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PROOFS OF THEOREMS

S1 Proof of Theorem 2.1

By assumptions A4 and A5 with A2, we have
Gy (R — M) ] = —VAGAH] +0p(1).  (SL1)
By assumptions Al and A2, we have
—VnG(A,)[h] = Va(G, — G)(Mo)[A] + 0(1). (S1.2)
Thus, it follows from (S1.1) and (S1.2) that
VG, (A = Ro)[B] = V(G — G) (o) [h] + 0,(1),

which completes the proof of the theorem.
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S2 Proof of Theorem 3.1

To prove Theorem 3.1, we need to show the following lemma first.

Lemma 1. Define 1,s(A; X)[h] = K {N(TK’j) - 1} h(Tk,;) and

J=1 | A(Tk,5)

Gn(9)[A]
dl(A, AQ) < 5,

— {qpps(A;X)[h] — Yps(Ao; X)[h] : SUP, <per |A(1) — Ao(t)] < 8o

Aeklfn}.

Let || - ||pp be the “Bernstein norm” defined as || f|pp = {2P(elfl — 1 —
|fD}Y? by van der Vaart and Wellner (1996). Then the e-bracketing num-
ber associated with || - || pp for G,(6)[h], denoted by Npj(e,Gn(0)[R], || |lp,B),

is bounded by (§/£)°, that is,
Nyy(e, Gu(O)[R], || - lpB) S (6/)"

for a constant ¢ independent of h, where the symbol < denotes that the

left-hand side is bounded above by a constant times the right-hand side.

Proof. For A with sup, ., |A(t) — Ao(t)| < &, we obtain that M; <
A(t) < My over t € |1y, 7] where M; and M, are positive constants. Denote
the ceiling of x by [x]. By the calculation in Shen and Wong (1994, page
597), for any & < 4, there exists a set of brackets {[AF, AV]: i =1,...,(5/e)"" }

such that for any A € W,,, AX(t) < A(t) < AV(t) over t € [rg, 7] for some
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1 <i < (§/e)29, where ||AY — AF|| < e, and c is a constant. Define

mEX) = 3 N(Tk) H I(h(Tx) >

0) n I(h(Tk ;) <0) }
= max (AY (Tk ), M) max (AF(Tx ), My)
1
_A0<TKJ>:| MTks)

and

v RS I(W(Txy) = 0) I(h(Tiz) < 0)
= 2 N ) o T35 * e (AT 5
1
_—AO(TKJ)] h(TK,j).

After some calculations, we have ||m{ (X)[h] — m[(X)[R]||} 5 < €* and
for any m(A; X)[h] € G,(0)[h], there exist some i such that m(A, X)[h] €

[mE(X)[h], mY (X)[R]]. Therefore, we have

Nyy(e,Gu(O) A || - lps) S (/)"

for a universal constant ¢, which completes the proof of the lemma.

Proof of Theorem 3.1. To derive the asymptotic normality of the estimators,
we need to verify conditions A1-Ab stated in Theorem 2.1.
To prove part (i), we define a sequence of maps SP* mapping a neigh-

borhood of Ay, denoted by U, in the parameter space for A into [*°(H,)
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as

S =

(A +e )8 ;
= nwps( [

Correspondingly, we define the limit map S?* : U — [*°(H,,) as
K
N(Tk,)
== — 19 h(Tk
2 { ATk ;) (Txes)

=1

SPS(A)[h] = P

We will show (A1) by applying Lemma 1. For h € H,, let the class

G.(9)[h] be as defined in Lemma 1 for some 6 > 0. Then by Lemma 1, we

have
Niy(e,Gu(0) ][ - lpB) < (8/€)"
uniformly in A, and
TGl - 1) = / 1+ 109Ny (. GuO)IL | - 1r.m) d= < a2,

Lu, Zhang and Huang (2007) showed that dy (A?*, Ag) — 0 almost surely and
hence that the uniform consistency of AP® can be shown by using arguments
similar to Proposition 5 of Schick and Yu (2000) under conditions C2-C6;
that is,

sup |[AP*(t) — Ag(t)] = 0 almost surely.
To<t<T



S2. PROOF OF THEOREM 3.15

By Theorem 2 of Lu, Zhang and Huang (2007), n"/(+20)d, (APs| Ag) = 0,(1)
with 7 > 1. Thus we have 1,s(A?%; X)[h] — ¥,s(Ao; X)[h] € Gn(0)[h] with
§ = 0, = O(n~"/0+27) Furthermore, for any v, (A; X)[h] —1ps(Ao; X)[h] €

Gn(0,,)[h], we have
sup [[10ps (A5 X)[B] = s (Ao; X)[M][12 5 S di (A, Ao).

Hence, using the maximal inequality in Lemma 3.4.3 of van der Vaart and

Wellner (1996), we obtain that

Ep|[n'?(Py = Plguym S J1)(60: Gu(0) [ || - lp5)

e LS AHRED)

2

AN

qY/6, + qun™V

_ O(nl/(2(1+27"))—7‘/(1+27‘)) + O(nl/(1+27")—1/2)

_ O(n(l—Qr)/(Q(H—Qr))_|_O(n(1—2r)/(2(1+2r))
= o(1),

where c is a positive constant. Therefore, employing the Markov inequality,

we have
Vi(Py = P)(tps (A5 X) [h] = 4 (Ao; X)[R]) = 0,(1)
uniformly in A. Thus, (A1) holds.

For (A2), clearly SP*(Ag)[h] = 0 for h € H,, and we need to show that
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SPs(AP)[h] = o(n=Y/?) for h € H,. Note that A»* = 39" 4° B, satisfies

the following score equation

) Ny(Tx.;)
122 ps v oY -1 BK(TKM'):O’ C=1,... qn
A TK@])

=1 j=1

Thus, for any h =Y " ayBy € ®,,, we have

1 "L N(TK1J> _ ) —
n ZZ{APS 1}h(TKM)—O,

that is, S?*(AP%)[h] = 0 for any h € ®,.
For any h € H,, there exists h,, € ®, such that ||h, — h||c = O(n™").

Next we need to show that
SE (AR — o] = o(n™'/?).
For this, we write
SN = ha] = SN [A = ha] = S8 (Ao)[h — Rl } + S5° (M) [ —
= L+ Loy

Since

n K;

>N

1

P’[1n| == -1

i=1

j:
] 1 L ) — (T
N (Trog) Do(Tieg) f 55077 T
< dy (A Ag)|[ — Bl
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and
2
PIZ = n'P

; {% - 1} {M(Tx;) — hn(Tr )}

S nHlh = hallX,

then it follows that I, = o0,(n"'/?) and I, = o0,(n~'/?), which implies
(A2).

Condition (A3) holds because H, is a Donsker class and the functional
SP is a bounded Lipschitz function with respect to H,.

For (A4), by the smoothness of SP*(A), the Fréchet differentiability
holds and the derivative of SP*(A) at Ag, denoted by Sﬁf}, is a map from the

space {(A —Ag) : A e U} to [*(H,) and

Sy (A = Ao)[A]

= L (o +e(A— A | (52.1)
_ = S MTry) — Mo(Tky)
- ; (i) { Ao(Tk ) }
Thus, by condition C8, we have
~SR (A= o)l = [ (Ale) = Ao(t)d@” () (52.2)

where
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Next we show that (A5) holds. Note that

s (A)

[ N(Twy) ,
2 AP (T ;) 1}h(TK’])

K AR (Ticg) — Bo(T )
S W(Ti) { Ao(Try) }

[h

—

— Sholh] = S5 (Ah* — Ao) (1]

S ) {AzS<TK,j>—A0<TK’j)}2]

By Theorem 2 of Lu, Zhang and Huang (2007),
di(A?, Ng) = Op(n2/ 1420y = 0, (n™1/2),

and thus (A5) holds.

It follows from Theorem 2.1 that

/i / (AP () — Aolt)}AQP (h) () = V/a(SP* — 57)(Ao) H] + 0p(1). (52.3)

Next, we show that QP* is one-to-one, that is, for h € H,., if QP*(h) = 0,
then h = 0.
Suppose that Q*(h) = 0. Then Sﬁz (A — Ag)[h] = 0 for any A in the

neighborhood Y. In particular, we take A = Ay + eh for a small constant e.
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Thus we have

0 = SXZ(A_AO)[}L]

_ P iAO(TK,j){%}QI’

which yields
hTk;)=0,j=1,...,K, as.
and so h = 0 by condition C10.

For each h € H,, since QP° is invertible, there exists h?® € H, such that

QP (h?*) = h. Therefore, we have
Vit [ R22(0) = lO)}dh(t) = VA(SL? = S)(Aa) 7] + 0,(1) —va N(0, )

where

0ps = E{tp(Aos X)[A7°]}. (52.4)

To prove part (ii), we define a sequence of maps S,, mapping a neigh-

borhood of Ay, U, in the parameter space for A into [*°(H,) as:

Su(A)[h] = n_ld%ln(/\ +eh)|

Write AN;(Tk, ;) = Ni(Tk, ;) —Ni(Tk, j-1), ANTk, ;) = MTk, ;) —MTk, j-1),
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and Ah(Tk, ;) = h(Tk, ;) — h(Tk, j—1). Then, we have

Su(A)[A]

i=1 j=1

Y(A; X)[R].
Correspondingly, we define the limit map S : U — I*°(H,) as

" (AN(Tg;
=Py {—AAETK;; — 1} Ah(Tx ;)

Furthermore, the derivative of S(A) at Ay, denoted by Sa,, is a map

from the space {(A — Ag) : A € U} to I*°(H,) and

Sao(A = Ag)[h]

where

Ah(Tk,;)

QU(E) = P | 3_{1(They < 1) = 1(Tigyr < )} Jp-om 25

Similarly, we can show that v/n(S, — S)(An)[h] — /R (S, — S)(Ag)[h] =

0,(1), S(Ag)[h] = 0, Sp(An)[h] = 0,(n~1/?), and

S(A)[R] = S(Ag)[h] — Sae(Ay — Ao)[h] = Op(d3(An, Ao)).
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By Theorem 2 of Lu, Zhang and Huang (2007), we have dy(An,Ag) =

Op(nfr/(lJrQr))’ and so
S(An)[h] = S(Ao)[h] = Sug (A — Ao)[h] = 0,(n""/2).
Thus it follows from Theorem 2.1 that

\/ﬁ/{f\n(t) — Mo () }Q(R)(t) = v/n(S, — S)(Mo)[1] + 0p(1).  (S2.6)

Next, we show that @) is one-to-one, that is, for h € H,, if Q(h) = 0,
then h =0

Suppose that Q(h) = 0. Then Sx, (A — Ag)[h] = 0 for any A in the
neighborhood Y. In particular, we take A = Ay + eh for a small constant e.

Thus we have

0 = Sx(A—Ao)A]

iAAo(TKJ) {%}1 |

Jj=1

= —€P

which yields

Thus,

h(Tk;)=0,j5=1,....K, as.

and so h = 0 by condition C10.
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For each h € H,, since @ is invertible, there exists unique h* € H, such

that Q(h*) = h. Thus, we have

\/ﬁ/{f\n(t) — No(t)}dh(t) = V/n(Sp — S)(Ao)[R*] + 0,(1) =4 N(0,07),
where

o? = B (A X)[H']}. (52.7)

Proof of Corollary 3.1. (i) Note that

_ /h(t) Ags(t) - AO(t) d}u(t).

Ao(Txk ) Ao(2)

EK: h(Tk ;) {/A\ff(TK,j) — Ao(Tk ) }

j=1

Thus it follows from (S2.1)-(S2.3) that

vin [ ey 0) = V(s - )80k + o),

which completes the proof of (i).

Similarly, the result in part (ii) follows from (S2.5) and (S2.6).
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S3 Proof of Theorem 4.1

(i) Note that

K ~
Aps T, AP (T 5
Uéps) = /nP, Zhn(TK,j) ( K]) 5 ( K,J)}

AR (Tx5)

- \/E]P)n { Z hn (TKJ ) Aps (Ti]is)(TKAO)(TKJ> } )

and

AP (Tre ) — No(Tie )
{Zh ey AP (T ) }

_ ps PS ps ps
- Uln UZn U3n U4n

where

0 \tKj

AP (Tx ;) — Mo(Tk )
AT (Tk ;)

Us, = VnP

)

Z{%(TKJ) ~ h(Tic,)}

U3, = V/nP

K . 1 1
> (T )AL (Tiey) = Ao(Tie )} {AgS(TK,j> ~ No(Tiy) H |

J=1

U, = vnP

i h(Tx .)AIfS(TKJ) — No(Tk )
j=1 ! AO (TKJ)

By the arguments similar to those used in the proof of Theorem 3.1 of
Balakrishnan and Zhao (2009), we can show that U}, = 0,(1), U =

0p(1), and UL, = 0,(1).



14

XINGQIU ZHAO AND YING ZHANG

(i)

From (S2.1)-(52.3), we have
Uly = VP, — P)ps(Ao; X)[R] + 0,(1),

where P,, is the empirical measure based on group 1. Similarly, we

have

K

VB, {Z hl(Tic) Ags(TlA(is) (;KA.(;(TKJ) }

= \/ﬁ@)nz - P)qu)ps(AO; X) [h] + OP(1>’

i=1

where IP,,, is the empirical measure based on group 2. Hence, we have

U,I;S \/>\/_ ny 7vZJ;Ds(AOa )[h]
\f 2By — P)e(Mos X)[H] + 0(1).

Here P,,, and IP,,, are independent. Thus it follows that U?® converges

in distribution to N(0,c2,).

) Y ps

Using the arguments similar to the proof of (i), we can obtain

Un \/_( ni — P)(Ao; X)[R]

n

— /= /12(Ba, — P)tb(Ag; X)[h] + 0,(1),

ng

which yields the asymptotic normal distribution N (0, 0?).

The proof of this part is omitted since it is similar to those used in the

proof of Theorem 3.1 (iii) of Balakrishnan and Zhao (2009).
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