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Abstract: The Stiefel manifold Vp,d is the space of all d× p orthonormal matrices,

with the d−1 hypersphere and the space of all orthogonal matrices constituting spe-

cial cases. In modeling data lying on the Stiefel manifold, parametric distributions

such as the matrix Langevin distribution are often used; however, model misspeci-

fication is a concern and it is desirable to have nonparametric alternatives. Current

nonparametric methods are mainly Fréchet-mean based. We take a fully genera-

tive nonparametric approach, which relies on mixing parametric kernels such as the

matrix Langevin. The proposed kernel mixtures can approximate a large class of

distributions on the Stiefel manifold, and we develop theory showing posterior con-

sistency. While there exists work developing general posterior consistency results,

extending these results to this particular manifold requires substantial new theory.

Posterior inference is illustrated on a dataset of near-Earth objects.
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1. Introduction

Statistical analysis of matrices with orthonormal columns has diverse appli-

cations including principal components analysis, estimation of rotation matrices,

as well as in analyzing orbit data of the orientation of comets and asteroids.

Central to probabilistic models involving such matrices are probability distri-

butions on the Stiefel manifold, the space of all d × p orthonormal matrices.

Popular examples of parametric distributions are the matrix von Mises-Fisher

distribution (Khatri and Mardia (1977); Hornik and Grün (2013)) (also known

as the matrix Langevin (Chikuse (1993, 2003a, 2006))), and its generalization,

the Bingham-von Mises-Fisher distribution (Hoff (2009)). Maximum likelihood

estimation is often used in estimating the parameters, while recently Rao, Lin

and Dunson (2016) proposed a sampling algorithm allowing Bayesian inference

for such distributions.
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Current parametric models are overly simple for most applications, and non-

parametric inference has been mostly limited to estimation of Fréchet means

(Bhattacharya and Bhattacharya (2012); Bhattacharya and Lin (2016)). Chikuse

(1998) proposes a frequentist density estimator using kernel density estimation

on the Stiefel manifold and studies its asymptotic behavior. Model-based non-

parametric Bayesian inference has several advantages, including providing a fully

generative model for prediction and characterization of uncertainty, while allow-

ing adaptation to the complexity of the data. We propose a class of nonpara-

metric models based on mixing parametric kernels on the Stiefel manifold. Such

models have appealing properties including large support, posterior consistency,

and straightforward computation adapting the sampler of Rao, Lin and Dunson

(2016). Depending on the application, our models can be used to characterize

the data directly, or to describe latent components of a hierarchical model.

Section 2 provides some details on the geometry of the Stiefel manifold.

Section 3 introduces the matrix Langevin distribution, the nonparametric model,

and the posterior consistency theory. Section 4 illustrates the model through

application to an object orbits data set. All proofs are included in the appendix

and our code is available at https://github.com/varao/stiefel.

2. Geometry of the Stiefel Manifold

The Stiefel manifold Vp,d is the space of all p-frames in Rd, with a p-frame

consisting of p ordered orthonormal vectors in Rd. Writing M(d, p) for the space

of all d× p real matrices, and letting Ip represent the p× p identity matrix, the

Stiefel manifold can be represented as

Vp,d = {X ∈ M(d, p) : XTX = Ip}. (2.1)

The Stiefel manifold Vp,d has the d− 1 hypersphere Sd−1 as a special case when

p = 1. When p = d, this is the space of all the orthogonal matrices O(d). Vp,d

is a Riemannian manifold of dimension dp − p − p(p − 1)/2 = p(2d − p − 1)/2.

It can be embedded into the Euclidean space M(d, p) of dimension dp with the

inclusion map as a natural embedding, and is thus a submanifold of Rdp.

Let G ∈ Vp,d, and G1 be a matrix of size d× (d− p) such that [G : G1], the

augmented matrix obtained by concatenating the rows of G and G1, is in O(d),

the group of d by d orthogonal matrices. The volume form on the manifold is

λ(dG) = ∧p
i=1 ∧d

j=i+1 g
T
j dgi where g1, . . . , gp are the columns of G, gp+1, . . . , gd

are the columns of G1, and ∧ represents the wedge product (Muirhead (2005)).

If p = d, that is when G ∈ O(d), one can represent λ(dG) = ∧i<jg
T
j dgi. Note
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that λ(dG) is invariant under the left action of the orthogonal group O(d) and

the right action of the orthogonal group O(p), and forms the Haar measure on

the Stiefel manifold. For more details on the Riemannian structure of the Stiefel

manifold, we refer to Edelman et al. (1998).

3. Bayesian nonparametric model

Let X be a random variable on Vp,d. A popular parametric distribution of X

is the matrix Langevin distribution that has, with respect to the invariant Haar

volume measure on Vp,d, the density

PML(X|F ) =
etr(F TX)

Z(F )
, (3.1)

where etr stands for the exponential trace function. The parameter F is a d× p

matrix, and the normalization constant Z(F ) = 0F1(
1
2d,

1
4F

TF ) is the hyper-

geometric function with matrix arguments (Herz (1955)), evaluated at 1
4F

TF

(Chikuse (2003b)). Write the singular value decomposition (SVD) of F as

F = GκHT , with G and H, d× p and p× p orthonormal matrices, and κ a diag-

onal matrix with positive elements. One can think of G and H as orientations,

with κ controlling the concentration in the directions determined by these orien-

tations. Large values of κ imply concentration along the associated directions,

while setting κ to zero recovers the uniform distribution on the Stiefel manifold.

Khatri and Mardia (1977) show that 0F1(d/2, (F
TF )/4) = 0F1(d/2, (κ

Tκ)/4), so

that the normalization constant depends only on κ, and we write it as Z(κ). The

mode of the distribution is given by GHT and, from the characteristic function

of X, one can show E(X) = FU , where the (i, j)th element of the matrix U is

given by

Uij = 2
∂ log 0F1(d/2, (F

TF )/4)

∂(F TF )ij
.

Consider n observations X1, . . . , Xn drawn i.i.d. from PML(X|F ). A sim-

ple approach to characterizing these observations is via a maximum likelihood

estimate of the parameter F . This is complicated by the dependence of the

normalization constant Z(F ) on F , and Chikuse (2003b) describes an approach

based an asymptotic approximation to Z(F ). The intractable normalizing con-

stant makes Bayesian estimation of F even more challenging, since quantifying

the effects of such approximations is very difficult. Rao, Lin and Dunson (2016)

propose an exact sampling scheme based on a data augmentation technique to

solve this intractability problem.
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In many situations, assuming the observations come from a particular para-

metric family such as matrix Langevin is restrictive, and raises concerns about

model misspecification. Nonparametric alternatives, on the other hand, have

much wider applicability, and we consider these in the following.

Denote by M the space of all densities on Vp,d with respect to the Haar

measure λ. Let g(X,G,κ) be a parametric kernel on the Stiefel manifold with a

‘location parameter’G and a vector of concentration parameters κ = (κ1, . . . , κp).

One can place a prior Π on M by modelling the random density f as

f(X) =

∫
g(X,G,κ)P (dκdG), (3.2)

with the mixing measure P a random probability measure. A popular prior over

P is the Dirichlet process (Ferguson (1973)), parametrized by a base probability

measure P0 on the product space Rp
+×Vp,d, and a concentration parameter α > 0.

We denote by Π1 the DP prior on the space of mixing measures, and assume P0

has full support on Rp
+ × Vp,d.

The model in (3.2) is a ‘location-scale’ mixture model, and corresponds to

an infinite mixture model where each component has its own location and scale.

One can also define the following ‘location’ mixture model given by

f(X) =

∫
g(X,G,κ)P (dG)µ(dκ), (3.3)

where P is given a nonparametric prior like the DP and µ(dκ) is a parametric

measure (like a product of Gamma or Weibull distributions). In this model, all

components are constrained to have the same scale parameters κ. This model

is analogous to a mixture of Gaussians with all components constrained to have

the same covariance. We show later that with an appropriate prior over κ,

this constrained model is still asymptotically consistent. However, in practical

settings, care must be taken to ensure that this assumption is appropriate, if not,

the model can infer an inappropriately large number of mixture components.

When Π1 corresponds to a DP prior, one can precisely quantify the mean of

the induced density Π. For model (3.2), the prior mean is given by

E(f(X)) =

∫
g(X,G,κ)E(P (dκdG)) =

∫
g(X,G,κ)P0(dκdG), (3.4)

while for model (3.3), it is

E(f(X)) =

∫
g(X,G,κ)µ(dκ)P0(dG). (3.5)

The parameter α governs the number of components in the mixing density and

roughly controls the concentration of the prior around the mean density, and one
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can place a hyperprior on α as well.

In the following, we set g(X,G,κ) to be the matrix Langevin distribution

with parameter F = Gκ. Thus,

g(X,G,κ) =
etr(κGTX)

Z(κ)
= C(κ)etr(κGTX), (3.6)

with C(κ) = 1/Z(κ) = 1/0F1(d/2, (κ
Tκ)/4). We have restricted ourselves to

the special case where the matrix Langevin parameter F has orthogonal columns

(or equivalently, where H = Ip). While it is easy to apply our ideas to the

general case, we demonstrate below that even with this restricted kernel, our

nonparametric model has such properties as large support and consistency.

3.1. Posterior consistency

With our choice of parametric kernel, a DP prior on Π1 induces an infinite

mixture of matrix Langevin distributions on M. Call this distribution Π; we will

show that this has large support on M, and that the resulting posterior distribu-

tion concentrates around any true data generating density in M. Our modelling

framework and theory builds on Bhattacharya and Dunson (2010, 2012), who

developed consistency theorems for density estimation on compact Riemannian

manifolds, and considered DP mixtures of kernels appropriate to the manifold un-

der consideration. However, they only considered simple manifolds, and showing

that our proposed models have large support and consistency properties requires

substantial new theory.

We first introduce some notions of distance and neighborhoods on M. A

weak neighborhood of f0 with radius ϵ is defined as

Wϵ(f0) =

{
f :

����
∫

zfλ(dX)− zf0λ(dX)

���� ≤ ϵ, for all z ∈ Cb(Vp,d)

}
, (3.7)

where Cb(Vp,d) is the space of all continuous and bounded functions on Vp,d. The

Hellinger distance dH(f, f0) is defined as

dH(f, f0) =

(
1

2

∫
(
√

f(X)−
√

f0(X))2λ(dX)

)1/2

.

We let Uϵ(f0) denote an ϵ-Hellinger neighborhood around f0 with respect to dH .

The Kullback-Leibler (KL) divergence between f0 and f is defined to be

dKL(f0, f) =

∫
f0(X) log

f0(X)

f(X)
λ(dX), (3.8)

with Kϵ(f0) denoting an ϵ-KL neighborhood of f0.

Let X1, . . . , Xn be n observations drawn i.i.d. from some true density f0
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on Vp,d. Under our model, the posterior probability Πn of some neighborhood

Wϵ(f0) is given by

Πn (Wϵ(f0)|X1, . . . , Xn) =

∫
Wϵ(f0)

∏n
i=1 f(Xi)Π(df)∫

M
∏n

i=1 f(Xi)Π(df)
. (3.9)

The posterior is weakly consistent if for all ϵ > 0,

Πn (Wϵ(f0)|X1, . . . , Xn) → 1 a.s. Pf∞
0 as n → ∞, (3.10)

where Pf∞
0 represents the true probability measure for (X1, X2, . . .).

We assume the true density f0 is continuous with F0 as its probability dis-

tribution. The following theorem on the weak consistency of the posterior under

the mixture prior is for both models (3.2) and (3.3), the proof of which is included

in the Appendix.

Theorem 1. The posterior Πn in the DP-mixture of matrix Langevin distribu-

tions is weakly consistent.

We now consider the consistency property of the posterior Πn with respect

to the Hellinger neighborhood Uϵ(f0); this is referred to as strong consistency.

Theorem 2. Let πκ be the prior on κ, and let Π be the prior on M induced by

Π1 and πκ via the mixture model (3.3). Let Π1 ∼ DPαP0
with P0 a base measure

having full support on Vp,d. Assume πκ (κ : ϕ(κ) ≤ na) ≤ exp(−nβ) eventually

for some a < 1/((p + 2)dp) and β > 0 with ϕ(κ) =
√∑p

i=1(κi + 1)2. Then the

posterior Πn is consistent with respect to the Hellinger distance dH .

Remark 1. For prior πκ on the concentration parameter κ to satisfy the

condition πκ (κ : ϕ(κ) ≤ na) < exp(−nβ), for some a < 1/(dp(p + 2)) and β >

0, requires fast decay of the tails for πκ. One can check that an independent

Weibull prior for κi, i = 1, . . . , p with κi ∼ κ
(1/a)−1
i exp(−bκ

(1/a)
i ) satisfies the

tail condition.

Another choice is to allow πκ to be sample size dependent as suggested by

Bhattacharya and Dunson (2012). In this case, one can choose independent

Gamma priors for κi with κi ∼ κci exp(−bnκi) where c > 0 and n1−a/bn → 0 with

0 < a < 1/(dp(p+ 2)).

4. Inference for the Nonparametric Model

A common approach to posterior inference for the Dirichlet process is Markov

chain Monte Carlo (MCMC) based on the Chinese restaurant process (CRP)

representation of the DP (Neal (2000)). The Chinese restaurant process describes

BAYESIAN INFERENCE ON THE STIEFEL MANIFOLD 7

the distribution over partitions of observations that results from integrating out

the random probability measure Π1, and a CRP-based Gibbs sampler updates

this partition by reassigning each observation to a cluster conditioned on the rest.

The probability of an observation Xi joining a cluster with parameters (G,κ)

is proportional to the likelihood g(Xi, G,κ) times the number of observations

already in that cluster (for an empty cluster, the latter is the concentration

parameter α). Our case is complicated by the intractable likelihood g(·); this
also makes updating the cluster parameters not straightforward. One possibility

is to use an asymptotic approximation to the normalization constant Z(κ) (Hoff

(2009)). We instead use a recently proposed data augmentation scheme by Rao,

Lin and Dunson (2016) to construct a Markov chain with the exact stationary

distribution.

This approach builds on a rejection sampling scheme by Hoff (2009) that

produces samples from a matrix Langevin distribution by accepting or rejecting

proposals from a simpler, tractable distribution on the Stiefel manifold. Under

this scheme, every sample from the matrix Langevin distribution is preceded

by a sequence of rejected proposals from the proposal distribution. Updating

the parameters of this proposal distribution (which are the same parameters as

the matrix Langevin distribution) is easy, however this requires imputing the

rejected proposals that precede each observation. Rao, Lin and Dunson (2016)

show how to carry out this step, and thus run MCMC on the augmented (and

now tractable) space. We refer the reader to that paper for more details about

this auxiliary variable Gibbs sampler. Below we detail the steps of the algorithm.

We write θ = (κ, G), and qθ(X) for the proposal distribution of Hoff (2009).

Algorithm 1: MCMC sampler for DP mixture of Matrix Langevin distributions

Input: A partition of observations and a set of cluster parameters
Output: A new partition and a new set of cluster parameters

1: Update cluster assignments: For each observation x:

• Let θ∗ be the parameter of its current cluster.

• Sample from qθ∗ till acceptance (Hoff (2009)), calling the rejected proposals Y.

• Treat the vector (x,Y) as the actual observation, with the likelihood corre-
sponding to drawing its components independently from the tractable qθ. Un-
der this likelihood, assign (x,Y) to a new cluster according to the usual Chinese
restaurant process (Neal (2000)). Then discard Y.
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the mixture prior is for both models (3.2) and (3.3), the proof of which is included

in the Appendix.

Theorem 1. The posterior Πn in the DP-mixture of matrix Langevin distribu-

tions is weakly consistent.

We now consider the consistency property of the posterior Πn with respect

to the Hellinger neighborhood Uϵ(f0); this is referred to as strong consistency.

Theorem 2. Let πκ be the prior on κ, and let Π be the prior on M induced by

Π1 and πκ via the mixture model (3.3). Let Π1 ∼ DPαP0
with P0 a base measure

having full support on Vp,d. Assume πκ (κ : ϕ(κ) ≤ na) ≤ exp(−nβ) eventually

for some a < 1/((p + 2)dp) and β > 0 with ϕ(κ) =
√∑p

i=1(κi + 1)2. Then the

posterior Πn is consistent with respect to the Hellinger distance dH .

Remark 1. For prior πκ on the concentration parameter κ to satisfy the

condition πκ (κ : ϕ(κ) ≤ na) < exp(−nβ), for some a < 1/(dp(p + 2)) and β >

0, requires fast decay of the tails for πκ. One can check that an independent

Weibull prior for κi, i = 1, . . . , p with κi ∼ κ
(1/a)−1
i exp(−bκ

(1/a)
i ) satisfies the

tail condition.

Another choice is to allow πκ to be sample size dependent as suggested by

Bhattacharya and Dunson (2012). In this case, one can choose independent

Gamma priors for κi with κi ∼ κci exp(−bnκi) where c > 0 and n1−a/bn → 0 with

0 < a < 1/(dp(p+ 2)).

4. Inference for the Nonparametric Model

A common approach to posterior inference for the Dirichlet process is Markov

chain Monte Carlo (MCMC) based on the Chinese restaurant process (CRP)

representation of the DP (Neal (2000)). The Chinese restaurant process describes
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the distribution over partitions of observations that results from integrating out

the random probability measure Π1, and a CRP-based Gibbs sampler updates

this partition by reassigning each observation to a cluster conditioned on the rest.

The probability of an observation Xi joining a cluster with parameters (G,κ)

is proportional to the likelihood g(Xi, G,κ) times the number of observations

already in that cluster (for an empty cluster, the latter is the concentration

parameter α). Our case is complicated by the intractable likelihood g(·); this
also makes updating the cluster parameters not straightforward. One possibility

is to use an asymptotic approximation to the normalization constant Z(κ) (Hoff

(2009)). We instead use a recently proposed data augmentation scheme by Rao,

Lin and Dunson (2016) to construct a Markov chain with the exact stationary

distribution.

This approach builds on a rejection sampling scheme by Hoff (2009) that

produces samples from a matrix Langevin distribution by accepting or rejecting

proposals from a simpler, tractable distribution on the Stiefel manifold. Under

this scheme, every sample from the matrix Langevin distribution is preceded

by a sequence of rejected proposals from the proposal distribution. Updating

the parameters of this proposal distribution (which are the same parameters as

the matrix Langevin distribution) is easy, however this requires imputing the

rejected proposals that precede each observation. Rao, Lin and Dunson (2016)

show how to carry out this step, and thus run MCMC on the augmented (and

now tractable) space. We refer the reader to that paper for more details about

this auxiliary variable Gibbs sampler. Below we detail the steps of the algorithm.

We write θ = (κ, G), and qθ(X) for the proposal distribution of Hoff (2009).

Algorithm 1: MCMC sampler for DP mixture of Matrix Langevin distributions

Input: A partition of observations and a set of cluster parameters
Output: A new partition and a new set of cluster parameters

1: Update cluster assignments: For each observation x:

• Let θ∗ be the parameter of its current cluster.

• Sample from qθ∗ till acceptance (Hoff (2009)), calling the rejected proposals Y.

• Treat the vector (x,Y) as the actual observation, with the likelihood corre-
sponding to drawing its components independently from the tractable qθ. Un-
der this likelihood, assign (x,Y) to a new cluster according to the usual Chinese
restaurant process (Neal (2000)). Then discard Y.
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2: Update cluster parameters: For each cluster c (with parameters θ∗ = (κ∗, G∗)):

• Write Xc for all observations at this cluster, and |Xc| for the cardinality.

• Sample independently from q∗θ until |Xc| samples are accepted.

• Write Yc for all rejected proposals.

• Update κ∗ as if (Xc,Yc) were observations at this cluster with likelihood qθ.

• Discard Yc and update G∗.

We apply our nonparametric model to a dataset of near-Earth astronomical

objects (comets and asteroids). Inferences were based on 5, 000 samples from the

MCMC sampler, after a burn-in period of 1, 000 samples.

4.1. Near Earth Objects dataset

The Near Earth Objects dataset was collected by the Near Earth Object

Program of the National Aeronautics and Space Administration1 , and consists of

162 measurements of Near-Earth Comets (NECs). Each data point characterizes

the orientation of a two-dimensional elliptical orbit in three-dimensional space,

and thus lies on the Stiefel manifold V3,2. Analysis of such data is important

towards better understanding the origin and evolution of the NEOs population

(Morbidelli et al. (2002)). The left subplot in Figure 1 shows these data, with

each 2-frame represented as two orthonormal unit vectors. The first column

(representing the latitude of perihelion) is the set of cyan lines arranged as two

horizontal cones. The magenta lines (arranged as two vertical cones) form the

second column, the longitude of perihelion.

We model this dataset as a DP mixture of matrix Langevin distributions. We

set the DP concentration parameter α to 1 and, for the DP base measure, placed

independent probability measures on the matrices G and κ. For the former, we

used a uniform prior (as in Section 3); however we found that an uninformative

prior on κ resulted in high posterior probability for a single diffuse cluster with

no interesting structure. To discourage this, we sought to penalize small values

of κi. One way to do this is to use a Gamma prior with a large shape parameter.

Another is to use a hard constraint to bound the κi’s away from small values.

We took the latter approach, placing independent exponential priors restricted

to [5,∞) on the diagonal elements of κ. Our choice was motivated by the fact

1Downloaded from http://neo.jpl.nasa.gov/cgi-bin/neo_elem
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Figure 1. The Near Earth Objects dataset (left), and the adjacency matrix inferred by
the DP mixture model (right).

−

−
−
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−

Figure 2. Posterior over the number of clusters for the Near Earth Objects dataset (left),
and location and scale parameters of an MCMC sample with three clusters (right). The
circles associated with each cluster correspond to 75% predictive probability regions for
the associated component.

that for the one-dimensional von Mises distribution on the unit circle, κ = 5 gives

a distribution of angles with standard deviation approximately equal to one.

The right plot in Figure 1 shows the adjacency matrix summarizing the

posterior distribution over clusterings. An off-diagonal element (i, j) gives the

number of times observations i and j were assigned to the same cluster under the

posterior. We see a highly coupled set of observations (from around observation

20 to 80 keeping the ordering of the downloaded dataset). This cluster corre-

sponds to a tightly grouped set of observations, visible as a pair of bold lines in

the left plot of Figure 1.
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set the DP concentration parameter α to 1 and, for the DP base measure, placed

independent probability measures on the matrices G and κ. For the former, we

used a uniform prior (as in Section 3); however we found that an uninformative

prior on κ resulted in high posterior probability for a single diffuse cluster with

no interesting structure. To discourage this, we sought to penalize small values

of κi. One way to do this is to use a Gamma prior with a large shape parameter.

Another is to use a hard constraint to bound the κi’s away from small values.

We took the latter approach, placing independent exponential priors restricted
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that for the one-dimensional von Mises distribution on the unit circle, κ = 5 gives

a distribution of angles with standard deviation approximately equal to one.

The right plot in Figure 1 shows the adjacency matrix summarizing the

posterior distribution over clusterings. An off-diagonal element (i, j) gives the

number of times observations i and j were assigned to the same cluster under the

posterior. We see a highly coupled set of observations (from around observation

20 to 80 keeping the ordering of the downloaded dataset). This cluster corre-

sponds to a tightly grouped set of observations, visible as a pair of bold lines in

the left plot of Figure 1.
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Figure 3. Posterior over the number of clusters for κ restricted to [1,∞) (left) and [3,∞)
(middle). The rightmost plot shows a traceplot of the number of clusters over MCMC
iterations.
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Figure 4. Log predictive probabilities of first and second orthonormal components.

To investigate the underlying structure more carefully, we plot in Figure 2 the

posterior distribution over the number of clusters. The figure shows this number

is peaked at 4, extending up to 9. However, in most instances, most clusters have

a small number of observations, with the posterior dominated by 2 or 3 large

clusters. A typical two-cluster realization is fairly intuitive, with each cluster

corresponding to one of the two pairs of cones at right angles, and these clusters

were identified quite consistently across all posterior samples. Occasionally, one

or both of these might be further split into two smaller clusters, resulting in 3 or

4 clusters. A different example of a three cluster structure is shown in the right

subfigure (this instance corresponded to the last MCMC sample of our chain that

had three large clusters). In addition to the two aforementioned clusters, this

assigns the bunched group of observations mentioned earlier (see the bunched

cyan lines in figure 1) to their own cluster. In figure 3, we show the number of
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clusters when the diagonal elements of κ are limited to [1,∞)(left) and [3,∞)

(middle). In the former case, the posterior is dominated by a single large cluster,

while the latter places more posterior mass on 2 to 3 clusters, the ideal solution.

We also repeated the analysis of this section with a more general kernel that was

not limited to having H equal to the identity matrix. The results we obtained

were largely the same, the only difference being a slight but insignificant decrease

in the number of clusters observed under the posterior. This is to be expected.

Finally, in the rightmost subplot, we plot a trace of the number of clusters under

the posterior, demonstrating that our sampler mixes well.

Parametric analysis of this dataset typically requires identifying this cluster

and treating it as a single observation (Sei et al. (2013)); by contrast, our non-

parametric approach handles this much more naturally. Further, our Bayesian

approach allows incorporating such an analysis as part of a larger hierarchical

model. Figure 4 show the log predictive-probabilities of observations given this

dataset, with the left subplot giving the distribution of the first component, and

the right, the second. The peak of this distribution (the red spot to the right for

the first plot, and the spot to the bottom left for the second), corresponds to the

bunched set of observations mentioned earlier.

Remark 2. Chikuse (1998) proposed a kernel density estimator on the

Stiefel manifold. The estimator is slightly technical and requires proper estima-

tion of the smoothing parameter. Our model is fully generative and allows fully

MCMC based inference for estimation, prediction, and uncertainty quantifica-

tion. In addition, fitting our model via MCMC returns a clustering of the data,

which is useful in many applications.

5. Proofs

Proof of Theorem 1. In order to show weak consistency of the posterior distri-

bution, it suffices to show that the prior distribution assigns positive mass to

Kullback-Leiber neighborhoods of the true density f0. This is a well-known re-

sult from Schwartz (1965). For density estimation on a manifold, Bhattacharya

and Dunson (2012) derive some sufficient conditions for the KL support condition

to hold on a general Riemannian manifold. We strive to check these conditions

under our model.

By slightly abuse of notation, let f be any continuous function on Vp,d in

this proof. We star by checking the KL condition. Bhattacharya and Dunson

(2012) derive the following sufficient conditions for the KL support condition to

hold on a general Riemannian manifold.
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Figure 3. Posterior over the number of clusters for κ restricted to [1,∞) (left) and [3,∞)
(middle). The rightmost plot shows a traceplot of the number of clusters over MCMC
iterations.
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To investigate the underlying structure more carefully, we plot in Figure 2 the

posterior distribution over the number of clusters. The figure shows this number

is peaked at 4, extending up to 9. However, in most instances, most clusters have

a small number of observations, with the posterior dominated by 2 or 3 large

clusters. A typical two-cluster realization is fairly intuitive, with each cluster

corresponding to one of the two pairs of cones at right angles, and these clusters

were identified quite consistently across all posterior samples. Occasionally, one

or both of these might be further split into two smaller clusters, resulting in 3 or

4 clusters. A different example of a three cluster structure is shown in the right

subfigure (this instance corresponded to the last MCMC sample of our chain that

had three large clusters). In addition to the two aforementioned clusters, this

assigns the bunched group of observations mentioned earlier (see the bunched

cyan lines in figure 1) to their own cluster. In figure 3, we show the number of
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clusters when the diagonal elements of κ are limited to [1,∞)(left) and [3,∞)

(middle). In the former case, the posterior is dominated by a single large cluster,

while the latter places more posterior mass on 2 to 3 clusters, the ideal solution.

We also repeated the analysis of this section with a more general kernel that was

not limited to having H equal to the identity matrix. The results we obtained

were largely the same, the only difference being a slight but insignificant decrease

in the number of clusters observed under the posterior. This is to be expected.

Finally, in the rightmost subplot, we plot a trace of the number of clusters under

the posterior, demonstrating that our sampler mixes well.

Parametric analysis of this dataset typically requires identifying this cluster

and treating it as a single observation (Sei et al. (2013)); by contrast, our non-

parametric approach handles this much more naturally. Further, our Bayesian

approach allows incorporating such an analysis as part of a larger hierarchical

model. Figure 4 show the log predictive-probabilities of observations given this

dataset, with the left subplot giving the distribution of the first component, and

the right, the second. The peak of this distribution (the red spot to the right for

the first plot, and the spot to the bottom left for the second), corresponds to the

bunched set of observations mentioned earlier.

Remark 2. Chikuse (1998) proposed a kernel density estimator on the

Stiefel manifold. The estimator is slightly technical and requires proper estima-

tion of the smoothing parameter. Our model is fully generative and allows fully

MCMC based inference for estimation, prediction, and uncertainty quantifica-

tion. In addition, fitting our model via MCMC returns a clustering of the data,

which is useful in many applications.

5. Proofs

Proof of Theorem 1. In order to show weak consistency of the posterior distri-

bution, it suffices to show that the prior distribution assigns positive mass to

Kullback-Leiber neighborhoods of the true density f0. This is a well-known re-

sult from Schwartz (1965). For density estimation on a manifold, Bhattacharya

and Dunson (2012) derive some sufficient conditions for the KL support condition

to hold on a general Riemannian manifold. We strive to check these conditions

under our model.

By slightly abuse of notation, let f be any continuous function on Vp,d in

this proof. We star by checking the KL condition. Bhattacharya and Dunson

(2012) derive the following sufficient conditions for the KL support condition to

hold on a general Riemannian manifold.
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(1) The kernel g(X,G,κ) is continuous in all of its arguments.

(2) The set {F0}×Do
ϵ intersects the support of Π1×πκ with Do

ϵ as the interior

of Dϵ, a compact neighborhood of some {κ1, . . . , κp} in Rp.

(3) For any continuous function f on M , there exists a compact neighborhood

Dϵ of {κ1, . . . , κp}, such that

sup
X∈Vp,d, κ∈Dϵ

����f(X)−
∫

g(X,G,κ)f(G)λ(dG)

���� ≤ ϵ.

For (1) one can write

g(X,G,κ) = C(κ)etr(F TX) = C(κ) exp

(
p∑

i=1

κiG
T
[:i]X[:i]

)
.

Here g is continuous with respect to κ since the hypergeometric function C(κ)

is continuous and etr(F TX) is clearly continuous with respect to κ as the expo-

nential term can be viewed as a linear combination of κi’s.

Now rewrite the density as

g(X,G,κ) = C(κ)etr(F TX) = C(κ) exp

(
p+

∑p
i=1 κ

2
i − ρ(F,X)2

2

)
,

where ρ is the Frobenius distance between two matrices F and X. Therefore

etr(F TX) is a continuous density of X with respect to the Frobenius distance.

Vp,d can be embedded onto the Euclidean space M(d, p) via the inclusion map,

so one can equip Vp,d with a metric space structure via the extrinsic distance ρ in

the Euclidean space. From the symmetry between G and X, g is also continuous

with respect to G.

To prove (2), note that DP has weak support on all the measures whose

support is contained by the base measure P0 (See Theorem 3.2.4 in Ghosh and

Ramamoorthi (2003), pp. 104). As P0 and πκ have full support, (2) follows

immediately.

Let I(X) = f(X)−
∫
g(X,G,κ)f(G)λ(dG). For the last condition, we must

show that there exists some compact subset in Rp with non-empty interior, Dϵ,

such that

sup
X∈Vp,d, κ∈Dϵ

∥I(X)∥ ≤ ϵ. (5.1)

From symmetry of g with respect to G and X, one can write

I(X) = C(κ)

∫
(f(X)− f(G)) etr(F TX)λ(dG).

Let �G = Q(d)TG, where Q(d) is an orthogonal matrix with first p columns as
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X. Then G = Q(d) �G. As the volume form is invariant under the group action

of the orthogonal matrices O(d) on the left, one has λ(dG) = λ(d �G). First,

ρ2(X,Q(d) �G) = Trace

((
X −Q(d) �G

)(
X −Q(d) �G

)T
)

= 2p− 2Trace
(
Q(d)TX �GT

)

= 2

p∑
i=1

(1− �gii) ,

with �gii being the diagonal elements of �G. Let (1− �gii) = sii/κi for i = 1, . . . , p,

with sii ∈ [0, 2κi]. Then ρ2(X,Q(d) �G) = 2
∑p

i=1 sii/κi for any given κi. Since the

Stiefel manifold is compact and f is continuous with respect to ρ, f is uniformly

continuously on Vp,d with respect to the distance. Therefore, when κi → ∞ for

all i = 1, . . . , p, one has for s = {s11, . . . , spp},

sup
X∈Vp,d

���
(
f(X)− f(Q(d) �G)

)��� → 0. (5.2)

Let �F be the matrix whose kth column is κkQ(d) �G[:k]. One has

sup
X∈Vp,d

|I(X)|

≤ sup
X∈Vp,d

C(κ)

∫ ���
(
f(X)− f(Q(d) �G)

)��� etr( �F TX)λ(d �G)

≤ C(κ)

∫ {
sup

X∈Vp,d

���
(
f(X)− f(Q(d) �G)

)���
}
exp

(
p∑

i=1

κi�gii
)
λ(d �G)

= C(κ) exp

(
p∑

i=1

κi

)∫ {
sup

X∈Vp,d

���
(
f(X)− f(Q(d) �G)

)���
}
exp

(
−

p∑
i=1

sii

)
λ(d �G).

(5.3)

Let π1 be the transformation given by π1(�gij) = �gij when i ̸= j and π1(�gii) =

sii = κi(1 − �gii). Let λ(d�Gs) be new volume measure after change of variables

with respect to π1. Let J1 be the Jacobian of the map π1. Rewrite λ(d �G) =

φ( �G)d�g11∧d�g12 · · ·∧�gdp where φ( �G) is some function of �G. Similarly, let λ(d �Gs) =

�φ( �Gs)ds11 ∧ · · · ∧ dsdp. One has

λ(d�Gs) = �φ( �Gs)

p∏
i=1

κid�g11 ∧ d�g12 · · · ∧ �gdp

= �φ( �Gs)

p∏
i=1

κi
1

φ( �G)
λ(d �G). (5.4)
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the Euclidean space. From the symmetry between G and X, g is also continuous
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such that
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with sii ∈ [0, 2κi]. Then ρ2(X,Q(d) �G) = 2
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i=1 sii/κi for any given κi. Since the

Stiefel manifold is compact and f is continuous with respect to ρ, f is uniformly
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all i = 1, . . . , p, one has for s = {s11, . . . , spp},

sup
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(
p∑

i=1

κi�gii
)
λ(d �G)

= C(κ) exp

(
p∑

i=1

κi

)∫ {
sup

X∈Vp,d

���
(
f(X)− f(Q(d) �G)

)���
}
exp

(
−

p∑
i=1

sii

)
λ(d �G).

(5.3)

Let π1 be the transformation given by π1(�gij) = �gij when i ̸= j and π1(�gii) =

sii = κi(1 − �gii). Let λ(d�Gs) be new volume measure after change of variables

with respect to π1. Let J1 be the Jacobian of the map π1. Rewrite λ(d �G) =

φ( �G)d�g11∧d�g12 · · ·∧�gdp where φ( �G) is some function of �G. Similarly, let λ(d �Gs) =

�φ( �Gs)ds11 ∧ · · · ∧ dsdp. One has

λ(d�Gs) = �φ( �Gs)

p∏
i=1

κid�g11 ∧ d�g12 · · · ∧ �gdp

= �φ( �Gs)

p∏
i=1

κi
1

φ( �G)
λ(d �G). (5.4)
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The last term of (5.3) is

C(κ) exp

(
p∑

i=1

κi

)
p∏

i=1

1

κi

∫ {
sup

X∈Vp,d

���
(
f(X)− f(Q(d) �G)

)���
}
×

exp

(
p∑

i=1

−sii

)
φ( �G)

�φ( �Gs)
λ(d�Gs), (5.5)

with appropriate change of the range of integration. It is not hard to see that
∫

exp

(
−

p∑
i=1

sii

)
φ( �G)

�φ( �Gs)
λ(d�Gs) < ∞. (5.6)

We now proceed to show that even as κi → ∞,

C(κ) exp

(
p∑

i=1

κi

)
p∏

i=1

1

κi
< ∞. (5.7)

One has

C(κ) exp

(
p∑

i=1

κi

)
p∏

i=1

1

κi
=

∏p
i=1(1/κi)

0F1

(
1/2d, 1/4diag

{
κ21, . . . , κ

2
p

})
/
∏p

i=1 exp(κi)
.

Write (see Butler and Wood (2003))

0F1

(
1

2
d,

1

4
diag

{
κ21, . . . , κ

2
p

})
=

∫

Op

etr (diag {κ1, . . . , κp}T ) dT (5.8)

with T ∈ Op the group of all the p by p orthogonal matrices with dT given by

∧i<jt
T
j dti. When κi ≥ 1 for i = 1, . . . , p, one looks at

∫

Op

etr (diag {κ1, . . . , κp}T )∏p
i=1 exp(κi)

dT =

∫

Op

exp

(
−

(
p∑

i=1

κi(1− tii)

))
dT,

where tii are the diagonal elements of T . For π2 the map such that π2(tij) = tij
for i ̸= j, and uii = π2(tii) = κi(1 − tii), one has uii ∈ [0, 2κi]. Let d�T be the

volume form after change of variable. By the argument given in (5.4), we have
∫

Op

exp

(
−

(
p∑

i=1

κi(1− tii)

))
dT =

p∏
i=1

1

κi

∫
exp

(
−

(
p∑

i=1

uii

))
1

det(J2)
d�T ,

where det(J2) corresponds to determinants of the Jacobian of maps π2, which is

essentially the same map as π1 but with domain T ∈ Op. Note
∫
exp

(
−
(

p∑
i=1

uii

))

(1/det(J2))d�T is bounded away from zero and infinity as κi → ∞. Therefore, we

can conclude

C(κ) exp

(
p∑

i=1

κi

)
p∏

i=1

1

κi
< ∞. (5.9)
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Combining (5.2) and (5.9), by the Dominated Convergence Theorem, one has

sup
X∈Vp,d

|I(X)| → 0

as κi → ∞ for all i = 1, . . . , p. Thus for all ϵ > 0, there exists Mi large enough

such that, when κi > Mi, supX∈Vp,d
|I(X)| ≤ ϵ. One can take Dϵ to be a ϵ

neighborhood of {κ1, . . . , κp} with κi > max{Mi, i = 1, . . . , p}.

Proof of Theorem 2. In order to establish strong consistency, it is not sufficient

for the prior Π to assign positive mass to any Kullback-Leibler neighborhood of

f0; we need to construct high mass sieves with metric entropy N(ϵ,F) bounded

by certain order, where N(ϵ,F) is defined as the logarithm of the minimum

number of balls with Hellinger radius ϵ to cover the space F . We refer to Barron,

Schervish and Wasserman (1996) for some general strong consistency theorems.

We first proceed to verify two conditions on the kernel g(X,G,κ).

(a) There exists positive constants k0, a1, and A1 such that for all k > k0,

G1, G2 ∈ Vp,d, one has

sup
X∈Vp,d,κ∈ϕ−1[0,k]

|g(X,G1,κ)− g(X,G2,κ)| ≤ A1k
a1ρ(G1, G2), (5.10)

where ϕ : Rp → [0,∞) is some continuous function of κ.

(b) There exists positive constants a2 and A2 such that for all κ, �κ ∈ ϕ−1[0, k],

k ≥ k0,

sup
X,G∈Vp,d

|g(X,G,κ)− g(X,G, �κ)| ≤ A2k
a2ρ2(κ, �κ), (5.11)

where ρ2 is the Euclidean distance ∥ · ∥2 on Rp.

Let G1, G2 ∈ Vp,d and F1 and F2 be such that their ith columns are given by

κiG1[:,i]
and κiG2[:,i]

, respectively. For s, t ∈ [0, c] and c > 0, one has
��� exp

(
−s2

2

)
− exp

(
− t2

2

) ��� ≤
���η exp

(
−η2

2

)
(s− t)

��� ≤ c|s− t|,

where η is some point between s and t. Let kmax = max{κ1, . . . , κp}. A little

calculation shows that ρ(F,X) ≤
√∑p

i=1(κi + 1)2, so that

sup
X∈Vp,d,κ∈ϕ−1[0,k]

����g(X,G1,κ)− g(X,G2,κ)

����

= sup
X∈Vp,d,κ∈ϕ−1[0,k]

����C(κ) exp
(p
2

)

exp

(∑p
i=1 κi
2

)(
exp

(
−ρ2(F1, X)

2

)
− exp

(
−ρ2(F2, X)

2

)) ����
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sup
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Let G1, G2 ∈ Vp,d and F1 and F2 be such that their ith columns are given by

κiG1[:,i]
and κiG2[:,i]

, respectively. For s, t ∈ [0, c] and c > 0, one has
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(
−s2

2

)
− exp

(
− t2

2

) ��� ≤
���η exp

(
−η2

2
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(s− t)

��� ≤ c|s− t|,

where η is some point between s and t. Let kmax = max{κ1, . . . , κp}. A little

calculation shows that ρ(F,X) ≤
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i=1(κi + 1)2, so that
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����

= sup
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2
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exp

(∑p
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2

)(
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(
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2

)
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(
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2
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≤ sup
X∈Vp,d,κ∈ϕ−1[0,k]

����C(κ) exp
(p
2

)
exp

(∑p
i=1 κi
2

)

����
p∑

i=1

(κi + 1)2 (ρ(F1, X)− ρ(F2, X))

����

≤ exp
(p
2

)
sup

X∈Vp,d,κ∈ϕ−1[0,k]

����C(κ) exp

(∑p
i=1 κi
2

)
ρ(F1, F2)

����
p∑

i=1

(κi + 1)2
����

≤ 2 exp
(p
2

)
sup

X∈Vp,d,κ∈ϕ−1[0,k]

����C(κ) exp

(∑p
i=1 κi
2

)

����
p∑

i=1

κ2i ρ(G1, G2)

����
p∑

i=1

(κi + 1)2
����

≤ 2 exp
(p
2

)
sup

X∈Vp,d,κ∈ϕ−1[0,k]

����C
p∏

i=1

κi

����
p∑

i=1

κ2i

����
p∑

i=1

(κi + 1)2ρ(G1, G2)

����,

where C is some constant according to (5.9). Let ϕ(κ) =
√∑p

i=1(κi + 1)2. If

ϕ(κ) ≤ k, then
√∑p

i=1 κ
2
i ≤ ϕ(κ) ≤ k and κi ≤ k for each i. Thus

∏p
i=1 κi ≤ kp.

Therefore,

sup
X∈Vp,d,κ∈ϕ−1[0,k]

|g(X,G1,κ)− g(X,G2,κ)| ≤ C1k
p+2ρ(G1, G2),

with C1 some constant. With a1 = p+ 2, Condition (a) holds.

Let κ, �κ ∈ Rp be two vectors of the concentration parameters. By the Mean

Value Theorem, one has, for some t ∈ (0, 1),

g(X,G,κ)− g(X,G, �κ) =
(�

g(X,G, (1− t)κ+ t�κ)
)
· (κ− �κ),

where
�
g(X,G, (1 − t)κ + t�κ) is the gradient of g(X,G,κ) with respect to κ

evaluated at (1−t)κ+t�κ and · denotes the inner product. By the Cauchy-Schwarz

inequality, one has

|g(X,G,κ)− g(X,G, �κ)| ≤ ∥
�

g(X,G, (1− t)κ+ t�κ)∥2∥κ− �κ∥2.
Note that for i = 1, . . . , p,

∂g

∂κi

= exp

(
−

p∑
i=1

κi(1−GT
[:i]X[:i])

)(
C(κ)GT

[:i]X[:i] exp(

p∑
i=1

κi) +
∂C(κ)

∂κi
exp(

p∑
i=1

κi)

)

BAYESIAN INFERENCE ON THE STIEFEL MANIFOLD 17

= exp

(
−

p∑
i=1

κi(1−GT
[:i]X[:i])

)(
C(κ)GT

[:i]X[:i] exp(

p∑
i=1

κi)

− C2(κ)
∂0F1

(
1
2d,

1
4diag

{
κ21, . . . , κ

2
p

})

∂κi
exp(

p∑
i=1

κi)

)
.

By applying the general Leibniz rule for differentiation under an integral

sign, one has

∂0F1

(
(1/2)d, (1/4)diag

{
κ21, . . . , κ

2
p

})

∂κi
=

∫

Op

∂etr (diag {κ1, . . . , κp}S)
∂κi

dS

=

∫

Op

sii exp

(
p∑

i=1

κisii

)
dS

≤
∫

Op

exp

(
p∑

i=1

κisii

)
dS =

1

C(κ)
.

Then one has����
∂g(X,G,κ)

∂κi

����

≤ C(κ) exp

(
p∑

i=1

κi

)
+ C2(κ)

∂0F1

(
1
2d,

1
4diag

{
κ21, . . . , κ

2
p

})

∂κi
exp

(
p∑

i=1

κi

)

≤ 2C(κ) exp

(
p∑

i=1

κi

)
≤ C2

p∏
i=1

κi,

for some constant C2 by (5.9). Therefore, ∥
�
g(X,G, (1 − t)κ + t�κ)∥2 ≤ C2k

p,

and one has |g(X,G,κ)−g(X,G, �κ)| ≤ C2k
p∥κ−�κ∥2. Letting a2 = p, Condition

(b) is verified.

We proceed to verify two entropy conditions:

(c) For any k ≥ k0, the subset ϕ−1[0, k] is compact and its ϵ-covering number

is bounded by (kϵ−1)b2 for some constant b2 independent of κ and ϵ.

(d) The ϵ covering number of the manifold Vp,d is bounded by A3ϵ
−a3 for any

ϵ > 0.

It is easy to verify Condition (c) as ϕ−1([0, k]) = {κ,
∑p

i=1(κi +1)2 ≤ k2}, which
is a subset of a shifted Euclidean ball in Rp with radius k. With a direct argument

using packing numbers (Pollard, 1990, Sec.4), one can obtain a bound for the

entropy of ϕ−1[0, k] given by 3kp/ϵp. Thus Condition (c) holds with b2 = p.

Let N(ϵ) be the entropy of Vp,d and NE(ϵ) be the entropy of Vp,d viewed as

a subset of Rpd (points covering Vp,d do not necessarily lie on Vp,d for the latter

550



16 LIZHEN LIN, VINAYAK RAO AND DAVID DUNSON

≤ sup
X∈Vp,d,κ∈ϕ−1[0,k]

����C(κ) exp
(p
2

)
exp

(∑p
i=1 κi
2

)

����
p∑

i=1

(κi + 1)2 (ρ(F1, X)− ρ(F2, X))

����

≤ exp
(p
2

)
sup

X∈Vp,d,κ∈ϕ−1[0,k]

����C(κ) exp

(∑p
i=1 κi
2

)
ρ(F1, F2)

����
p∑

i=1

(κi + 1)2
����

≤ 2 exp
(p
2

)
sup

X∈Vp,d,κ∈ϕ−1[0,k]

����C(κ) exp

(∑p
i=1 κi
2

)

����
p∑

i=1
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����
p∑

i=1

(κi + 1)2
����

≤ 2 exp
(p
2

)
sup

X∈Vp,d,κ∈ϕ−1[0,k]

����C
p∏

i=1

κi

����
p∑

i=1

κ2i

����
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����,

where C is some constant according to (5.9). Let ϕ(κ) =
√∑p

i=1(κi + 1)2. If

ϕ(κ) ≤ k, then
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−a3 for any

ϵ > 0.

It is easy to verify Condition (c) as ϕ−1([0, k]) = {κ,
∑p

i=1(κi +1)2 ≤ k2}, which
is a subset of a shifted Euclidean ball in Rp with radius k. With a direct argument

using packing numbers (Pollard, 1990, Sec.4), one can obtain a bound for the

entropy of ϕ−1[0, k] given by 3kp/ϵp. Thus Condition (c) holds with b2 = p.

Let N(ϵ) be the entropy of Vp,d and NE(ϵ) be the entropy of Vp,d viewed as

a subset of Rpd (points covering Vp,d do not necessarily lie on Vp,d for the latter
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case). One can show that N(2ϵ) ≤ NE(ϵ). Here Vp,d ⊂ [−1, 1]pd, which is a

subset of a Euclidean ball of radius
√
dp centered at zero, the ϵ number of which

is bounded by
(
(3
√
dp)/ϵ

)dp
. Therefore, Condition (d) holds with a3 = dp. Then

by Corollary 1 in Bhattacharya and Dunson (2012), strong consistency follows.
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