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S1 Proofs

S1.1 Proof of Theorem 1

For simplicity, the derivations below are performed assuming φ is known,

as in binomial and Poisson GLMMs where φ = 1. The extension to the

case of unknown φ is straightforward, because it does not appear in the

CREPE penalty and is of order φ̂ = Op(1) for all n and λ. Also, we focus

on the case with the CREPE penalty defined in equation (1) of the main

text, as opposed to the modification of it to account for a penalized random

intercept but unpenalized fixed intercept. The developments below can be

straightforwardly extended to the case where the CREPE penalty is defined

as nλ(ṽ1‖γ1‖)1/2 + nλ
p∑

k=2

w̃k(β
2
k + 1{k∈αc}ṽl‖γk‖)1/2.

We first prove estimation consistency. To begin, rewrite equation (1) in
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the main text as `pen(Ψ) = `(Ψ)−nλ
∑
k∈αf

w̃k|βk|−nλ
∑
l∈αc

w̃l(β
2
l +ṽl‖γl‖)1/2.

Let rn =
√
pf/n, and D(u) = `pen(Ψ0 + rnu)− `pen(Ψ0). We want to show

that for any given ε > 0, there exists a constant C such that for sufficiently

large n,

P

(
sup
‖u‖=C

D(u) < 0

)
≥ 1− ε. (S1.1)

If the above holds, then it guarantees that there exists a local maximizer

`pen(Ψ), denoted here as Ψ̂ of, such that ‖Ψ̂ − Ψ0‖ = Op

(√
pf/n

)
(see

Fan and Peng, 2004). To prove (S1.1), first note that

D(u) ≤ {`(Ψ0 + rnu)− `(Ψ0)} − nλ
∑
k∈α0f

w̃k (|β0k + rnuk| − |β0k|)

− nλ
∑
l∈α0c

w̃l

[{
(β0l + rnul1)2 + ṽl‖γ0l + rnul2‖

}1/2 −
(
β2

0l + ṽl‖γ0l‖
)1/2
]

, L1 − L2 − L3,

where α0f = {k ∈ αf : β0k 6= 0}, α0c = {l ∈ αc : β0l 6= 0}, and

u = (u1, . . . , upf , u11,u12, u21,u22, . . . , upc1,upc2). Note that for elements in

α0c, the quantity ‖γ0l‖may or may not be equal to zero. That is, the subsets

α0f and α0c are obtained by omitting truly zero fixed effects and truly zero

composite effects, respectively. Put another way, the inequality in the first
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line of the above expression comes from recognizing that: 1) for all k ∈ αf

where β0k = 0, it holds that (|β0k + rnuk| − |β0k|) ≥ 0, and 2) for all l ∈ αc

where β0k = ‖γ0l‖ = 0, it holds that
[
{(β0l + rnul1)2 + ṽl‖γ0l + rnul2‖}1/2 − (β2

0l + ṽl‖γ0l‖)1/2
]
>

0.

For term L1, a Taylor expansion can be used to obtain

L1 = rnu
T∇`(Ψ0)− 1

2
nr2

nu
T

(
− 1

n
∇2`(Ψ̄)

)
u,

where Ψ̄ lies on the line segment joining Ψ0 and Ψ0 + rnu. A standard

argument using Chebychev’s inequality can be used to show that ∇`(Ψ0) =

Op(
√
npf ) (see Fan and Peng, 2004), from which we obtain rnu

T∇`(Ψ0) =

Op(nr
2
n). Using Conditions (C1)-(C2) and the Cauchy-Schwarz inequality,

we have that for sufficiently large n,

L1 ≤ rnu
T∇`(Ψ0)− 1

2
nr2

n‖u‖2(1− ε)c1, (S1.2)

where ε is different to the one in (S1.1). Next, by the Cauchy-Schwarz

inequality and condition (C5), we have L2 = nλ
∑

k∈α0f

w̃krnuksgn(β0k) ≤

Op(nλrn
√
p0f ) = op(nr

2
n) by Condition (C6a), where sgn(·) denotes the sign

function. Turning to term L3, note that for n large enough, (β0l+rnul1)2 >

β2
0l − 2rn|ul1β0l|. Moreover for n large enough, we have ‖γ0l + rnul2‖ ≥
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‖γ0l‖ − 2ru‖ul2‖. Hence for sufficiently large n,

L3 ≥ nλ
∑
l∈α0c

w̃l

{(
β2

0l − 2rn|ul1β0l|+ ṽl‖γ0l‖ − 2ruṽl‖ul2‖
)1/2 −

(
β2

0l + ṽl‖γ0l‖
)1/2
}

= nλ
∑
l∈α0c

w̃lξ
0
l

{(
1− 2rn(|ul1β0l|+ ṽl‖ul2‖)

(ξ0
l )

2

)1/2

− 1

}
,

where ξ0
l = (β2

0l + ṽl‖γ0l‖)1/2. Observe that by Condition (C4),

rn(|ul1β0l|+ ṽl‖ul2‖)
(ξ0
l )

2
≤ rnC1(|ul1|+ ‖ul2‖

minl∈α0{β2
0l}+ minl∈α0{‖γ0l‖}

≤ rnC1(|ul1|+ ‖ul2‖)
c2

→ 0,

where C1 > 0 is a sufficiently large constant and α0 = α0f ∪ α0c. Using

this result, we can apply a Taylor expansion
√

1− x = 1− (1/2)x+Op(x
2),

with x = rn(|ul1β0l|+ ṽl‖ul2‖)(ξ0
l )
−2, to show that for n large enough,

L3 ≥ −nλ
∑
l∈α0c

w̃lξ
0
l

(
rn(|ul1β0l|+ ṽl‖ul2‖)

(ξ0
l )

2

)
{1 + op(1)}

= −nλ
∑
l∈α0c

w̃l

(
rn(|ul1β0l|+ ṽl‖ul2‖)

ξ0
l

)
{1 + op(1)},

where the {1 + op(1)} follows since x2 = op(x) when x = rn(|ul1β0l| +
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ṽl‖ul2‖)(ξ0
l )
−2. Using condition (C5), we have

−L3 ≤ nλ
∑
l∈α0c

w̃l

(
rn(|ul1β0l|+ ṽl‖ul2‖)

ξ0
l

)
{1 + op(1)}

≤ nλrnC2√
c2

{1 + op(1)} by Condition (C4)

≤ Op(nλrn) = op(nr
2
n) by Condition (C6a),

for some sufficiently large constant C2 > 0. Combining all the results

above, we have that for sufficiently large ‖u‖ = C, all the terms in D(u)

are dominated by the second term on the right hand side of (S1.2), which

is negative. The statement in equation (S1.1) and the desired estimation

consistency follows.

We now prove selection consistency. This will be done by considering

three cases, where in each case it is demonstrated that if the true parameter

is equal to zero, then with probability tending to one the corresponding

CREPE estimate (which is estimation consistent from the proof above)

must also equal zero.

First, suppose that for some k ∈ αf , we have β0k = 0 but β̂k 6= 0. By

the Karush-Kuhn-Tucker (KKT) optimality conditions,

0 =
∂`pen(Ψ)

∂βk

∣∣∣∣∣
Ψ̂

=
∂`(Ψ)

∂βk

∣∣∣∣∣
Ψ̂

− nλw̃ksgn(β̂k). (S1.3)
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Using a Taylor expansion and the Cauchy-Schwarz inequality, we have

∂`(Ψ)

∂βk

∣∣∣∣∣
Ψ̂

=
∂`(Ψ)

∂βk

∣∣∣∣∣
Ψ0

+
∑
r∈Ψ

∂2`(Ψ)

∂βk∂Ψr

∣∣∣∣∣
Ψ̄

(Ψ̂r −Ψ0r)

≤ ∂`(Ψ)

∂βk

∣∣∣∣∣
Ψ0

+ n‖Ψ̂−Ψ0‖

∑
r∈Ψ

(
1

n

∂2`(Ψ)

∂βk∂Ψr

∣∣∣∣∣
Ψ̄

)2
1/2

,M1 +M2.

From the proof of estimation consistency above, we have M1 = Op(
√
npf ).

Furthermore, by Conditions (C1)-(C2) and the estimation consistency of

Ψ̂, we have that for sufficiently large n, M2 = Op(n
√
pf/n) = Op(

√
npf ),

from which it follows that the first term on the right hand side of (S1.3)

is Op(
√
npf ). On the other hand, by Condition (C5), we have w̃k =

Op{(n/pf )ν/2}. It follows that for ν ≥ 1, nλw̃k/
√
npf = O

{
(n/pf )

(ν+1)/2
}
≥

O
{

(n/pf )
(ν+3)/4

}
→∞ by Condition (C6b). It follows from the above that

the second term on the right hand side of equation (S1.3) asymptotically

dominates the first term. With probability tending to one, the right hand

side of equation (S1.3) cannot equal zero. We therefore have a contradiction,

from which we conclude that for all k ∈ αf with β0k = 0, P (β̂k = 0)→ 1.

Suppose now that for some l ∈ αc, we have β0l = 0 but β̂l 6= 0. Note

that by the definition of a truly zero composite effect, β0l = 0 implies
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‖γ0l‖ = 0 for all l ∈ αc. Now, by the KKT optimality conditions,

0 =
1
√
npf

∂`pen(Ψ)

∂βl

∣∣∣∣∣
Ψ̂

=
1
√
npf

∂`(Ψ)

∂βl

∣∣∣∣∣
Ψ̂

− 1
√
npf

nλw̃lβ̂l(
β̂2
l + ṽl‖γ̂l‖

)1/2
.

(S1.4)

We have (1/
√
npf )∂`(Ψ)/∂βl|Ψ̂ = Op(1). By definition, β̂l/(β̂

2
l +ṽl‖γ̂l‖)1/2 ∈

[−1, 1] for all n, and so we need only consider the order of nλw̃l/
√
npf . As in

(S1.3), we have that the second term on the right hand side of (S1.4) asymp-

totically dominates the first term, and therefore with probability tending

to one, equation (S1.4) cannot equal zero. A contraction is thus obtained,

from which it follows that for all l ∈ α0c, P (β̂l = 0)→ 1.

We turn to the third part of the proof of selection consistency. Suppose

for some l ∈ αc, it holds that ‖γ0l‖ = 0 but ‖γ̂l‖ 6= 0. By the design of the

CREPE penalty, this implies β̂l 6= 0. From the KKT optimality conditions,

we have for all m = 1, . . . , pc,

0 =
1
√
npf

∂`pen(Ψ)

∂γlm

∣∣∣∣∣
Ψ̂

=
1
√
npf

∂`(Ψ)

∂γlm

∣∣∣∣∣
Ψ̂

− 1
√
npf

nλw̃l

2
(
β̂2
l + ṽl‖γ̂l‖

)1/2

ṽlγ̂lm
‖γ̂l‖

.

(S1.5)

Similar to above, we have that (1/
√
npf )∂`(Ψ)/∂γlm|Ψ̂ = Op(1). By defi-

nition γ̂lm/‖γ̂l‖ ∈ [−1, 1] for all n, and so we need only consider the order
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of the quantity

T1 = (1/
√
npf )nλw̃lṽl

/
(β̂2

l + ṽl‖γ̂l‖)1/2. We now consider two cases. First,

suppose β0l 6= 0. That is, the covariate enters the model as a composite

effect, but it is in fact an important fixed effect only. Then by condition

(C5), we have w̃l = Op(1) and ṽl = Op{(n/pf )ν/2}. Furthermore, by the

estimation consistency of Ψ̂, we have β̂2
l = Op(1) since β0l 6= 0, and ‖γ̂l‖ =

Op{(pf/n)1/2} since ‖γ0l‖ = 0. It follows that ṽl‖γ̂l‖ = Op{(n/pf )(ν−1)/2}

Given ν ≥ 1, then (β̂2
l + ṽl‖γ̂l‖)−1/2 has a lower bound of order Op(1). We

therefore obtain T1 = Op

(
λ (n/pf )

(ν+3)/4
)
→∞ by Condition (C6b).

Suppose now β0l = 0. That is, the covariate enters the model as a

composite effect, but it is in fact a truly zero composite effect. Then w̃l =

Op{(n/pf )ν/2} by condition (C5), and by the estimation consistency of Ψ̂ we

have that (β̂2
l +ṽl‖γ̂l‖)−1/2 has a lower bound of orderOp{(n/pf )(ν−1)/4}. We

thus obtain T1 = Op

{
λ (n/pf )

3(ν+1)/4
}
→∞ by condition (C6b). Combin-

ing the two cases above, we have that the right hand side of equation (S1.5)

cannot equal zero with probability tending to one, and a contradiction is

achieved. It follows that for any l ∈ α0c, if ‖γ0l‖ = 0 then P (‖γ̂l‖ 6= 0)→ 1.

Combining all the three proofs by contradiction leads to the result

P (Ψ̂2 = 0)→ 1, as desired.
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Proof of Theorem 2

From Theorem 1, we know that Ψ̂ = (Ψ̂1, Ψ̂2 = 0) is a
√
n/pf -consistent

local maximizer of the penalized log-likelihood in (1) in the main text.

Thus in a slight abuse of notation, let `pen(Ψ1) = `pen(Ψ1,0) and `(Ψ1) =

`(Ψ1,0). Letting ρλ(Ψ) = nλ
p∑

k=1

w̃k(β
2
k + 1{k∈αc}ṽk‖γk‖)1/2 denote the

CREPE penalty, we know that Ψ̂1 must satisfy ∇`pen(Ψ̂1) = 0. Therefore,

we can construct the following Taylor expansion.

0 =
1√
n
∇`pen(Ψ̂1)

=
1√
n
∇`(Ψ̂1)− 1√

n
∇ρλ(Ψ̂1)

=
1√
n
∇`(Ψ01) +

1√
n
∇2`(Ψ01)(Ψ̂1 −Ψ01) +

1

2
√
n
R(Ψ̄1)

− 1√
n
∇ρλ(Ψ01)− 1√

n
∇2ρλ(Ψ̌1)(Ψ̂1 −Ψ01)

, T1 + T2 + T3 + T4 + T5

where R(Ψ̄1) is a vector remainder term with elements

[R(Ψ̄1)]r =
∑

s,t∈Ψ01

∂3`(Ψ1)

∂Ψr∂Ψs∂Ψt

∣∣∣∣
Ψ̄

(Ψ̂1s −Ψ01s)(Ψ̂1t −Ψ01t),

and the quantities Ψ̌1 and Ψ̄1 both lie on the line segment joining Ψ̂1 and

Ψ01, and are not necessarily equal. We now consider the order of the terms
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T3 to T5. Starting with T3, by the estimation consistency of Ψ̂ it holds

that ‖Ψ̂1 − Ψ01‖2 = Op(pf/n). Therefore applying the Cauchy-Schwarz

inequality and condition (C3), we have

‖T3‖ ≤
1

2
√
n
‖Ψ̂1 −Ψ01‖2 × n×

( ∑
r,s,t∈Ψ01

U2
rst(Ψ̄1)

)1/2

≤ Op

(√
n× pf

n
× p3/2

0f

)
= op

(√
p0f

pf

)
= op(1),

where the multiplier of n in the right hand side of the first line comes from

noting that we have n independent clusters contributing to the marginal

log-likelihood, `(Ψ1) =
n∑
i=1

`i(Ψ1). Turning to T4, observe that

∇ρλ(Ψ01) =

(
∂pλ(Ψ1)

∂βk

∣∣∣∣
Ψ01

,
∂pλ(Ψ1)

∂βl

∣∣∣∣
Ψ01

,
∂pλ(Ψ1)

∂γlm

∣∣∣∣
Ψ01

)
,

for k ∈ α0f and l,m ∈ α0c, where

∂pλ(Ψ1)

∂βk

∣∣∣∣
Ψ01

= nλw̃ksgn(β0k),∣∣∣∣∣∂pλ(Ψ1)

∂βl

∣∣∣∣
Ψ01

∣∣∣∣∣ =
nλw̃l|β0l|

(β2
0l + ṽl‖γ0l‖)1/2

≤ nλw̃l,∣∣∣∣∣∂pλ(Ψ1)

∂γlm

∣∣∣∣
Ψ01

∣∣∣∣∣ =
nλw̃l|β0l|

(β2
0l + ṽl‖γ0l‖)1/2

ṽl|γ0lm|
‖γ0l‖

≤ nλw̃lṽl.
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By condition (C6a) then, it is straightforward to show that

‖T4‖ =
1√
n
‖∇ρλ(Ψ01)‖ ≤ Op

(
λ
√
p0fn

)
= op(1).

Similarly, it can be shown that ‖T5‖ = op(1). Combining the above results,

we have

0 =
1√
n
∇`(Ψ01) +

1√
n

(Ψ̂1 −Ψ01)∇2`(Ψ01) + op(1) (S1.6)

We next prove the following result relating the expected and observed Fisher

information matrices of Ψ01,

∥∥∥∥ 1

n
∇2`(Ψ01) + I(Ψ01)

∥∥∥∥ = op

(
1
√
pf

)
, (S1.7)

where I(Ψ01) is the block of the expected Fisher information matrix involv-

ing only Ψ01. The above can be shown by applying Markov’s inequality,

P

(∥∥∥∥ 1

n
∇2`(Ψ01) + I(Ψ01)

∥∥∥∥ > 1
√
pf

)
≤ pfE

(∥∥∥∥ 1

n
∇2`(Ψ01) + I(Ψ01)

∥∥∥∥2
)

≤ pf
n2

E

 ∑
r,s∈Ψ01

{
∂2`(Ψ)

∂Ψr∂Ψs

∣∣∣∣∣
Ψ01

− E

(
∂2`(Ψ)

∂Ψr∂Ψs

∣∣∣∣∣
Ψ01

)}2


≤ Op

(pf
n
p2

0f

)
= op(1)
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where the second line follows from the independence of the clusters i =

1, . . . , n. Writing n−1/2(Ψ̂1−Ψ01)∇2`(Ψ01) =
√
n(Ψ̂1−Ψ01){n−1∇2`(Ψ01)},

we can therefore combine equations (S1.6) and (S1.7) to obtain

1√
n
∇`(Ψ01) =

√
n(Ψ̂1 −Ψ01)I(Ψ01) + op(1)

The remainder of the proof follows a similar outline to the proof of Theorem

2 in Fan and Peng (2004). In particular, let

Yi =
1√
n
BnI−1/2(Ψ01)∇`(Ψ01).

Then we can prove for i = 1, . . . , n that Yi satisfies the Lindeberg condi-

tion. Application of the multivariate Lindeberg-Feller central limit theorem

(Van der Vaart, 2000) leads to the results.

S2 Additional Simulation Results

S2.1 Normal Responses
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Table 1: Additional simulation results for linear mixed models. Performed was assessed
in terms of the percentage of datasets where the correct model, i.e. both fixed and
random effects structure, was chosen (%C), and the median relative model error (RME).
Values of RME less than one indicates that CREPE has better model accuracy.

n m CREPE M-ALASSO ALASSO
%C %C RME %C RME

5 23 17 0.66 0 1.01
30 10 74 67 0.96 15 0.52

20 85 75 0.54 8 0.08

5 50 29 0.67 11 1.10
60 10 89 69 0.90 41 0.99

20 94 85 0.33 24 0.11

S2.2 Bernoulli Responses

Table 2: Additional simulation results for Bernoulli GLMMs. Performance was assessed
in terms of the percentage of datasets where the correct model, i.e. both fixed and
random effects structure, was chosen (%C), and the median relative model error (RME).
Values of RME less than one indicate that CREPE has better model accuracy. Note %C
for glmmLassosat is zero by definition, and so its column is omitted from the model.

n m CREPE glmmLassotrue glmmLassosat
%C %C RME RME

50 10 5 29 2.09 1.91
20 30 34 0.47 0.56

100 10 11 70 0.66 0.67
20 51 76 0.58 0.58

S2.3 Poisson GLMMs

Datasets were simulated from a Poisson GLMM, using the same rate of

growth of p as in Section 5.2 of the main text, i.e. p = d7n1/4e where d·e is

the ceiling function. Covariates xij were constructed with the first element
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set to one for an intercept, and the remaining elements generated from a

multivariate normal distribution with mean zero and covariance given by

Cov(xijr, xijs) = ρ|r−s| and ρ = 0.5. The covariates for the random effects zij

were taken as the first eight covariates of xij. The first eight elements of β0

were set to (0.5, 1,−1, 0, 1, 0, 0, 1), with the first element denoting the fixed

intercept. Afterwards, every third element in β0 took alternating values of

±1, while the remaining elements were set to zero. The true 8×8 covariance

matrix D0 was structured as follows: 1) a 2 × 2 submatrix with diagonal

elements 1 and off-diagonal elements of -0.5 occupied the top left of D0, 2)

[D0]88 = 1, 3) all other elements were set to zero. Based on the above set up,

responses yij were then generated from a Poisson distribution with log link.

The response matrices generated had an average of 37% zero elements. We

considered combinations of n = 50, 100 clusters, corresponding to p = 19

and 23 respectively, and cluster sizes of m = 5, 10, 20.

We compared CREPE (with ν = 2 in the adaptive weights) with

glmmLasso assuming either the random effects component was known and

only elements 1, 2 and 8 of zij were included, or that it was unknown and

the saturated random effects model was used. Furthermore, as was the

case with the Bernoulli GLMM design, because glmmLasso only performs

selection of the fixed effects, the model error was defined only in terms of
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the fixed effects ME = ‖β̂ − β0‖2.

CREPE performed strongly compared to the two versions of glmmLasso

(Table 3): aside from the smallest sample size case of (n,m) = (50, 5), it

selected the correct random effects structure over 75% of the time. Fur-

thermore, the mean number of false positives for the fixed effects dropped

considerably when the cluster size increased from m = 5 to 20, while the

mean number of false negatives was close to zero regardless of n and m. Fi-

nally, in all settings the median relative Kullback-Leibler distance for both

versions of glmmLasso was smaller than one, indicating that CREPE had

substantially better model accuracy (predictive capacity).

Table 3: Simulation results for Poisson GLMMs. Performance was assessed in terms
of the mean number false positives (FP) and false negatives (FN) for the fixed effects,
the percentage of datasets with correctly chosen random effects components (%RE, for
CREPE only), the percentage of datasets where there was non-hierarchical shrinkage
(%S), and median relative Kullback-Leibler distance (RKL). Values of RKL less than
one indicated CREPE had better model accuracy. Since %S was equal to zero for all
cases for CREPE, this column is omitted from the table.

n m CREPE glmmLassotrue glmmLassosat
FP FN %RE FP FN %S RKL FP FN %S RKL

5 2.44 0.11 52 3.12 2.99 52 0.25 2.78 3.44 80 0.40
50 10 1.34 0.10 86 3.93 1.10 41 0.45 2.01 2.49 79 0.44

20 0.40 0.09 89 3.73 0.49 19 0.83 1.10 2.06 54 0.61

5 2.34 0.08 77 2.78 3.69 71 0.13 3.00 3.33 77 0.39
100 10 1.30 0.10 91 2.93 1.65 51 0.56 2.92 2.16 79 0.61

20 0.36 0.08 92 4.89 0.65 19 0.76 3.62 1.45 43 0.72

The mean number of false positives was similar for both versions of

glmmLasso, and both were substantially higher compared to CREPE. Also,
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Table 4: Additional simulation results for Poisson GLMMs. Performance was assessed
in terms of the percentage of datasets where the correct model, i.e. both fixed and
random effects structure, was chosen (%C), and median relative model error (RME).
Values of RME less than one indicate that CREPE has better model accuracy. Note %C
for glmmLassosat is zero by definition, and so its column is omitted from the model.

n m CREPE glmmLassotrue glmmLassosat
%C %C RME RME

5 7 0 0.627 0.44
50 10 29 7 1.572 0.69

20 65 31 2.306 1.05

5 9 1 0.406 0.45
100 10 35 22 1.063 0.75

20 72 27 1.044 0.92

the mean number of false negatives dropped dramatically with increasing

cluster size for glmmLasso, although even at m = 20 it was still consider-

ably higher than the CREPE estimator. Not surprisingly, assuming the true

random effects structure led to a considerably smaller number of datasets

with non-hierarchical shrinkage compared to assuming a saturated random

effects structure. It was also not surprising to see that both the relative

Kullback-Leibler distances and relative model errors were much closer to

one for glmmLassotrue than glmmLassosat, which reflects the fact that se-

lecting only the truly non-zero random effects, rather than including all

of them in the model, has implications for producing better estimates of

the fixed effects. Interestingly however, at m = 10 and 20 the median

RME for glmmLassotrue was substantially greater than one, suggesting that
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glmmLassotrue outperformed CREPE in terms of estimating the fixed ef-

fect coefficients in these cases. While this result is confounded with the

fact that CREPE performs joint selection and glmmLasso performed fixed

effects selection only, subsequent investigation also showed that the esti-

mated non-zero values of β from CREPE tended to be overshrunk, i.e.

further from ±1, compared to the glmmLassotrue estimates, a result that

needs further inquiry.

S3 R Code

The files crepe-code.R and code-testing.R contain R code for calculat-

ing the CREPE estimates for GLMMs and an example of how to use it

respectively.
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