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PROOFS OF THEOREMS

S1 Proof of Theorem 2.1

By assumptions A4 and A5 with A2, we have

−
√
nĠΛ0(Λ̂n − Λ0)[h] = −

√
nG(Λ̂n)[h] + op(1). (S1.1)

By assumptions A1 and A2, we have

−
√
nG(Λ̂n)[h] =

√
n(Gn −G)(Λ0)[h] + op(1). (S1.2)

Thus, it follows from (S1.1) and (S1.2) that

−
√
nĠΛ0(Λ̂n − Λ0)[h] =

√
n(Gn −G)(Λ0)[h] + op(1),

which completes the proof of the theorem.
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S2 Proof of Theorem 3.1

To prove Theorem 3.1, we need to show the following lemma first.

Lemma 1. Define ψps(Λ;X)[h] =
∑K

j=1

{
N(TK,j)

Λ(TK,j)
− 1

}
h(TK,j) and

Gn(δ)[h]

=

{
ψps(Λ;X)[h]− ψps(Λ0;X)[h] :

d1(Λ,Λ0) < δ,

supτ0≤t≤τ |Λ(t)− Λ0(t)| < δ0,
Λ ∈ Ψn

}
.

Let ∥ · ∥P,B be the “Bernstein norm” defined as ∥f∥P,B = {2P (e|f | − 1 −

|f |)}1/2 by van der Vaart and Wellner (1996). Then the ε-bracketing num-

ber associated with ∥ · ∥P,B for Gn(δ)[h], denoted by N[ ](ε,Gn(δ)[h], ∥ · ∥P,B),

is bounded by (δ/ε)cqn, that is,

N[ ](ε,Gn(δ)[h], ∥ · ∥P,B) . (δ/ε)cqn

for a constant c independent of h, where the symbol . denotes that the

left-hand side is bounded above by a constant times the right-hand side.

Proof. For Λ with supτ0≤t≤τ |Λ(t) − Λ0(t)| < δ0, we obtain that M1 ≤

Λ(t) ≤M2 over t ∈ [τ0, τ ] where M1 and M2 are positive constants. Denote

the ceiling of x by ⌈x⌉. By the calculation in Shen and Wong (1994, page

597), for any ε < δ, there exists a set of brackets
{
[ΛL

i ,Λ
U
i ]: i = 1, . . . , (δ/ε)cqn

}
such that for any Λ ∈ Ψn, Λ

L
i (t) ≤ Λ(t) ≤ ΛU

i (t) over t ∈ [τ0, τ ] for some
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1 ≤ i ≤ (δ/ε)c1qn , where ∥ΛU
i − ΛL

i ∥∞ ≤ ε, and c is a constant. Define

mL
i (X)[h] =

K∑
j=1

N(TK,j)

[{
I(h(TK,j) ≥ 0)

max (ΛU
i (TK,j),M2)

+
I(h(TK,j) < 0)

max (ΛL
i (TK,j),M1)

}
− 1

Λ0(TK,j)

]
h(TK,j)

and

mU
i (X)[h] =

K∑
j=1

N(TK,j)

[{
I(h(TK,j) ≥ 0)

max (ΛL
i (TK,j),M1)

+
I(h(TK,j) < 0)

max (ΛU
i (TK,j),M2)

}
− 1

Λ0(TK,j)

]
h(TK,j).

After some calculations, we have ||mU
i (X)[h]−mL

i (X)[h]||2P,B . ε2 and

for any m(Λ;X)[h] ∈ Gn(δ)[h], there exist some i such that m(Λ,X)[h] ∈

[mL
i (X)[h],mU

i (X)[h]]. Therefore, we have

N[ ](ε,Gn(δ)[h], ∥ · ∥P,B) . (δ/ε)cqn

for a universal constant c, which completes the proof of the lemma.

Proof of Theorem 3.1. To derive the asymptotic normality of the estimators,

we need to verify conditions A1-A5 stated in Theorem 2.1.

To prove part (i), we define a sequence of maps Sps
n mapping a neigh-

borhood of Λ0, denoted by U , in the parameter space for Λ into l∞(Hr)
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as

Sps
n (Λ)[h] = n−1 d

dε
lpsn (Λ + εh)

∣∣∣
ε=0

= n−1

n∑
i=1

Ki∑
j=1

{
Ni(TKi,j)

Λ(TKi,j)
− 1

}
h(TKi,j)

= Pnψps(Λ;X)[h].

Correspondingly, we define the limit map Sps : U −→ l∞(Hr) as

Sps(Λ)[h] = P

[
K∑
j=1

{
N(TK,j)

Λ(TK,j)
− 1

}
h(TK,j)

]
.

We will show (A1) by applying Lemma 1. For h ∈ Hr, let the class

Gn(δ)[h] be as defined in Lemma 1 for some δ > 0. Then by Lemma 1, we

have

N[ ](ε,Gn(δ)[h], ∥ · ∥P,B) . (δ/ε)cqn

uniformly in h, and

J[ ](ε,Gn(δ)[h], ∥ · ∥P,B) =
∫ δ

0

√
1 + logN[ ](ε,Gn(δ)[h], ∥ · ∥P,B) dε . q1/2n δ.

Lu, Zhang and Huang (2007) showed that d1(Λ̂
ps
n ,Λ0) → 0 almost surely and

hence that the uniform consistency of Λ̂ps can be shown by using arguments

similar to Proposition 5 of Schick and Yu (2000) under conditions C2-C6;

that is,

sup
τ0≤t≤τ

|Λ̂ps
n (t)− Λ0(t)| → 0 almost surely.
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By Theorem 2 of Lu, Zhang and Huang (2007), nr/(1+2r)d1(Λ̂
ps
n ,Λ0) = Op(1)

with r > 1. Thus we have ψps(Λ̂
ps
n ;X)[h] − ψps(Λ0;X)[h] ∈ Gn(δ)[h] with

δ = δn = O(n−r/(1+2r)). Furthermore, for any ψps(Λ;X)[h]−ψps(Λ0;X)[h] ∈

Gn(δn)[h], we have

sup
h∈Hr

||ψps(Λ;X)[h]− ψps(Λ0;X)[h]||2P,B . d21(Λ,Λ0).

Hence, using the maximal inequality in Lemma 3.4.3 of van der Vaart and

Wellner (1996), we obtain that

EP∥n1/2(Pn − P )∥Gn(δn)[h] . J[ ](δn,Gn(δn)[h], ∥ · ∥P,B)

×
{
1 + c

J[ ](δn,Gn(δn)[h], ∥ · ∥P,B)
δ2n
√
n

}
. q1/2n δn + qnn

−1/2

= O(n1/(2(1+2r))−r/(1+2r)) +O(n1/(1+2r)−1/2)

= O(n(1−2r)/(2(1+2r)) +O(n(1−2r)/(2(1+2r))

= o(1),

where c is a positive constant. Therefore, employing the Markov inequality,

we have

√
n(Pn − P )(ψps(Λ̂

ps
n ;X)[h]− ψps(Λ0;X)[h]) = op(1)

uniformly in h. Thus, (A1) holds.

For (A2), clearly Sps(Λ0)[h] = 0 for h ∈ Hr, and we need to show that
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Sps
n (Λ̂ps

n )[h] = o(n−1/2) for h ∈ Hr. Note that Λ̂ps
n =

∑qn
ℓ=1 α̂

ps
ℓnBℓ satisfies

the following score equation

n−1

n∑
i=1

Ki∑
j=1

{
Ni(TKi,j)

Λ̂ps
n (TKi,j)

− 1

}
Bℓ(TKi,j) = 0, ℓ = 1, . . . , qn.

Thus, for any h =
∑qn

ℓ=1 αℓBℓ ∈ Φn, we have

n−1

n∑
i=1

Ki∑
j=1

{
Ni(TKi,j)

Λ̂ps
n (TKi,j)

− 1

}
h(TKi,j) = 0,

that is, Sps
n (Λ̂ps

n )[h] = 0 for any h ∈ Φn.

For any h ∈ Hr, there exists hn ∈ Φn such that ||hn − h||∞ = O(n−rv).

Next we need to show that

Sps
n (Λ̂ps

n )[h− hn] = o(n−1/2).

For this, we write

Sps
n (Λ̂ps

n )[h− hn] = {Sps
n (Λ̂ps

n )[h− hn]− Sps
n (Λ0)[h− hn]}+ Sps

n (Λ0)[h− hn]

≡ I1n + I2n.

Since

P |I1n| = n−1

∣∣∣∣∣
n∑

i=1

Ki∑
j=1

Ni(TKi,j)

×

{
1

Λ̂ps
n (TKi,j)

− 1

Λ0(TKi,j)

}
{h(TKi,j)− hn(TKi,j)}

∣∣∣∣∣
. d1(Λ̂

ps
n ,Λ0)||h− hn||∞
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and

PI22n = n−1P

[
K∑
j=1

{
N(TK,j)

Λ0(TK,j)
− 1

}
{h(TK,j)− hn(TK,j)}

]2

. n−1||h− hn||2∞,

then it follows that I1n = op(n
−1/2) and I2n = op(n

−1/2), which implies

(A2).

Condition (A3) holds because Hr is a Donsker class and the functional

Sps
n is a bounded Lipschitz function with respect to Hr.

For (A4), by the smoothness of Sps(Λ), the Fréchet differentiability

holds and the derivative of Sps(Λ) at Λ0, denoted by Ṡps
Λ0
, is a map from the

space {(Λ− Λ0) : Λ ∈ U} to l∞(Hr) and

Ṡps
Λ0
(Λ− Λ0)[h]

=
d

dε
{Sps(Λ0 + ε(Λ− Λ0))[h]}

∣∣∣
ε=0

(S2.1)

= −P

[
K∑
j=1

h(TK,j)

{
Λ(TK,j)− Λ0(TK,j)

Λ0(TK,j)

}]
.

Thus, by condition C8, we have

−Ṡps
Λ0
(Λ− Λ0)[h] =

∫
(Λ(t)− Λ0(t))dQ

ps(h)(t) (S2.2)

where

Qps(h)(t) = P

[
K∑
j=1

I(TK,j ≤ t)
h(TK,j)

Λ0(TK,j)

]
.
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Next we show that (A5) holds. Note that

Sps(Λ̂ps
n )[h]− Sps

Λ0
[h]− Ṡps

Λ0
(Λ̂ps

n − Λ0)[h]

= P

[
K∑
j=1

{
N(TK,j)

Λ̂ps
n (TK,j)

− 1

}
h(TK,j)

]

+P

[
K∑
j=1

h(TK,j)

{
Λ̂ps

n (TK,j)− Λ0(TK,j)

Λ0(TK,j)

}]

= P

[
K∑
j=1

h(TK,j)

Λ0(TK,j)Λ̂
ps
n (TK,j)

{
Λ̂ps

n (TK,j)− Λ0(TK,j)
}2

]
= Op(d

2
1(Λ̂

ps
n ,Λ0)).

By Theorem 2 of Lu, Zhang and Huang (2007),

d21(Λ̂
ps
n ,Λ0) = Op(n

−2r/(1+2r)) = op(n
−1/2),

and thus (A5) holds.

It follows from Theorem 2.1 that

√
n

∫
{Λ̂ps

n (t)− Λ0(t)}dQps(h)(t) =
√
n(Sps

n − Sps)(Λ0)[h] + op(1). (S2.3)

Next, we show that Qps is one-to-one, that is, for h ∈ Hr, if Q
ps(h) = 0,

then h = 0.

Suppose that Qps(h) = 0. Then Ṡps
Λ0
(Λ − Λ0)[h] = 0 for any Λ in the

neighborhood U . In particular, we take Λ = Λ0 + ϵh for a small constant ϵ.
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Thus we have

0 = Ṡps
Λ0
(Λ− Λ0)[h]

= −ϵP

[
K∑
j=1

Λ0(TK,j)

{
h(TK,j)

Λ0(TK,j)

}2
]
,

which yields

h(TK,j) = 0, j = 1, . . . , K, a.s.

and so h = 0 by condition C10.

For each h ∈ Hr, since Q
ps is invertible, there exists hps ∈ Hr such that

Qps(hps) = h. Therefore, we have

√
n

∫
{Λ̂ps

n (t)−Λ0(t)}dh(t) =
√
n(Sps

n −Sps)(Λ0)[h
ps] + op(1) →d N(0, σ2

ps),

where

σ2
ps = E{ψ2

ps(Λ0;X)[hps]}. (S2.4)

To prove part (ii), we define a sequence of maps Sn mapping a neigh-

borhood of Λ0, U , in the parameter space for Λ into l∞(Hr) as:

Sn(Λ)[h] = n−1 d

dε
ln(Λ + εh)

∣∣∣
ε=0

.

Write ∆Ni(TKi,j) = Ni(TKi,j)−Ni(TKi,j−1), ∆Λ(TKi,j) = Λ(TKi,j)−Λ(TKi,j−1),
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and ∆h(TKi,j) = h(TKi,j)− h(TKi,j−1). Then, we have

Sn(Λ)[h]

= n−1

n∑
i=1

Ki∑
j=1

[{
∆Ni(TKi,j)

∆Λ(TKi,j)
− 1

}
∆h(TKi,j)

]
≡ Pnψ(Λ;X)[h].

Correspondingly, we define the limit map S : U −→ l∞(Hr) as

S(Λ)[h] = P

[
K∑
j=1

{
∆N(TK,j)

∆Λ(TK,j)
− 1

}
∆h(TK,j)

]
.

Furthermore, the derivative of S(Λ) at Λ0, denoted by ṠΛ0 , is a map

from the space {(Λ− Λ0) : Λ ∈ U} to l∞(Hr) and

ṠΛ0(Λ− Λ0)[h]

= −P
K∑
j=1

∆h(TK,j)

{
∆Λ(TK,j)−∆Λ0(TK,j)

∆Λ0(TK,j)

}
(S2.5)

= −
∫

{Λ(t)− Λ0(t)}dQ(h)(t)

where

Q(h)(t) = P

[
K∑
j=1

{I(TK,j ≤ t)− I(TK,j−1 ≤ t)} ∆h(TK,j)

∆Λ0(TK,j)

]
.

Similarly, we can show that
√
n(Sn −S)(Λ̂n)[h]−

√
n(Sn −S)(Λ0)[h] =

op(1), S(Λ0)[h] = 0, Sn(Λ̂n)[h] = op(n
−1/2), and

S(Λ̂n)[h]− S(Λ0)[h]− ṠΛ0(Λ̂n − Λ0)[h] = Op(d
2
2(Λ̂n,Λ0)).
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By Theorem 2 of Lu, Zhang and Huang (2007), we have d2(Λ̂n,Λ0) =

Op(n
−r/(1+2r)), and so

S(Λ̂n)[h]− S(Λ0)[h]− ṠΛ0(Λ̂n − Λ0)[h] = op(n
−1/2).

Thus it follows from Theorem 2.1 that

√
n

∫
{Λ̂n(t)− Λ0(t)}dQ(h)(t) =

√
n(Sn − S)(Λ0)[h] + op(1). (S2.6)

Next, we show that Q is one-to-one, that is, for h ∈ Hr, if Q(h) = 0,

then h = 0

Suppose that Q(h) = 0. Then ṠΛ0(Λ − Λ0)[h] = 0 for any Λ in the

neighborhood U . In particular, we take Λ = Λ0 + ϵh for a small constant ϵ.

Thus we have

0 = ṠΛ0(Λ− Λ0)[h]

= −ϵP

[
K∑
j=1

∆Λ0(TK,j)

{
∆h(TK,j)

∆Λ0(TK,j)

}2
]
,

which yields

∆h(TK,j) = 0, j = 1, . . . , K, a.s.

Thus,

h(TK,j) = 0, j = 1, . . . , K, a.s.

and so h = 0 by condition C10.
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For each h ∈ Hr, since Q is invertible, there exists unique h∗ ∈ Hr such

that Q(h∗) = h. Thus, we have

√
n

∫
{Λ̂n(t)− Λ0(t)}dh(t) =

√
n(Sn − S)(Λ0)[h

∗] + op(1) →d N(0, σ2),

where

σ2 = E{ψ2(Λ0;X)[h∗]}. (S2.7)

Proof of Corollary 3.1. (i) Note that

P

[
K∑
j=1

h(TK,j)

{
Λ̂ps

n (TK,j)− Λ0(TK,j)

Λ0(TK,j)

}]
=

∫
h(t)

Λ̂ps
n (t)− Λ0(t)

Λ0(t)
dµ1(t).

Thus it follows from (S2.1)-(S2.3) that

√
n

∫
h(t)

Λ̂ps
n (t)− Λ0(t)

Λ0(t)
dµ1(t) =

√
n(Sps

n − Sps)(Λ0)[h] + op(1),

which completes the proof of (i).

Similarly, the result in part (ii) follows from (S2.5) and (S2.6).
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S3 Proof of Theorem 4.1

(i) Note that

U (ps)
n =

√
nPn

{
K∑
j=1

hn(TK,j)
Λ̂ps

1 (TK,j)− Λ̂ps
2 (TK,j)

Λ̂ps
0 (TK,j)

}

=
√
nPn

{
K∑
j=1

hn(TK,j)
Λ̂ps

1 (TK,j)− Λ0(TK,j)

Λ̂ps
0 (TK,j)

}

−
√
nPn

{
K∑
j=1

hn(TK,j)
Λ̂ps

2 (TK,j)− Λ0(TK,j)

Λ̂ps
0 (TK,j)

}
,

and

√
nPn

{
K∑
j=1

hn(TK,j)
Λ̂ps

1 (TK,j)− Λ0(TK,j)

Λ̂ps
0 (TK,j)

}
= Ups

1n + Ups
2n + Ups

3n + Ups
4n

where

Ups
1n =

√
n(Pn − P )

{
K∑
j=1

hn(TK,j)
Λ̂ps

1 (TK,j)− Λ0(TK,j)

Λ̂ps
0 (TK,j)

}
,

Ups
2n =

√
nP

[
K∑
j=1

{hn(TK,j)− h(TK,j)}
Λ̂ps

1 (TK,j)− Λ0(TK,j)

Λ̂ps
0 (TK,j)

]
,

Ups
3n =

√
nP

[
K∑
j=1

h(TK,j){Λ̂ps
1 (TK,j)− Λ0(TK,j)}

{
1

Λ̂ps
0 (TK,j)

− 1

Λ0(TK,j)

}]
,

Ups
4n =

√
nP

[
K∑
j=1

h(TK,j)
Λ̂ps

1 (TK,j)− Λ0(TK,j)

Λ0(TK,j)

]
.

By the arguments similar to those used in the proof of Theorem 3.1 of

Balakrishnan and Zhao (2009), we can show that Ups
1n = op(1), U

ps
2n =

op(1), and U
ps
3n = op(1).
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From (S2.1)-(S2.3), we have

Ups
4n =

√
n(Pn1 − P )ψps(Λ0;X)[h] + op(1),

where Pn1 is the empirical measure based on group 1. Similarly, we

have

√
nPn

{
K∑
j=1

hn(TK,j)
Λ̂ps

2 (TK,j)− Λ0(TK,j)

Λ̂ps
0 (TK,j)

}
=

√
n(Pn2 − P )ψps(Λ0;X)[h] + op(1),

where Pn2 is the empirical measure based on group 2. Hence, we have

Ups
n =

√
n

n1

√
n1(Pn1 − P )ψps(Λ0;X)[h]

−
√

n

n2

√
n2(Pn2 − P )ψps(Λ0;X)[h] + op(1).

Here Pn1 and Pn2 are independent. Thus it follows that Ups
n converges

in distribution to N(0, σ2
ps).

(ii) Using the arguments similar to the proof of (i), we can obtain

Un =

√
n

n1

√
n1(Pn1 − P )ψ(Λ0;X)[h]

−
√

n

n2

√
n2(Pn2 − P )ψ(Λ0;X)[h] + op(1),

which yields the asymptotic normal distribution N(0, σ2).

(iii) The proof of this part is omitted since it is similar to those used in the

proof of Theorem 3.1 (iii) of Balakrishnan and Zhao (2009).



S3. PROOF OF THEOREM 4.115

References

Balakrishnan, N. and Zhao, X. (2009). New multi-sample nonparametric

tests for panel count data. Ann. Statist. 37, 1112–1149.

Lu, M., Zhang, Y. and Huang, J. (2007). Estimation of the mean function

with panel count data using monotone polynomial splines. Biometrika

94, 705–718.

Schick, A. and Yu, Q. (2000). Consistency of the GMLE with mixed case

interval-censored data. Scand. J. Statist. 27, 45–55.

Shen, X. and Wong, W. H. (1994). Convergence rate of sieve estimates.

Ann. Statist. 18, 580–615.

van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and

Empirical Processes. New York: Springer-Verlag.


	Proof of Theorem 2.1
	Proof of Theorem 3.1
	Proof of Theorem 4.1

