
Statistica Sinica 27 (2017), 000-000
doi: https://doi.org/10.5705/ss.202015.0196

QUENCHED CENTRAL LIMIT THEOREMS

FOR A STATIONARY LINEAR PROCESS
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Abstract: We establish a sufficient condition under which a central limit theorem

for a a stationary linear process is quenched. We find a stationary linear process

for which the Maxwell-Woodroofe’s condition is satisfied, σn = ∥Sn∥2 = o(
√
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the weak invariance principle does not hold.
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1. Introduction

Let T be an ergodic automorphism of a probability space (Ω,A, µ). For

h ∈ L2, Uh = h ◦ T is a unitary operator; we freely switch from the notation

h ◦ T i to U ih, and vice versa.

Let (Fi)i be a filtration such that Fi+1 = T−1Fi, and e ∈ L2(F0)⊖L2(F−1).

For simplicity we suppose ∥e∥2 = 1. Let ai be real numbers with
∑

i∈N a2i < ∞
and let

f =
∑
i≤0

a−iU
ie.

Then f ∈ L2 and we say that (f ◦ T i)i is a causal stationary linear process. The

stationary linear process is a classical and important case of a (strictly) stationary

process and, moreover, any regular stationary process is a sum of stationary linear

processes “living” in mutually orthogonal and U -invariant subspaces of L2 (cf.

Volný, Woodroofe and Zhao (2011)). If ek ∈ L2(F0) ⊖ L2(F−1), ∥ek∥2 = 1, are

mutually orthogonal, ak,i are real numbers with
∑∞

k=1

∑
i∈N a2k,i < ∞, and if

f =

∞∑
k=1

∑
i≤0

ak,−iU
iek (1.1)
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then we say that (f ◦ T i)i is a causal superlinear process. As shown in Volný,

Woodroofe and Zhao (2011), if f ∈ L2 is F0-measurable and E(f |F−∞) = 0,

then a representation (1.1) exists.

Let Sn(f) =
∑n−1

i=0 f ◦ T i. Recall (Peligrad and Utev (2006)) that if σn =

∥Sn(f)∥2 → ∞ then the distributions of Sn(f)/σn converge weakly to N(0, 1).

We will study when this CLT is quenched.

Suppose that the regular conditional probabilities mω with respect to the

σ-field F0 exist. If for µ a.e. ω the distributions mω(Sn(f)/σn)
−1 weakly con-

verge to N(0, 1), we say the CLT is quenched. A quenched CLT can be defined

using Markov Chains. Suppose that the sigma algebras in (Fi)i are countably

generated. Any stationary process (f ◦ T i)i adapted to (Fi)i can be expressed,

using a homogeneous and stationary Markov Chain (ξi)i, as (g(ξi))i. A CLT is

quenched if it takes place for a.e. starting point. This approach is probably ear-

lier than ours; it has been used in e.g. Derriennic and Lin (2001). For countably

generated filtrations the approaches are equivalent. To see this, there exists a

function h such that the sigma algebra σ{h} generated by h equals F0. Then

(h ◦ T i)i is a Markov Chain, and for f there exists a Borel function g such that

f = g(h) (cf. e.g. Volný (2010) or Cuny and Volný (2013)).

In the next section, for a stationary linear process, we give a sufficient con-

dition for a quenched CLT. In Section 3, we present a stationary linear processes

(f ◦T i)i for which the Maxwell-Woodroofe and the Hannan conditions are satis-

fied but the CLT is not quenched and the weak invariance principle (WIP) does

not hold. As noticed in Remarks 3 and 4, under the Maxwell-Woodroofe and

Hannan conditions the weak invariance principle for [Sn(f)− E(Sn(f)|F0)]/
√
n

is quenched. Because under the Maxwell-Woodroofe and Hannan conditions

σn/
√
n converges to a (finite) limit we under the assumptions of Theorem 2 have

σn/
√
n → 0. We conjecture that a version of Theorem 2 with σn/

√
n → ∞, and

without the Maxwell-Woodroofe and the Hannan conditions, is true.

We study quenched versions of limit theorems for Sn(f)/σn, hence one might

call the results “self-normalized quenched central limit theorems”. In Proposition

3 we will see that the results of Theorem 2 are valid not only for norming by σn
but also for norming by the standard deviation calculated for the measure mω

(for µ a.e. ω).

2. A Sufficient Condition

Let (e ◦ T i) be the martingale difference sequence
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f =

∞∑
i=0

aie ◦ T−i,

where
∑∞

i=0 a
2
i < ∞, and let Sn =

∑n−1
i=0 f ◦ T i, n = 1, 2, . . . . By definition,

Sn =

n−1∑
j=0

f ◦ T j =

∞∑
i=0

n−1∑
j=0

aie ◦ T j−i =

n−1∑
k=−∞

n−1∑
j=k∨0

aj−ke ◦ T k

=

n−1∑
k=1

bn−ke ◦ T k +

n−1∑
k=0

(bn−k − b−k)e ◦ T k,

where u ∨ v = max{u, v}, b0 = 0, bj =
∑j−1

i=0 ai, j ≥ 1.

We take σ̄2
n = E[(Sn − E(Sn|F0))

2] =
∑n−1

k=1 b
2
n−k.

Theorem 1. Let σ̄2
n → ∞. If

(i) e ◦ T i are iid, or

(ii) sup
n≥1

max
k≤n

nb2k
σ̄2
n

= c < ∞, (2.1)

then for (1/σn)[Sn − E(Sn|F0)], a quenched CLT holds true.

Remark 1. If the sums bk converge to a limit b such that σ2
n/n → b2

then the Heyde condition (cf. e.g. Hall and Heyde (1980, Chap. 5)) is satisfied

and we get a CLT. As proved in Volný and Woodroofe (2014), in general, for

Sn−E(Sn|F0) the CLT is not quenched. Our theorem shows that it is quenched

in the particular case that (f ◦ T i) is a stationary linear process with martingale

differences innovation.

Remark 2. Theorem 1 implies a quenched CLT for Sn−E(Sn|F0) as soon

as
∑∞

k=1 a
2
k < ∞, lim infn→∞ σ̄2

n/n > 0, and the sequence of bk =
∑k

i=0 ai is

bounded.

Proof of Theorem 1. We have to prove a quenched CLT for the triangular

array of random variables bn−ke ◦ T k/σ̄n, k = 1 . . . , n, n = 1, 2, . . . .

The e ◦ T k are iid and they remain iid for the conditional probabilities mω

as well. From σ̄2
n =

∑n−1
k=1 b

2
k → ∞ we get the CLT.

Let e◦T k be martingale differences and let (2.1) hold. To prove the CLT we

use Lachout’s refinement (Lachout (1985)) of the McLeish central limit theorem

(McLeish (1974)), applied to regular conditional probabilities with respect to the

σ-algebra F0. We thus will prove

(a) E
(
maxk≤n−1 |bn−ke ◦ T k|/σ̄n |

��F0

)
→ 0 a.s.,
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and we get a CLT. As proved in Volný and Woodroofe (2014), in general, for

Sn−E(Sn|F0) the CLT is not quenched. Our theorem shows that it is quenched

in the particular case that (f ◦ T i) is a stationary linear process with martingale

differences innovation.

Remark 2. Theorem 1 implies a quenched CLT for Sn−E(Sn|F0) as soon

as
∑∞

k=1 a
2
k < ∞, lim infn→∞ σ̄2

n/n > 0, and the sequence of bk =
∑k

i=0 ai is

bounded.

Proof of Theorem 1. We have to prove a quenched CLT for the triangular

array of random variables bn−ke ◦ T k/σ̄n, k = 1 . . . , n, n = 1, 2, . . . .

The e ◦ T k are iid and they remain iid for the conditional probabilities mω

as well. From σ̄2
n =

∑n−1
k=1 b

2
k → ∞ we get the CLT.

Let e◦T k be martingale differences and let (2.1) hold. To prove the CLT we

use Lachout’s refinement (Lachout (1985)) of the McLeish central limit theorem

(McLeish (1974)), applied to regular conditional probabilities with respect to the

σ-algebra F0. We thus will prove

(a) E
(
maxk≤n−1 |bn−ke ◦ T k|/σ̄n |

��F0

)
→ 0 a.s.,

521
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(b)
∑n−1

k=1 b
2
n−ke

2 ◦ T k/σ̄2
n converge to a constant a.s..

By (2.1),
b2n−k

σ̄2
n

≤ c

n

for all n, 1 ≤ k ≤ n − 1, hence (a) follows in the same way as in Volný and

Woodroofe (2014).

To prove (b), let

Tnf =
1

σ̄2
n

n−1∑
k=1

b2n−kf ◦ T k, f ∈ L1.

Recall the Banach principle (cf. Krengel (1985, Thm. 7.2)): If

(i) Tn : L1 → L1 are continuous for every n ∈ N,

(ii) for every f ∈ L1, supn |Tnf | < ∞ a.e.,

(iii) there is a dense subset of h ∈ L1 for which (Tnh)n converges a.s.,

then for all f ∈ L1, Tnf converge a.s..

We verify (i)-(iii). (i) follows from the definition. For (ii),

|Tnf | ≤
1

σ̄2
n

n−1∑
k=1

b2n−k|f | ◦ T k ≤ c

n

n−1∑
k=1

|f | ◦ T k

hence, by the Birkhoff ergodic theorem (cf. Krengel (1985, Thm. 2.3)),

sup |Tnf | < ∞ a.s. ∀f ∈ L1.

We prove (iii). Let f = g − g ◦ T , g ∈ L∞. Then

Tnf =
1

σ̄2
n

n−1∑
k=1

b2n−k[g ◦ T k − g ◦ T k+1]

=
1

σ̄2
n

n∑
k=1

[b2n−k − b2n−k+1]g ◦ T k +
b2n
σ̄2
n

g ◦ T

≤ 1

σ̄2
n

����
n∑

k=1

(bn−k + bn−k+1)2

����
n∑

k=1

a2n−k+1∥g∥∞ +
c

n
∥g∥∞

≤ 2

σ̄n

√
1 +

c

n
A∥g∥∞ +

c

n
∥g∥∞, (2.2)

where A2 =
∑∞

k=1 a
2
k < ∞, hence Tnf → 0 a.s..
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The set of functions c+ g − g ◦ T , c ∈ R, g ∈ L∞, is dense in L1 (recall that

T is ergodic). For f ′ = g− g ◦T we have Tnf
′ → 0 a.s. by the calculation above,

for f ′′ = c we have Tnf
′′ = f ′′ ≡ c hence the convergence towards c takes place

for f = f ′ + f ′′.

By the Banach principle we conclude that

Tne
2 =

1

σ̄2
n

n∑
k=1

b2n−ke
2 ◦ T k (2.3)

converges almost surely for every e ∈ L2. Let f∗ be the limit in (2.3). Using a

similar calculation as in (2.2) we can see that Tne
2 − (Tne

2) ◦ T → 0 in L1 hence

f∗ = f∗ ◦ T . By ergodicity, f∗ is a constant a.s..

3. A Non-quenched CLT

If the process (f ◦ T i) is adapted to the filtration (Fi)i and if
∞∑
n=1

∥E(Sn(f) | F0)∥2
n3/2

< ∞,

we say that the Maxwell-Woodroofe condition takes place. Let Pif = E(f | Fi)−
E(f | Fi−1), i ∈ Z, and suppose that the process (f ◦ T i)i is adapted and that

f =
∑

i≤0 Pif (f is regular). If, moreover,

∞∑
i=0

∥P0U
if∥2 < ∞,

then we say that the Hannan condition takes place.

Theorem 2. There exists a regular causal stationary linear process (f ◦T i) with

martingale difference innovations such that

(i) the Maxwell-Woodroofe and the Hannan conditions are satisfied;

(ii) for σn = ∥Sn(f)∥2, σn → ∞, σn/
√
n → 0, ∥E(Sn(f) | F0)∥2/σn → 0, so

σ̄n/σn → 1;

(iii) Sn(f)/σn converge in distribution to N (0, 1);

(iv) the convergence is not quenched for Sn(f)/σn or for (Sn(f)−E(Sn(f) | F0))/σn;

(v) the WIP does not hold.

Remark 3. The Hannan condition implies the WIP for Sn(f)/
√
n (cf.

Dedecker, Merlevède and Volný (2007)). For [Sn(f) − E(Sn(f) | F0)])/
√
n the

invariance principle is quenched (cf. Cuny and Volný (2013)), for Sn(f))/
√
n the

CLT is not quenched in general (cf. Volný and Woodroofe (2010)).

Remark 4. As shown in Cuny and Merlevède (2014), the Maxwell-Woodroofe
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condition implies a quenched CLT and WIP for Sn(f)/
√
n (cf. also Peligrad and

Utev (2005)).

Proof. We will find a filtration (Fi)i such that Fi+1 = T−1Fi and e ∈
L2(F0) ⊖ L2(F−1), ∥e∥2 = 1. The construction of e and (Fi)i will be presented

later; it is needed for the proof of (iv) only.

We define a function f by

f = e+

∞∑
k=1

−γk
Vk

Vk∑
i=1

U−ie,

where γk > 0,
∑∞

k=1 γk = 1, Vk ↗ ∞, are such that

∥Sn(f)∥2 → ∞,
∥Sn(f)∥2√

n
→ 0,

∥E(Sn(f) | F0)∥2
∥Sn(f)∥2

→ 0,

and
Sn(f)

∥Sn(f)∥2
→ N(0, 1).

To do so, we define

γk =
2

k + 2

k∏
j=1

(
1− 1

j + 1

)
= 2

( 1

k + 1
− 1

k + 2

)
, k = 1, 2, . . . .

Here,
∞∑
k=1

γk = 1, 1−
k−1∑
j=1

γj = 2

k∏
j=1

(
1− 1

j + 1

)
= (k + 2)γk.

We suppose that V1 = 1 and for all k ≥ 1, Vk+1/Vk ≥ λ, limk→∞ Vk+1/Vk = λ >

1. We have
��γk
Vk

Vk∑
i=1

U−ie
��
2
=

γk√
Vk

which guarantees that

f =

∞∑
k=1

γk

(
e− 1

Vk

Vk∑
i=1

U−ie
)
=

∞∑
k=1

γkfk ∈ L2,

where

fk = e− 1

Vk

Vk∑
i=1

U−ie = gk − Ugk, gk = − 1

Vk

Vk∑
j=1

jU−Vk−1+je.

For h =
∑∞

i=0 ciU
−ie we have

Sn(h) =

n−1∑
j=0

∞∑
i=0

ciU
j−ie =

n−1∑
u=−∞

n−1∑
j=0∨u

cj−uU
ue,
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Sn(h)− E(Sn(h) | F0) =

n−1∑
u=1

n−1∑
j=u

cj−uU
ue (3.1)

(where 0 ∨ u = max{0, u}). If

fk = e− 1

Vk

Vk∑
i=1

U−ie =

∞∑
i=0

ck,iU
−ie,

we have

��
n−1∑

j=0∨u
ck,j−u

�� ≤ 1 for every u; (3.2a)

��
n−1∑

j=0∨u
ck,j−u

�� ≤ n/Vk for , − 1 ≥ u ≥ −Vk; (3.2b)

��
n−1∑

j=0∨u
ck,j−u

�� = 0 for u < −Vk; (3.2c)

n−1∑
j=0∨u

ck,j−u ≥ 0 ∨
(
1− n

Vk

)
for u ≥ 0. (3.2d)

From (3.2a), (3.2b), and (3.2c) we deduce that for every choice of Vk,

∥Sn(fk)∥2 =
��Sn

(
e− 1

Vk

Vk∑
i=1

U−ie
)��

2
≤

√
2n.

From this, the Lebesgue Dominated Convergence Theorem, and the fact that

each fk is a coboundary with an L2 cobounding function gk we deduce that

∥Sn(f)∥2√
n

≤
∞∑
k=1

γk
∥Sn(fk)∥2√

n
→ 0. (3.3)

Recall that 1 −
∑k+1

j=1 γj =
∑∞

j=k+2 γj = (k + 4)γk+2 and ∥Sn(f)∥2 ≥ ∥Sn(f) −
E(Sn(f) | F0)∥2. By (3.1),

Sn(f)− E(Sn(f) | F0) =

∞∑
k=1

n−1∑
u=1

n−1∑
j=u

γkck,j−uU
ue,
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∑∞

i=0 ck,iU
−ie.

Let Vk ≤ n < Vk+1. From (3.2d), Vj+1/Vj ≥ λ > 1, and properties of the

numbers γj we deduce that for a constant C > 0

∥Sn(f)− E(Sn(f) | F0)∥2 ≥
√
n− 1

∞∑
j=k+1

γj
(
1− n

Vj

)
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≥
√
n− 1

∞∑
j=k+2

γj
(
1− Vk+1

Vj

)
≥

√
n− 1C

∞∑
j=k+2

γj

=
√
n− 1C

(
1−

k+1∑
j=1

γj
)
≥ C(k + 4)γk+2

√
n− 1,

and hence

∥Sn(f)∥2 ≥ C(k + 4)γk+2

√
n− 1 (3.4)

for some constant C > 0. In the following text we denote other constants by the

same letter C.

Because the Vk grow exponentially fast,

√
Vk

(
1−

k+1∑
j=1

γj
)
=

√
Vk(k + 4)γk+2 → ∞

hence

∥Sn(f)∥2 → ∞. (3.5)

Using exponential growth of the Vk again we get, for Vk ≤ n < Vk+1,

∥E(Sn(f) | F0)∥2 ∼ γk
√
n. (3.6)

To (3.6), we have

P0Sn(f) = E(Sn(f) | F0)− E(Sn(f) | F−1) =

∞∑
k=1

γk

n−1∑
j=0

ck,je,

and hence, by (3.2a), ∥P0Sn(f)∥2 ≤ 1 for all n ≥ 1. It is thus sufficient to prove

(3.6) for ∥E(Sn(f) | F−1)∥2.
Suppose that 1 ≤ l ≤ k. By a direct calculation we prove that

∥E(Sn(fl) | F−1)∥22 =
γ2l
V 2
l

Vl−1∑
j=1

j2 ≤ cγ2l Vl

for a constant c not depending on l. Because the Vl grow exponentially fast, we

deduce

1

γk
√
n

k−1∑
l=1

∥E(Sn(fl) | F−1)∥2 ≤
√
c

k−1∑
l=1

γl

√
Vl

Vk
≤ C

for some constant C not depending on k. For l ≥ k we have, by (3.2b),

∥E(Sn(fl) | F−1)∥22 ≤ γ2l Vl

( n
Vl

)2
= γ2l

n2

Vl
,
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hence
1

γk
√
n

∞∑
l=k+1

∥E(Sn(fl) | F−1)∥2 ≤
∞∑

l=k+1

γl
γk

( n
Vl

)1/2 ≤ C

for some constant C not depending on k (recall that Vk ≤ n < Vk+1). This

together with

∥E(Sn(fk) | F−1)∥22 = nγ2k
Vk

n

1

V 3
k

Vk−1∑
j=1

j2

finishes the proof of (3.6).

By definition, γk = 1/(k + 2)
(
1−

∑k−1
j=1 γj

)
, and hence by (3.4) and (3.6) we

have
∥E(Sn(f) | F0)∥2

∥Sn(f)∥2
→ 0. (3.7)

From (3.5), (3.3), and (3.7) we get (ii). By Peligrad and Utev (2006) and σ2
n → ∞

we get the central limit theorem (iii).

The Hannan and Maxwell-Woodroofe Conditions

We have ∥P0U
if∥2 = |ai|, i ≥ 0, where f =

∑∞
i=0 aiU

−ie. From the defini-

tion of f we deduce that the process is regular, a0 = 1, and ai < 0 for i ≥ 1,∑∞
i=1 ai = −1. This implies the Hannan condition.

Let

hk =
−γk
Vk

Vk∑
i=1

U−ie, f ′ =

∞∑
k=1

hk,

so f = e − f ′. In the same way as we deduced (3.2a)–(3.2d), we deduce, for all

k ≥ 1,

∥E(Sn(hk) | F0)∥22 ≤ γ2kVk

( n

Vk

)2
= γ2k

n2

Vk
, n = 1, 2, . . . , Vk,

∥E(Sn(hk) | F0)∥2 = ∥E(SVk
(hk) | F0)∥2 ≤ γk

√
Vk, n ≥ Vk.

Therefore,

∞∑
n=1

∥E(Sn(hk) | F0)∥2
n3/2

≤ γk
1√
Vk

Vk∑
n=1

1√
n
+ γk

√
Vk

∞∑
n=Vk+1

1

n3/2
≤ Cγk

for some constant C. We thus have
∞∑
n=1

∥E(Sn(f
′) | F0)∥2

n3/2
≤

∞∑
k=1

∞∑
n=1

∥E(Sn(hk) | F0)∥2
n3/2

≤ C

∞∑
k=1

γk = C < ∞

and (i) follows.
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√
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Let
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hk,

so f = e − f ′. In the same way as we deduced (3.2a)–(3.2d), we deduce, for all
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The filtration and e

Let B′
k,B′′

l ⊂ A, k, l = 1, 2, . . . , be mutually independent σ-algebras with

B′
k ⊂ T−1B′

k, B′′
l ⊂ T−1B′′

l , ∩∞
j=1T

jB′
k = {Ω, ∅}, ∩∞

j=1 T
jB′′

l = {Ω, ∅} (modulo

sets of measure 0 or 1) for every k, l; ξk ◦ T i are iid B′
k-measurable random

variables, µ(ξk = 1) = 1/2 = µ(ξk = −1) for all i.

All these objects can be constructed by taking finite alphabets A′
k and A′′

l ,

k, l = 1, 2, . . . , Ω′
k = ×

i∈Z
A′
k,i where A′

k,i are identical copies of A′
k, similarly

we define Ω′′
l , k, l = 1, 2, . . . . On the sets Ω′

k and Ω′′
l we define product σ-

algebras, product measures, and left shift transformations T ′
k, T ′′

l . Ω is the

product of all Ω′
k and Ω′′

l equipped with the product σ-algebra A, the product

(probability) measure µ, and the product transformation T . For projections ξk
and ζl of Ω onto A′

k,0 and A′′
l,0 we thus get mutually independent processes of

iid (ξk ◦ T i)i, (ζl ◦ T i)i. We suppose that A′
k = A′′

k = {−1, 1}, k = 1, 2, . . . , and

µ(ξk = 1) = 1/2 = µ(ξk = −1) = µ(ζk = 1) = µ(ζk = −1). For B′
k we take

the past σ-algebras σ{ξk ◦ T i : i ≤ 0} and for B′′
l we take the past σ-algebras

σ{ζl ◦ T i : i ≤ 0}. The properties above can be easily verified, the latter follow

from Kolmogorov’s 0-1 law.

We thus have that ξk ◦ T i are iid B′
k-measurable random variables, µ(ξk =

1) = 1/2 = µ(ξk = −1) for all i.

By (3.7), ∥E(Sn(f) | F0)∥2 = o(σn), hence (by Wu and Woodroofe (2004))

σn = h(n)
√
n where h(n) is a slowly varying function in the sense of Karamata.

By (3.3), σn/
√
n → 0. We deduce that there exists a sequence Nk ↗ ∞ of

positive integers such that for all k ≥ 1 odd and d = 2(
∑∞

k=1 1/k
3)−1/2,

2kσNk
≤ d

√
Nk

k3/2
, σ4Nk

≤ 2σNk
,

∞∑
k=1

1

4Nk
<

1

2
; (3.8)

we define Nk+1 = 4Nk (k odd).

For k = 1, 2, . . . , let Ak ∈ B′′
k be sets such that T−iAk, i = 0, . . . , 3Nk, are

mutually disjoint (hence {T−iAk : i = 0, . . . , 3Nk} are Rokhlin towers) and that

µ(Ak) = 1/(4Nk) (existence of Rokhlin Towers is proved e.g. in Cornfeld, Fomin

and Sinai (1982, p.242)). From (3.8) it follows
∞∑
k=1

µ(Ak) <
1

2
. (3.9)

By B′′ we define the σ-algebra generated by all T−iB′′
k , i ∈ Z, k = 1, 2, . . . ;

we thus have T−1B′′ = B′′, all Rokhlin towers defined above are B′′-measurable.

By Fj we denote the σ-algebra generated by B′′ and all ξk◦T i, i ≤ j, k = 1, 2, . . . ;
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notice that T−1Fj = Fj+1.

For d = 2(
∑∞

k=1 1/k
3)−1/2 we define

ek = dξk

√
Nk

k3/2
1Ak

, e =

∞∑
k=1

ek.

Here ∥ek∥2 = d/2k3/2, hence e ∈ L2. By definition, e is F0-measurable. By

definition, the ek are mutually independent and hence ∥e∥22 = (d2/4)
∑∞

k=1 1/k
3;

we thus have ∥e∥2 = 1.

Because Ak ∈ B′′ and ξk is independent of F−1, we have E(ek | F−1) = 0

for every k, so E(e | F−1) = 0. (U ie)i is thus a martingale difference sequence

adapted to the filtration (Fi).

We have

f = e+

∞∑
k=1

−γk
Vk

Vk∑
i=1

U−ie = a0e−
∞∑
i=1

aiU
−ie,

where a0 = 1, ai > 0 for all i ≥ 1, and
∑∞

i=1 ai = 1.

By mω we denote regular conditional probabilities w.r.t. F0 (A is a Borel σ-

algebra of a Polish space hence the regular conditional probabilities exist). Notice

that all sets T−iAk, k = 1, 2, . . . , i ∈ Z, are F0-measurable, hence mω(T
−iAk) =

0 (if ω ̸∈ T−iAk) or mω(T
−iAk) = 1 (if ω ∈ T−iAk).

Fix a k ≥ 1 such that
∑∞

i=Nk
ai < 1/2 and take A′

k = Ak \
∪
j ̸=k

Aj . By (3.9)

and independence, µ(A′
k) ≥ µ(Ak)/2. The sets A′

k, . . . , T
−3Nk+1A′

k are mutually

disjoint and µ(Ak) ≥ 1/(4Nk), so

µ
(Nk−1∪

N=0

T−N+1A′
k

)
≥ 1

8
. (3.10)

We have

SN (f) =

N−1∑
j=0

U j
(
e−

∞∑
i=1

aiU
−ie

)

= UN−1e+

N−2∑
j=1

U je−
∞∑
i=0

N−1∑
j=0∨1−i

ai+jU
−ie+ e−

−1∑
i=2−N

N−1∑
j=1−i

ai+jU
−ie

= UN−1e+ I − II + III − IV. (3.11)

Suppose that for a 1 ≤ k odd, Nk ≤ N < Nk+1 = 4Nk. For ω ∈ T−N+1A′
k

we have

mω

(
UN−1e = d

√
Nk

k3/2

)
= mω

(
UN−1e = −d

√
Nk

k3/2

)
=

1

2
.
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k and A′′

l ,

k, l = 1, 2, . . . , Ω′
k = ×

i∈Z
A′
k,i where A′

k,i are identical copies of A′
k, similarly

we define Ω′′
l , k, l = 1, 2, . . . . On the sets Ω′

k and Ω′′
l we define product σ-

algebras, product measures, and left shift transformations T ′
k, T ′′

l . Ω is the

product of all Ω′
k and Ω′′

l equipped with the product σ-algebra A, the product

(probability) measure µ, and the product transformation T . For projections ξk
and ζl of Ω onto A′

k,0 and A′′
l,0 we thus get mutually independent processes of

iid (ξk ◦ T i)i, (ζl ◦ T i)i. We suppose that A′
k = A′′

k = {−1, 1}, k = 1, 2, . . . , and

µ(ξk = 1) = 1/2 = µ(ξk = −1) = µ(ζk = 1) = µ(ζk = −1). For B′
k we take

the past σ-algebras σ{ξk ◦ T i : i ≤ 0} and for B′′
l we take the past σ-algebras

σ{ζl ◦ T i : i ≤ 0}. The properties above can be easily verified, the latter follow

from Kolmogorov’s 0-1 law.

We thus have that ξk ◦ T i are iid B′
k-measurable random variables, µ(ξk =

1) = 1/2 = µ(ξk = −1) for all i.

By (3.7), ∥E(Sn(f) | F0)∥2 = o(σn), hence (by Wu and Woodroofe (2004))

σn = h(n)
√
n where h(n) is a slowly varying function in the sense of Karamata.

By (3.3), σn/
√
n → 0. We deduce that there exists a sequence Nk ↗ ∞ of

positive integers such that for all k ≥ 1 odd and d = 2(
∑∞

k=1 1/k
3)−1/2,

2kσNk
≤ d

√
Nk

k3/2
, σ4Nk

≤ 2σNk
,

∞∑
k=1

1

4Nk
<

1

2
; (3.8)

we define Nk+1 = 4Nk (k odd).

For k = 1, 2, . . . , let Ak ∈ B′′
k be sets such that T−iAk, i = 0, . . . , 3Nk, are

mutually disjoint (hence {T−iAk : i = 0, . . . , 3Nk} are Rokhlin towers) and that

µ(Ak) = 1/(4Nk) (existence of Rokhlin Towers is proved e.g. in Cornfeld, Fomin

and Sinai (1982, p.242)). From (3.8) it follows
∞∑
k=1

µ(Ak) <
1

2
. (3.9)

By B′′ we define the σ-algebra generated by all T−iB′′
k , i ∈ Z, k = 1, 2, . . . ;

we thus have T−1B′′ = B′′, all Rokhlin towers defined above are B′′-measurable.

By Fj we denote the σ-algebra generated by B′′ and all ξk◦T i, i ≤ j, k = 1, 2, . . . ;
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notice that T−1Fj = Fj+1.

For d = 2(
∑∞

k=1 1/k
3)−1/2 we define

ek = dξk

√
Nk

k3/2
1Ak

, e =

∞∑
k=1

ek.

Here ∥ek∥2 = d/2k3/2, hence e ∈ L2. By definition, e is F0-measurable. By

definition, the ek are mutually independent and hence ∥e∥22 = (d2/4)
∑∞

k=1 1/k
3;

we thus have ∥e∥2 = 1.

Because Ak ∈ B′′ and ξk is independent of F−1, we have E(ek | F−1) = 0

for every k, so E(e | F−1) = 0. (U ie)i is thus a martingale difference sequence

adapted to the filtration (Fi).

We have

f = e+

∞∑
k=1

−γk
Vk

Vk∑
i=1

U−ie = a0e−
∞∑
i=1

aiU
−ie,

where a0 = 1, ai > 0 for all i ≥ 1, and
∑∞

i=1 ai = 1.

By mω we denote regular conditional probabilities w.r.t. F0 (A is a Borel σ-

algebra of a Polish space hence the regular conditional probabilities exist). Notice

that all sets T−iAk, k = 1, 2, . . . , i ∈ Z, are F0-measurable, hence mω(T
−iAk) =

0 (if ω ̸∈ T−iAk) or mω(T
−iAk) = 1 (if ω ∈ T−iAk).

Fix a k ≥ 1 such that
∑∞

i=Nk
ai < 1/2 and take A′

k = Ak \
∪
j ̸=k

Aj . By (3.9)

and independence, µ(A′
k) ≥ µ(Ak)/2. The sets A′

k, . . . , T
−3Nk+1A′

k are mutually

disjoint and µ(Ak) ≥ 1/(4Nk), so

µ
(Nk−1∪

N=0

T−N+1A′
k

)
≥ 1

8
. (3.10)

We have

SN (f) =

N−1∑
j=0

U j
(
e−

∞∑
i=1

aiU
−ie

)

= UN−1e+

N−2∑
j=1

U je−
∞∑
i=0

N−1∑
j=0∨1−i

ai+jU
−ie+ e−

−1∑
i=2−N

N−1∑
j=1−i

ai+jU
−ie

= UN−1e+ I − II + III − IV. (3.11)

Suppose that for a 1 ≤ k odd, Nk ≤ N < Nk+1 = 4Nk. For ω ∈ T−N+1A′
k

we have

mω

(
UN−1e = d

√
Nk

k3/2

)
= mω

(
UN−1e = −d

√
Nk

k3/2

)
=

1

2
.
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−II + III = E(SN (f)|F0) hence it is a constant mω almost surely. UN−1e +

I−IV is (an infinite) linear combination of products of U iξl with F0-measurable

functions, 1 ≤ i ≤ N − 1, l ≥ 1. Because F0, U iξl, 1 ≤ i ≤ N − 1, are

mutually independent, U iξl, 1 ≤ i ≤ N − 1, are iid with respect to the measure

mω and mω(ξl = ±1) = 1/2 (for µ a.e. ω). Therefore, I − IV is a symmetric

random variable independent of UN−1e w.r.t. mω; U
N−1e+ I − IV = SN (f) −

E(SN (f)|F0) is a symmetric random variable as well. We thus have

mω

(
|SN (f)− E(SN (f)|F0)| ≥ d

√
Nk

k3/2

)
= mω

(
|UN−1e+ I − IV | ≥ d

√
Nk

k3/2

)
≥ 1

2
.

From (3.11) and
∑∞

i=1 ai = 1, σn ≤ σn+1 for all n ≥ 1. Using (3.8) we get

mω

( |SN (f)− E(SN (f)|F0)|
σN

≥ 2k−1
)

≥ mω

( |SN (f)− E(SN (f)|F0)|
σNk

≥ 2k
)
≥ 1

2
.

Because E(SN (f)|F0) is mω a.s. a constant and SN (f) − E(SN (f)|F0) is a

symmetric random variable, we get

mω

( |SN (f)|
σN

≥ 2k−1
)
≥ 1

4
.

For any K < ∞ there thus exists a k0 such that 2k0−1 ≥ K, and for any

integer k ≥ k0 there exists a set Bk = ∪Nk+1−1
Nk

T−N+1A′
k of measure bigger than

1/16 (cf. (3.10)) such that, for ω ∈ Bk and the probability mω, there exists an

Nk ≤ N < Nk+1 for which

mω

( |SN (f)− E(SN (f)|F0)|
σN

≥ K
)
≥ 1

2
, mω

( |SN (f)|
σN

≥ K
)
≥ 1

4
. (3.12)

We conclude that there exists a set B of positive measure such that for ω ∈ B

there is an infinite sequence of k odd (say k = k(j), j = 1, 2, . . . ) and Nk ≤ N ≤
Nk+1 (say N = N(j)) such that for the probability mω, the laws of (SN (f) −
E(SN (f)|F0))/σN and of SN (f)/σN do not weakly converge to N(0, 1). This

proves that the CLT for (Sn−E(Sn|F0))/σn and for SN (f)/σN are not quenched.

This finishes the proof of (iv).

We have proved (cf. (3.13)) that for any K < ∞, k sufficiently big (with

2k−1 ≥ K), and ω ∈ Bk = ∪Nk+1−1
Nk

T−N+1A′
k (Bk of measure bigger than 1/16),

mω

(Nk+1−1∪
N=Nk

{ |SN (f)− E(SN (f)|F0)|
σNk+1

≥ K
})

≥ 1

2

and therefore
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µ
(Nk+1−1∪

N=Nk

{ |SN (f)− E(SN (f)|F0)|
σNk+1

≥ K
})

= µ
(

max
Nk≤N≤Nk+1−1

{ |SN (f)− E(SN (f)|F0)|
σNk+1

≥ K
}
≥ 1

32
.

Similarly we get

µ
(

max
Nk≤N≤Nk+1−1

{ |SN (f)|
σNk+1

≥ K
})

≥ 1

64
.

The sequence of distributions of

sn(t) = (
1√
n
)S[(n−1)t](f) +

f ◦ Tn−1 − f ◦ T (n−1)t−[(n−1)t]

√
n

(sn being a random variable with values in C([0, 1]) and [x] the integer part of

x)) is thus not tight (cf. (Billingsley, 1968, Chap. 2)). Similarly we get non

tightness for s′n(t) = sn(t)− E(sn(t) | F0). This proves (v).

Theorem 2 can be given a stronger version. Again, mω denotes the regular

conditional probabilities given F0, and for a measurable function h, we write

∥h∥22,ω =
∫
h2 dmω with ∥Sn(f)∥2,ω denoted by σn,ω.

Proposition 1. There exists a regular causal stationary linear process (f ◦ T i)

with martingale difference innovations such that (i), (ii), and (iii) of Theorem 2

are satisfied and for almost all (µ) ω, Sn(f)/σn,ω do not converge in distribution.

Proof. In the proof of Theorem 2 we have, for any K < ∞ and k ∈ N
sufficiently big (k ≥ k(K)), found a set Bk, µ(Bk) ≥ 1/16, such that, for ω ∈ Bk

and the probability mω, there exists an Nk ≤ N < Nk+1 for which

mω

( |SN (f)− E(SN (f)|F0)|
σN

≥ K
)
≥ 1

2
, mω

( |SN (f)|
σN

≥ K
)
≥ 1

4
. (3.13)

As σ2
N =

∫
σ2
N,ω µ(dω),

µ(σN,ω >
√
Kσn) ≤

1

K
.

On a set of measure at least 1/16− 1/K we thus have

mω

( |SN (f)− E(SN (f)|F0)|
σN

≥
√
K
)
≥ 1

2
, mω

( |SN (f)|
σN

≥
√
K
)
≥ 1

4
(3.13’)

and we conclude in the same way as in the proof of Theorem 2.
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12 DALIBOR VOLNÝ AND MICHAEL WOODROOFE

−II + III = E(SN (f)|F0) hence it is a constant mω almost surely. UN−1e +

I−IV is (an infinite) linear combination of products of U iξl with F0-measurable

functions, 1 ≤ i ≤ N − 1, l ≥ 1. Because F0, U iξl, 1 ≤ i ≤ N − 1, are

mutually independent, U iξl, 1 ≤ i ≤ N − 1, are iid with respect to the measure

mω and mω(ξl = ±1) = 1/2 (for µ a.e. ω). Therefore, I − IV is a symmetric
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2
.

From (3.11) and
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i=1 ai = 1, σn ≤ σn+1 for all n ≥ 1. Using (3.8) we get
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2
.

Because E(SN (f)|F0) is mω a.s. a constant and SN (f) − E(SN (f)|F0) is a

symmetric random variable, we get
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4
.

For any K < ∞ there thus exists a k0 such that 2k0−1 ≥ K, and for any

integer k ≥ k0 there exists a set Bk = ∪Nk+1−1
Nk

T−N+1A′
k of measure bigger than

1/16 (cf. (3.10)) such that, for ω ∈ Bk and the probability mω, there exists an

Nk ≤ N < Nk+1 for which

mω

( |SN (f)− E(SN (f)|F0)|
σN

≥ K
)
≥ 1

2
, mω

( |SN (f)|
σN

≥ K
)
≥ 1

4
. (3.12)

We conclude that there exists a set B of positive measure such that for ω ∈ B

there is an infinite sequence of k odd (say k = k(j), j = 1, 2, . . . ) and Nk ≤ N ≤
Nk+1 (say N = N(j)) such that for the probability mω, the laws of (SN (f) −
E(SN (f)|F0))/σN and of SN (f)/σN do not weakly converge to N(0, 1). This

proves that the CLT for (Sn−E(Sn|F0))/σn and for SN (f)/σN are not quenched.

This finishes the proof of (iv).

We have proved (cf. (3.13)) that for any K < ∞, k sufficiently big (with

2k−1 ≥ K), and ω ∈ Bk = ∪Nk+1−1
Nk

T−N+1A′
k (Bk of measure bigger than 1/16),

mω

(Nk+1−1∪
N=Nk

{ |SN (f)− E(SN (f)|F0)|
σNk+1
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≥ 1

2
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.
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√
n

(sn being a random variable with values in C([0, 1]) and [x] the integer part of

x)) is thus not tight (cf. (Billingsley, 1968, Chap. 2)). Similarly we get non

tightness for s′n(t) = sn(t)− E(sn(t) | F0). This proves (v).

Theorem 2 can be given a stronger version. Again, mω denotes the regular

conditional probabilities given F0, and for a measurable function h, we write

∥h∥22,ω =
∫
h2 dmω with ∥Sn(f)∥2,ω denoted by σn,ω.

Proposition 1. There exists a regular causal stationary linear process (f ◦ T i)

with martingale difference innovations such that (i), (ii), and (iii) of Theorem 2

are satisfied and for almost all (µ) ω, Sn(f)/σn,ω do not converge in distribution.

Proof. In the proof of Theorem 2 we have, for any K < ∞ and k ∈ N
sufficiently big (k ≥ k(K)), found a set Bk, µ(Bk) ≥ 1/16, such that, for ω ∈ Bk

and the probability mω, there exists an Nk ≤ N < Nk+1 for which

mω
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σN

≥ K
)
≥ 1

2
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σN

≥ K
)
≥ 1

4
. (3.13)

As σ2
N =

∫
σ2
N,ω µ(dω),
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Kσn) ≤

1

K
.

On a set of measure at least 1/16− 1/K we thus have

mω
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≥
√
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2
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Volný, D., Woodroofe, M. and Zhao, O. (2011). Central limit theorems for superlinear processes.

Dynamics and Stochastics 11, 71–80.
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