estimates obtained from the log-linear and single-index models.

Using the information provided in Table 3 and Figure 5, we find that the

FFR intensity tends to be higher in block groups with higher population density,

higher percent Black and/or more public elementary and high schools. With

the single-index model, this increase in FFR intensity is limited, as indicated by

the form of ρ̂ at the smaller index values and, in our opinion, could be more

reasonable than the log-linear model, where it is possible to have extremely large

FFR intensities.

The plot on the right of Figure 5 compares the intensity estimates obtained

from the two models. The black and gray dots are estimates at the block group

centroids and the FFR locations, respectively, with the dashed line representing

equality of the two estimates. Many of the block groups and FFR locations have

roughly equal estimates from the two models. As we might expect from the left

plot of Figure 5, for the higher intensities, the log-linear model estimates tend

to be larger than the single-index model estimates. More importantly, in several

block groups which do not have FFRs, the single-index model gives low intensity

estimates while the log-linear model yields very large estimates. Of course, these

block groups may have FFRs nearby, in their neighboring block groups.

Finally, Figure 6 shows maps of the intensity estimates obtained from the

single-index and log-linear models, with darker colors indicating higher estimated

FFR intensity. Also included are the locations of the FFRs. The two maps are

very similar with only subtle differences. For example, in the East, near the

middle, the intensity estimates from the log-linear model is noticeably higher.

There are also slightly more dark spots in Staten Island in the Southwest for the

log-linear model. The strip of land on the Southeast part of the map is another

location where differences are noticeable.
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the single-index model, this increase in FFR intensity is limited, as indicated by
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Figure 6. Maps showing FFR intensity estimates from the single-index and log-linear
models, with FFR locations.

6. Discussion

One of our future directions is to extend the log-linear model through the use

of the generalized additive model, which assumes a known link function but con-

siders more flexible combinations of covariates, say λ(s|Z(s))=exp{
p∑

j=1
fj(Zj(s))},

where fj(·) are unknown smooth functions. The generalized additive model and

single-index model are two different way to generalize the log-linear model: the

former model relaxes the linear predictor but keeps the known link, while the

latter relaxes the link function but keeps the linear predictor. Another future

direction is to develop a way to select informative covariates from a large list of

available covariates. A possible way to proceed is to add a regularization term

to the profile likelihood (2.4).

Supplementary Materials

The online supplementary materials contain statements and proofs of lemmas

needed for Theorems 1 and 2, and a proof that Dn, the loss of efficiency if the

process X is not Poisson, is non-negative.
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Figure 6. Maps showing FFR intensity estimates from the single-index and log-linear
models, with FFR locations.

6. Discussion

One of our future directions is to extend the log-linear model through the use

of the generalized additive model, which assumes a known link function but con-

siders more flexible combinations of covariates, say λ(s|Z(s))=exp{
p∑

j=1
fj(Zj(s))},

where fj(·) are unknown smooth functions. The generalized additive model and

single-index model are two different way to generalize the log-linear model: the

former model relaxes the linear predictor but keeps the known link, while the

latter relaxes the link function but keeps the linear predictor. Another future

direction is to develop a way to select informative covariates from a large list of

available covariates. A possible way to proceed is to add a regularization term

to the profile likelihood (2.4).

Supplementary Materials

The online supplementary materials contain statements and proofs of lemmas

needed for Theorems 1 and 2, and a proof that Dn, the loss of efficiency if the

process X is not Poisson, is non-negative.
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