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Supplementary Material

This supplement contains two parts: supplement S1 presents the estimation results for

Q(µ, θ) when µ and θ have different signal strengths, whereas supplement S2 presents the

proofs for Theorems 3 and 4 given in the main text.

S1 Estimation of Q(µ, θ) with Different Signal Strengths

We consider in Section 2 the estimation of Q(µ, θ) = 1
n

∑n
i=1 µ

2
i θ

2
i over the parameter space

(2.7) where jn = kn = nβ and rn = sn = nb, with 0 < ε ≤ β < 1
2

and b ∈ R. In this section,

we present the estimation result for Q(µ, θ) with jn = kn = nβ but allow rn and sn to differ.

Specifically, we consider the following parameter space

Ω(β, ε, a, b) = {(µ, θ) ∈ Rn × Rn : ‖µ‖0 ≤ kn, ‖µ‖∞ ≤ rn, ‖θ‖0 ≤ kn, ‖θ‖∞ ≤ sn,

‖µ ? θ‖0 ≤ qn}, (S1.1)

where kn = nβ , qn = nε with 0 < ε ≤ β < 1
2
, and rn = na, sn = nb with a, b ∈ R.

Similar as before, the estimation problem can be divided into three regimes: the sparse

regime (0 < ε < β
2

), the moderately dense regime (β
2
≤ ε ≤ 3β

4
), and the strongly dense regime

( 3β
4
< ε ≤ β). When µ and θ have different signal strengths, the minimax rates of convergence
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for Q(µ, θ) exhibit more elaborate phase transitions, though they still bear the familiar form

R∗(n,Ω(β, ε, a, b)) := inf
Q̂

sup
(µ,θ)∈Ω(β,ε,a,b)

E(µ,θ)(Q̂−Q(µ, θ))2 � γn(β, ε, a, b),

where γn(β, ε, a, b) is a function of n indexed by β, ε, a, and b. For readability, we summarize the

corresponding γn(β, ε, a, b) in Table 1 (sparse regime), Table 2 (moderately dense regime), and

Table 3 (strongly dense regime), respectively. The minimax rates of convergence are attained by

the same estimators as before over the respective regimes, as stated in Theorem 5 and Theorem 6

given below.

Although we do not present the result here due to its lengthiness, estimation of Q(µ, θ)

for the case where no equality constraint is imposed on either sparsity or signal strength of µ

and θ can be analyzed analogously provided that the magnitude of the simultaneous sparsity ε

is compared to α if a ≥ b, and to β if b ≥ a, for the characterization of the sparse and dense

regimes.

Theorem 5 (Sparse Regime). Let 0 < ε < β
2

and 0 < β < 1
2

. Then Q̂2 defined in (2.12) with

τn = log n attains the minimax rate of convergence over Ω(β, ε, a, b) for (a, b) ∈ {(a, b) : a∧ b >

0}. On the other hand, Q̂0 = 0 attains the minimax rate of convergence over Ω(β, ε, a, b) for

(a, b) ∈ {(a, b) : a ∧ b ≤ 0}.

Theorem 6 (Dense Regime). Let β
2
≤ ε ≤ β and 0 < β < 1

2
. Then Q̂4 defined in (2.18) with

τn = 4 logn attains the minimax rate of convergence over Ω(β, ε, a, b) for (a, b) ∈ {(a, b) : a∨b >

0 and a ∧ b > β−2ε
4
}. On the other hand, Q̂0 = 0 attains the minimax rate of convergence over

Ω(β, ε, a, b) for (a, b) ∈ {(a, b) : a ∨ b ≤ 0 or a ∧ b ≤ β−2ε
4
}.

The shaded regions in the three tables represent the region where Q̂0 attains the minimax

rate of convergence. Thus, {(a, b) : a ∧ b ≤ 0} is shaded in Table 1, while {(a, b) : a ∨ b ≤
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0 or a ∧ b ≤ β−2ε
4
} is shaded in Tables 2 and 3.

Note that the estimation result for the dense regime turns out to be interesting (and more

inspiring) when rn and sn can differ. It seems that estimation is desirable whenever the signal

strengths of both sequences barely exceed some small threshold (a ∧ b > β−2ε
4

, but β − 2ε ≤ 0

in this case) and at least one sequence has sufficiently strong signal (a ∨ b > 0). This is in

contrast to the sparse regime where estimation is desirable only when the signal strength of

both sequences are sufficiently strong (a∧ b > 0). The intuitive explanation is that in the dense

regime, knowing that µi 6= 0 (because of large X2
i ) most often suggests that θi 6= 0 too (even

if Y 2
i is small), and vice versa, so we cannot afford to estimate µ2

i θ
2
i by 0 with this additional

information. On the contrary, in the sparse regime, knowing that µi 6= 0 does not entail much

about whether θi 6= 0 due to the sparseness of simultaneous nonzero coordinates. Therefore it

is better to estimate µ2
i θ

2
i by 0 unless both X2

i and Y 2
i are large.

In fact, the minimax rates of convergence for the sparse regime are relatively simple to

describe, when rn is not necessarily equal to sn:

γn(β, ε, a, b) =



n2ε+4a+4b−2 if a ∧ b ≤ 0,

n2ε+4a∨b−2(logn)2 if 0 < a ∧ b ≤ ε
2
,

nε+4a∨b+2a∧b−2 if a ∧ b > ε
2
.

Unfortunately, we do not have such an easy representation for the minimax rates of convergence

in the dense regime. Nonetheless, due to the two-dimensional nature of the estimation prob-

lem, we find tables useful not only in presenting the minimax rates of convergence but also in

illustrating the regions with weak signals (i.e., the shaded regions).
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b ≤ 0 0 < b ≤ ε
2 b > ε

2

a ≤ 0 n2ε+4a+4b−2 n2ε+4a+4b−2 n2ε+4a+4b−2

0 < a ≤ ε
2 n2ε+4a+4b−2 n2ε+4a∨b−2(log n)2 n2ε+4b−2(log n)2

a > ε
2 n2ε+4a+4b−2 n2ε+4a−2(log n)2 nε+4a∨b+2a∧b−2

Table 1: Minimax rates of convergence in the sparse regime: 0 < ε < β
2 .

b ≤ β−2ε
4

β−2ε
4 < b ≤ 0 0 < b ≤ 2ε−β

4
2ε−β

4 < b ≤ β−ε
2 b > β−ε

2

a ≤ β−2ε
4 n2ε+4a+4b−2 n2ε+4a+4b−2 n2ε+4a+4b−2 n2ε+4a+4b−2 n2ε+4a+4b−2

β−2ε
4 < a ≤ 0 n2ε+4a+4b−2 n2ε+4a+4b−2 max{nβ+4b−2,

n2ε+4a−2(log n)2}
nβ+4b−2 nβ+4b−2

0 < a ≤ 2ε−β
4 n2ε+4a+4b−2 max{nβ+4a−2,

n2ε+4b−2(log n)2}
n2ε−2(log n)4 nβ+4b−2 nβ+4b−2

2ε−β
4 < a ≤ β−ε

2 n2ε+4a+4b−2 nβ+4a−2 nβ+4a−2 nβ+4a∨b−2 nβ+4b−2

a > β−ε
2 n2ε+4a+4b−2 nβ+4a−2 nβ+4a−2 nβ+4a−2 nε+4a∨b+2a∧b−2

Table 2: Minimax rates of convergence in the moderately dense regime: β
2 ≤ ε ≤

3β
4 . In this case, we have 2ε−β

4 ≤ β−ε
2 .

b ≤ β−2ε
4

β−2ε
4 < b ≤ 0 0 < b ≤ β−ε

2
β−ε
2 < b ≤ 2ε−β

4 b > 2ε−β
4

a ≤ β−2ε
4 n2ε+4a+4b−2 n2ε+4a+4b−2 n2ε+4a+4b−2 n2ε+4a+4b−2 n2ε+4a+4b−2

β−2ε
4 < a ≤ 0 n2ε+4a+4b−2 n2ε+4a+4b−2 max{nβ+4b−2,

n2ε+4a−2(log n)2}
max{nβ+4b−2,

n2ε+4a−2(log n)2}
nβ+4b−2

0 < a ≤ β−ε
2 n2ε+4a+4b−2 max{nβ+4a−2,

n2ε+4b−2(log n)2}
n2ε−2(log n)4 n2ε−2(log n)4 nβ+4b−2

β−ε
2 < a ≤ 2ε−β

4 n2ε+4a+4b−2 max{nβ+4a−2,

n2ε+4b−2(log n)2}
n2ε−2(log n)4 max{n2ε−2(log n)4,

nε+4a∨b+2a∧b−2}
nε+2a+4b−2

a > 2ε−β
4 n2ε+4a+4b−2 nβ+4a−2 nβ+4a−2 nε+4a+2b−2 nε+4a∨b+2a∧b−2

Table 3: Minimax rates of convergence in the strongly dense regime: 3β
4 < ε ≤ β. In this case, we have β−ε

2 < 2ε−β
4 .
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S2 Additional Proofs

In this section, we present the proofs of Theorems 3 and 4. Hereinafter, we omit the subscripts

n in kn, qn, sn and τn that signifies their dependence on the sample size. We denote by ψµ the

density of a Gaussian distribution with mean µ and variance σ2, and we denote by `(n, k) the

class of all subsets of {1, . . . , n} of k distinct elements. For a standard normal random variable

Z, the expressions φ(z),Φ(z) = P (Z ≤ z), and Φ̃(z) = 1−Φ(z) represent its density, cumulative

distribution function, and survival function, respectively. We let c and C be constants whose

values may vary for each occurrence.

S2.1 Proof of Theorem 3

The proof is based on Lemmas 1 and 2 which bound, respectively, the bias and variance of one

term in the estimator Q̂4 (given in (2.18)). For clarity, we defer the proofs of Lemma 1 and

Lemma 2 to Section S2.3.

Lemma 1. Let X ∼ N(µ, σ2) and Y ∼ N(θ, σ2) be independent. Set η = E[(Z2
1 − σ2)(Z2

2 −

σ2)1(Z2
1 ∨ Z2

2 > σ2τ)], where Z1, Z2
i.i.d.∼ N(0, σ2). Then

η = −4σ4τφ2(τ1/2),

and for τ ≥ 1,

∣∣E[(X2 − σ2)(Y 2 − σ2)1(X2 ∨ Y 2 > σ2τ)]− η − µ2θ2
∣∣

≤ min{µ2, 3σ2τ}min{θ2, 3σ2τ}+ 2σ2τ1/2φ(τ1/2) min{µ2, 3σ2τ}

+ 2σ2τ1/2φ(τ1/2) min{θ2, 3σ2τ}.
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Lemma 2. Let X ∼ N(µ, σ2) and Y ∼ N(θ, σ2) be independent. Then for τ ≥ 1,

Var[(X2 − σ2)(Y 2 − σ2)1(X2 ∨ Y 2 > σ2τ)]

≤



2d1/2Φ̃(τ1/2)1/2 if µ = θ = 0,

4σ2µ4θ2 + 4σ2µ2θ4 + 16σ4µ2θ2 + 2σ4µ4 + 2σ4θ4

+8σ6µ2 + 8σ6θ2 + 4σ8 + 8σ4µ2θ2τ2 otherwise,

where d = E[(Z2
1 − σ2)4(Z2

2 − σ2)4] and Z1, Z2
i.i.d.∼ N(0, σ2).

Proof of Theorem 3. We first compute the bias of Q̂4. It follows from Lemma 1 that for all

(µ, θ) ∈ Ω(β, ε, b) and τ ≥ 1, we have

∣∣E(µ,θ)(Q̂4)−Q(µ, θ)
∣∣

≤ 1

n

n∑
i=1

∣∣∣E(µi,θi)[(X
2
i − σ2)(Y 2

i − σ2)1(X2
i ∨ Y 2

i > σ2τ)]− η − µ2
i θ

2
i

∣∣∣
≤ 1

n

n∑
i=1

[
min{µ2

i , 3σ
2τ}min{θ2

i , 3σ
2τ}+ 2σ2τ1/2φ(τ1/2) min{µ2

i , 3σ
2τ}

+ 2σ2τ1/2φ(τ1/2) min{θ2
i , 3σ

2τ}
]

≤ 1

n

[
min{qs4, 3σ2qs2τ, 9σ4qτ2}+ 4σ2τ1/2φ(τ1/2) min{ks2, 3σ2kτ}

]
,

the last inequality follows from the fact that for (µ, θ) ∈ Ω(β, ε, b), there are at most k nonzero

entries for either µ or θ, and there are at most q entries that are simultaneously nonzero for

both µ and θ.

On the other hand, by Lemma 2, for all (µ, θ) ∈ Ω(β, ε, b) and τ ≥ 1, the variance of Q̂4
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satisfies

Var(µ,θ)(Q̂4)

=
1

n2

n∑
i=1

Var(µi,θi)[(X
2
i − σ2)(Y 2

i − σ2)1(X2
i ∨ Y 2

i > σ2τ)]

≤ 1

n2

[ ∑
i:µi=θi=0

2d1/2Φ̃(τ1/2)1/2

+
∑

i:µi 6=0 or θi 6=0

(
4σ2µ4

i θ
2
i + 4σ2µ2

i θ
4
i + 16σ4µ2

i θ
2
i + 2σ4µ4

i + 2σ4θ4
i

+ 8σ6µ2
i + 8σ6θ2

i + 4σ8 + 8σ4µ2
i θ

2
i τ

2)]
≤ 1

n2

[
2d1/2nΦ̃(τ1/2)1/2 + 8σ2qs6 + 16σ4qs4 + 4σ4ks4 + 16σ6ks2 + 8σ8k + 8σ4qs4τ2

]
≤ C

n2
max{nΦ̃(τ1/2)1/2, qs4, qs6, k, ks2, ks4, qs4τ2}.

Again, the second to the last inequality follows from the fact that for (µ, θ) ∈ Ω(β, ε, b), there are

at most k nonzero entries for either µ or θ, and there are at most q entries that are simultaneously

nonzero for both µ and θ.

Combining the bias and variance term, we have

sup
(µ,θ)∈Ω(β,ε,b)

E(µ,θ)(Q̂4 −Q(µ, θ))2

≤ C

n2

[
min{q2s8, q2s4τ2, q2τ4}+ τφ2(τ1/2) min{k2s4, k2τ2}

+ max{nΦ̃(τ1/2)1/2, qs4, qs6, k, ks2, ks4, qs4τ2}
]

=
C

n2

[
min{n2ε+8b, n2ε+4bτ2, n2ετ4}+ τφ2(τ1/2) min{n2β+4b, n2βτ2}

+ max{nΦ̃(τ1/2)1/2, nε+4b, nε+6b, nβ , nβ+2b, nβ+4b, nε+4bτ2}
]
.

Let τ = 4 log n, then we have Φ̃(τ1/2) ≤ Cφ(τ1/2) = O(n−2) for some constant C. It follows
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that for b > 0,

sup
(µ,θ)∈Ω(β,ε,b)

E(µ,θ)(Q̂4 −Q(µ, θ))2 ≤ C max
{
n2ε−2(logn)4, nε+6b−2, nβ+4b−2

}
.

S2.2 Proof of Theorem 4

In this section, we prove Theorem 4, which constitutes the lower bound for the estimation rate of

Q(µ, θ) in the dense regime. We begin with some technical tools for establishing lower bounds.

General Tools

Let P be a set of probability measures on a measurable space (X ,A), and let θ : P −→ R. For

Pf , Pg ∈ P, let θf = θ(Pf ), θg = θ(Pg), and let f, g denote the density of Pf , Pg with respect to

some dominating measure u. The chi-square affinity between Pf and Pg is defined as

ξ = ξ(Pf , Pg) =

∫
g2

f
du.

In particular, for Gaussian distributions, we have

ξ(N(θ0, σ
2), N(θ1, σ

2)) = e(θ1−θ0)2/σ2

.

Throughout, the proof of lower bounds is established by the construction of two priors

which have small chi-square distance but a large difference in the expected values of the resulting

quadratic functionals, followed by an application of the Constrained Risk Inequality (CRI) in

Brown and Low (1996). Essentially, CRI says that if Pf and Pg are such that θf , θg ∈ Θ,
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the parameter space of estimation, with ξ = ξ(Pf , Pg) < ∞, then for any estimator δ of

θ = θ(P ) ∈ Θ based on the random variable X with distribution P , we have

sup
θ∈Θ

Eθ(δ(X)− θ)2 ≥ (θg − θf )2

(1 + ξ1/2)2
.

It follows that to establish lower bound for estimation rate, it suffices to find Pf and Pg such

that (θg − θf )2 is as large as possible subject to ξ(Pf , Pg) <∞.

Proof of Theorem 4

To prove Theorem 4, it is sufficient to show that for 0 < β < 1
2
,

γn(β, ε, b) ≥



n2ε+8b−2 if b ≤ 0, for 0 < ε ≤ β, (Case 2)

nε+6b−2 if b > 0, for 0 < ε ≤ β, (Case 3)

nβ+4b−2 if b > 0, for β
2
≤ ε ≤ β, (Case 4)

n2ε−2(logn)4 if b > 0, for 0 < ε ≤ β. (Case 5)

The proof of Case 2 and Case 3 can be found in Section 5.2 in the main text, hence we will only

provide proofs of Case 4 and Case 5 below. For individual regions in {(β, ε, b) : β
2
≤ ε ≤ β <

1
2
, b ∈ R}, the minimax rate of convergence is obtained as the sharpest rate among all cases in

which the region belongs to. For instance, the region {(β, ε, b) : 3β
4
< ε ≤ β < 1

2
, b > ε

6
} is in-

cluded in Case 3, Case 4 and Case 5, hence γn(β, ε, b) ≥ max{nε+6b−2, nβ+4b−2, n2ε−2(logn)4} =

nε+6b−2.
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Proof of Case 4. The proof of Case 4 is very similar to the proof of Case 1, besides that a

slightly different mixture prior g is employed. Let

f(x1, . . . , xn, y1, . . . , yn) =

k∏
i=1

ψs(xi)

n∏
i=k+1

ψ0(xi)

n∏
i=1

ψ0(yi).

For I ∈ `(k, q), let

gI(x1, . . . , xn, y1, . . . , yn)

=

k∏
i=1

ψs(xi)

n∏
i=k+1

ψ0(xi)

k∏
i=1

[
1

2
ψθi(yi) +

1

2
ψ−θi(yi)

] n∏
i=k+1

ψ0(yi),

where θi = ρ1(i ∈ I) with ρ > 0, and let

g =
1(
k
q

) ∑
I∈`(k,q)

gI .

Note that in constructing g, mixing is done not only over all possible subsets `(k, q) but also

over the signs of θi’s. This has largely to do with the intuition that when signal is abundant,

uncertainty about the signs of θi’s further increase the difficulty of the estimation problem.

That being said, mixing without sign flips (i.e., simply use the priors f and g as given in

the proof of Case 1) does not give us the tightest lower bound. Similar to Case 1, keeping

µ = (s, . . . , s, 0, . . . , 0) the same in both f and g essentially reduces the two-sequence problem

to a one-sequence problem. Our choice of priors is equivalent to having only one Gaussian mean

sequence of length k with q nonzero entries — thus the correspondence between the dense regime

in the two-sequence case (q �
√
k) and the dense regime in the one-sequence case (k �

√
n).

Again, the chi-square affinity between f and g has the form (5.2), where for I, J ∈ `(k, q)
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with m = Card(I ∩ J),

∫
gIgJ
f

=

k∏
i=1

∫
[ 1
2
ψρ1(i∈I)(yi) + 1

2
ψ−ρ1(i∈I)(yi)][

1
2
ψρ1(i∈J)(yi) + 1

2
ψ−ρ1(i∈J)(yi)]

ψ0(yi)
dyi

=

k∏
i=1

∫
1

4

{
ψρ1(i∈I)(yi)ψρ1(i∈J)(yi)

ψ0(yi)
+
ψ−ρ1(i∈I)(yi)ψ−ρ1(i∈J)(yi)

ψ0(yi)

+
ψρ1(i∈I)(yi)ψ−ρ1(i∈J)(yi)

ψ0(yi)
+
ψ−ρ1(i∈I)(yi)ψρ1(i∈J)(yi)

ψ0(yi)

}
dyi

=
∏
i∈I∩J

1

4

[ ∫
ψ2
ρ(yi)

ψ0(yi)
+

∫
ψ2
−ρ(yi)

ψ0(yi)
+ 2

∫
ψρ(yi)ψ−ρ(yi)

ψ0(yi)

] ∏
i∈Ic∪Jc

1

=
∏
i∈I∩J

1

2

[
exp(ρ2/σ2) + exp(−ρ2/σ2)

]
= cosh(ρ2/σ2)m.

It follows that ∫
g2

f
= E[cosh(ρ2/σ2)M ],

where M follows hypergeometric distribution as in (6.4). Since M coincides in distribution with

the conditional expectation E(M̃ |B) where M̃ is a Binomial(q, q
k

) random variable and B is a

suitable σ-algebra (Aldous, 1985), with Jensen’s inequality, we get

∫
g2

f
≤ E[cosh(ρ2/σ2)M̃ ] =

(
1 +

q

k
[cosh(ρ2/σ2)− 1]

)q
.

Since cosh(x) = 1
2
(ex + e−x) = 1 + x2

2
+ o(x2) when x ≈ 0, taking x = ρ2/σ2 with ρ = ( k

q2
)1/4

yields ∫
g2

f
≤
(

1 +
1

2σ4q

)q
<∞.
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Since Q(µ, θ) = 0 under f and Q(µ, θ) = 1
n
qs2ρ2 under g, it follows from CRI that

R∗(n,Ω(β, ε, b)) ≥ c
(

1

n
qs2ρ2

)2

= cnβ+4b−2.

Proof of Case 5. Let f and g be as given in the proof of Case 2 in Section 6.2, and take

ρ = σ
√

1
2
(1− 2ε) logn in (6.5). It follows that when n is sufficiently large,

e2ρ2/σ2

= n1−2ε =
n

q2
,

hence ∫
g2

f
≤
(

1 +
1

q

)q
≤ e.

Since Q(µ, θ) = 0 under f , and Q(µ, θ) = 1
n
qρ4 under g, it follows from CRI that

R∗(n,Ω(β, ε, b)) ≥ c
(

1

n
qρ4

)2

= cn2ε−2(logn)4.

S2.3 Proofs of Supporting Lemmas

In this section, we provide the proofs of technical lemmas that are used to establish Theorem 3

in Section 2.1.

Proof of Lemma 1

The proof of Lemma 1 is built on Lemma 3 and Lemma 4.
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Lemma 3. Let Y ∼ N(θ, σ2). Then for τ ≥ 1,

E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)] = θ2

[
Φ̃(−τ1/2 − θ

σ

)
− Φ̃

(
τ1/2 − θ

σ

)]
+ φ

(
τ1/2 +

θ

σ

)
[−σ2τ1/2 + σθ] + φ

(
τ1/2 − θ

σ

)
[−σ2τ1/2 − σθ].

In particular, when θ = 0,

E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)] = −2σ2τ1/2φ(τ1/2).

Proof. Let λ = τ1/2. We have

E[Y 2
1(Y 2 ≤ σ2τ)] =

∫ σλ

−σλ
y2 1√

2πσ
e−(y−θ)2/2σ2

dy

=

∫ λ−θ/σ

−λ−θ/σ
(θ + σz)2 1√

2π
e−z

2/2 dz

= θ2

∫ λ−θ/σ

−λ−θ/σ
φ(z) dz + 2σθ

∫ λ−θ/σ

−λ−θ/σ
zφ(z) dz + σ2

∫ λ−θ/σ

−λ−θ/σ
z2φ(z) dz.

Using the fact that

∫ ∞
a

φ(z) dz = Φ̃(a),

∫ ∞
a

zφ(z) dz = φ(a),

∫ ∞
a

z2φ(z) dz = aφ(a) + Φ̃(a),
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we have

E[Y 2
1(Y 2 ≤ σ2τ)]

= θ2[Φ̃(−λ− θ/σ)− Φ̃(λ− θ/σ)] + 2σθ[φ(−λ− θ/σ)− φ(λ− θ/σ)]

+ σ2[(−λ− θ/σ)φ(−λ− θ/σ) + Φ̃(−λ− θ/σ)− (λ− θ/σ)φ(λ− θ/σ)− Φ̃(λ− θ/σ)]

= (θ2 + σ2)[Φ̃(−λ− θ/σ)− Φ̃(λ− θ/σ)] + φ(λ+ θ/σ)[−σ2λ+ σθ] + φ(λ− θ/σ)[−σ2λ− σθ],

the last equality due to φ(−λ − θ/σ) = φ(λ + θ/σ). The proof is complete since σ2E[1(Y 2 <

σ2τ)] = σ2[Φ̃(−λ− θ/σ)− Φ̃(λ− θ/σ)].

Lemma 4. Let Y ∼ N(θ, σ2) and set θ0 = E[(Z2 − σ2)1(Z2 ≤ σ2τ)], where Z ∼ N(0, σ2).

Then for τ ≥ 1, ∣∣E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)]− θ0

∣∣ ≤ min{θ2, 3σ2τ}.

Proof. Let B(θ) = E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)] − θ0. We first show that |B(θ)| ≤ 3σ2τ . Define

λ = τ1/2. Then

E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)] ≤ E[Y 2
1(Y 2 ≤ σ2τ)] ≤ σ2λ2,

and

E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)] = E(Y 2 − σ2)− E[(Y 2 − σ2)1(Y 2 > σ2τ)]

≥ θ2 − E(Y 2) = −σ2 ≥ −σ2λ2.
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By Lemma 3, θ0 = −2σ2λφ(λ). It follows that

|B(θ)| ≤
∣∣E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)]

∣∣+ |θ0| ≤ σ2λ2 + 2σ2λφ(λ) ≤ 3σ2λ2 = 3σ2τ.

We now show that |B(θ)| ≤ θ2. Straightforward calculation yields for θ ≥ 0,

B′(θ) = σ(1 + λ2)[φ(λ+ θ/σ)− φ(λ− θ/σ)] + 2θ[Φ̃(−λ− θ/σ)− Φ̃(λ− θ/σ)], (S2.1)

B′′(θ) = φ(λ+ θ/σ)[−λ2(λ+ θ/σ)− λ+ θ/σ]

+ φ(λ− θ/σ)[−λ2(λ− θ/σ)− λ− θ/σ] + 2[Φ̃(−λ− θ/σ)− Φ̃(λ− θ/σ)]. (S2.2)

It suffices to only consider θ ≥ 0 since B(θ) = B(−θ). It follows from (S2.1) that for all θ ≥ 0,

B′(θ) ≤ 2θ. Since B(0) = 0, this implies that

B(θ) ≤ θ2, ∀θ ≥ 0. (S2.3)

On the other hand, θ0 ≤ 0 immediately gives B(θ) ≥ −σ2 ≥ −θ2 for θ ≥ σ. For 0 ≤ θ < σ, we

have σ(1 + λ2) ≥ 2θ. For x > 0, we have Φ̃(x) < x−1φ(x), so Φ̃(−λ− θ/σ) = 1− Φ̃(λ+ θ/σ) ≥

1− (λ+ θ/σ)−1φ(λ+ θ/σ). It then follows from (S2.1) that for 0 ≤ θ < σ,

B′(θ) ≥ 2θ[φ(λ+ θ/σ)− φ(λ− θ/σ) + Φ̃(−λ− θ/σ)− Φ̃(λ− θ/σ)]

≥ 2θ[1 + (1− (λ+ θ/σ)−1)φ(λ+ θ/σ)− φ(λ− θ/σ)− Φ̃(λ− θ/σ)]

≥ 2θ

[
1 + (1− (λ+ θ/σ)−1)φ(λ+ θ/σ)− 1√

2π
− 1

2

]
≥ 0.
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Coupled with B(0) = 0, this implies that B(θ) ≥ 0 ≥ −θ2 for 0 ≤ θ < σ. Hence,

B(θ) ≥ −θ2, ∀θ ≥ 0. (S2.4)

Since B(−θ) = B(θ), combining (S2.3) and (S2.4), we obtain |B(θ)| ≤ θ2 for all θ ∈ R.

Proof of Lemma 1. Let Z ∼ N(0, σ2), and let θ0 = E[(Z2−σ2)1(Z2 ≤ σ2τ)] = −2σ2τ1/2φ(τ1/2),

the second equality due to Lemma 3. It follows from the expression

E[(X2 − σ2)(Y 2 − σ2)1(X2 ∨ Y 2 > σ2τ)]

= µ2θ2 − E[(X2 − σ2)1(X2 ≤ σ2τ)]E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)]

and

η = E[(Z2
1 − σ2)(Z2

2 − σ2)1(Z2
1 ∨ Z2

2 > σ2τ)]

= −E[(Z2
1 − σ2)1(Z2

1 ≤ σ2τ)]E[(Z2
2 − σ2)1(Z2

2 ≤ σ2τ)] = −θ2
0

that we have

∣∣E[(X2 − σ2)(Y 2 − σ2)1(X2 ∨ Y 2 > σ2τ)]− η − µ2θ2
∣∣ (S2.5)

=
∣∣E[(X2 − σ2)1(X2 ≤ σ2τ)]E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)]− θ2

0

∣∣.

Using the decomposition AB − ab = (A − a)(B − b) + a(B − b) + b(A − a) and the triangle
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inequality, we get

∣∣E[(X2 − σ2)1(X2 ≤ σ2τ)]E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)]− θ2
0

∣∣
≤
∣∣E[(X2 − σ2)1(X2 ≤ σ2τ)]− θ0

∣∣∣∣E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)]− θ0

∣∣
+
∣∣θ0

∣∣∣∣E[(X2 − σ2)1(X2 ≤ σ2τ)]− θ0

∣∣+
∣∣θ0

∣∣∣∣E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)]− θ0

∣∣
≤ min{µ2, 3σ2τ}min{θ2, 3σ2τ}+ 2σ2τ1/2φ(τ1/2) min{µ2, 3σ2τ}

+ 2σ2τ1/2φ(τ1/2) min{θ2, 3σ2τ},

the last inequality follows from Lemma 4 and substitution of the value of θ0.

Proof of Lemma 2

We have

Var[(X2 − σ2)(Y 2 − σ2)1(X2 ∨ Y 2 > σ2τ)]

= E[(X2 − σ2)2(Y 2 − σ2)2
1(X2 ∨ Y 2 > σ2τ)]

−
{
E[(X2 − σ2)(Y 2 − σ2)1(X2 ∨ Y 2 > σ2τ)]

}2

= E[(X2 − σ2)2(Y 2 − σ2)2]− E[(X2 − σ2)2
1(X2 ≤ σ2τ)(Y 2 − σ2)2

1(Y 2 ≤ σ2τ)]

−
{
E[(X2 − σ2)(Y 2 − σ2)]− E[(X2 − σ2)1(X2 ≤ σ2τ)(Y 2 − σ2)1(Y 2 ≤ σ2τ)]

}2

= Var[(X2 − σ2)(Y 2 − σ2)]− E[(X2 − σ2)2
1(X2 ≤ σ2τ)]E[(Y 2 − σ2)2

1(Y 2 ≤ σ2τ)]

−
{
E[(X2 − σ2)1(X2 ≤ σ2τ)]E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)]

}2

+ 2µ2θ2E[(X2 − σ2)1(X2 ≤ σ2τ)]E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)]

≤ Var[(X2 − σ2)(Y 2 − σ2)] + 2µ2θ2E[(X2 − σ2)1(X2 ≤ σ2τ)]E[(Y 2 − σ2)1(Y 2 ≤ σ2τ)]

≤ Var[(X2 − σ2)(Y 2 − σ2)] + 8σ4µ2θ2τ2.
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Straightforward calculation yields

Var[(X2 − σ2)(Y 2 − σ2)]

= Var(X2 − σ2)Var(Y 2 − σ2) + [E(X2 − σ2)]2Var(Y 2 − σ2) + Var(X2 − σ2)[E(Y 2 − σ2)]2

= [4σ2µ2 + 2σ4][4σ2θ2 + 2σ4] + µ4[4σ2θ2 + 2σ4] + θ4[4σ2µ2 + 2σ4]

= 4σ2µ4θ2 + 4σ2µ2θ4 + 16σ4µ2θ2 + 2σ4µ4 + 2σ4θ4 + 8σ6µ2 + 8σ6θ2 + 4σ8.

Let d = E[(Z2
1 − σ2)4(Z2

2 − σ2)4] <∞. Then

Var[(X2 − σ2)(Y 2 − σ2)1(X2 ∨ Y 2 > σ2τ)]

≤ E[(X2 − σ2)2(Y 2 − σ2)2
1(X2 ∨ Y 2 > σ2τ)]

≤
(
E[(X2 − σ2)4(Y 2 − σ2)4]P (X2 ∨ Y 2 > σ2τ)

)1/2

= d1/2
(

1− P (|Z| ≤ τ1/2)2
)1/2

, where Z ∼ N(0, 1)

≤ (2d)1/2
(

1− P (|Z| ≤ τ1/2)
)1/2

= 2d1/2Φ̃(τ1/2)1/2,

the second inequality follows from the Cauchy-Schwarz inequality.
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